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Abstract: Efficient jamming recognition capability is a prerequisite for radar anti-jamming and can
enhance the survivability of radar in electronic warfare. Traditional recognition methods based on
manually designed feature parameters have found it difficult to cope with the increasingly complex
electromagnetic environment, and research combining deep learning to achieve jamming recognition
is gradually increasing. However, existing research on radar jamming recognition based on deep
learning can ignore the global representation in the jamming time–frequency domain data, while not
paying enough attention to the problem of lightweighting the recognition network itself. Therefore,
this paper proposes a lightweight jamming recognition network (JR-TFViT) that can fuse the global
representation of jamming time–frequency domain data while combining the advantages of the
Vision Transformer and a convolutional neural network (CNN). The global representation and local
information in the jamming time–frequency data are fused with the assistance of the multi-head
self-attention (MSA) mechanism in the transformer to improve the feature extraction capabilities of
the recognition network. The model’s parameters are further decreased by modifying the standard
convolutional operation mechanism and substituting the convolutional operation needed by the
network with Ghost convolution, which has less parameters. The experimental results show that the
JR-TFViT requires fewer model parameters while maintaining higher recognition performance than
mainstream convolutional neural networks and lightweight CNNs. For 12 types of radar jamming,
the JR-TFViT achieves 99.5% recognition accuracy at JNR =−6 dB with only 3.66 M model parameters.
In addition, 98.9% recognition accuracy is maintained when the JR-TFViT parameter number is further
compressed to 0.67 M.

Keywords: radar jamming recognition; vision transformer; convolutional neural network (CNN);
global representation

1. Introduction

Radar plays a crucial role in contemporary warfare as a real-time information ac-
quisition device. To prevent hostile radars from detecting, tracking, or imaging targets,
numerous radar jamming techniques have been developed [1,2]. Efficient radar jamming
recognition capability not only provides guidance for radar anti-jamming strategy, but also
is the premise for radar to survive in the increasingly complex electromagnetic environ-
ment. Therefore, there is vital military significance and practical value to research on radar
jamming recognition technologies.

Radar jamming recognition is currently the subject of extensive research both do-
mestically and overseas. The traditional jamming recognition method manually designs
the features of radar jamming in the time, frequency, and time–frequency domains, and
then implements jamming recognition using classification techniques such as threshold
matching, support vector machines (SVM) [3], and decision trees [4]. For example, Ref. [5]
obtained a radar jamming mode by extracting the time-domain kurtosis ratio, moment
kurtosis coefficient, envelope undulation, and spectral similarity coefficient features and
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comparing them according to a certain order of threshold values. The effectiveness of
traditional jamming recognition methods relies on the researcher’s subjective design of
jamming signal features, and the deep abstract features of jamming signals are not easily
extracted by human design; thus, the traditional jamming recognition methods have found
it difficult to cope with increasingly complex jamming patterns and compound jamming
scenarios.

In recent years, a number of new radar jamming recognition methods have emerged.
Due to deep learning’s strong capacity to automatically learn the features of input data, it
has been extensively used in the field of digital image and signal recognition [6]. Radar
jamming signals can be converted from a 1D time-domain signal to a 2D time–frequency
domain with the help of time–frequency transformation to obtain an image of jamming
signal time–frequency distribution [7]. Therefore, using jamming time–frequency images
as input data [8–10], deep learning-based image recognition methods are being widely
migrated to the application of radar jamming recognition to make up for the lack of feature
extraction capability in traditional jamming recognition methods. The authors of [8] used
the short-time Fourier transform (STFT) to obtain jamming signal time–frequency images,
established the time–frequency image training dataset, and designed a simple convolutional
neural network to achieve the jamming recognition of nine kinds of jamming under 0–8 dB
JNR conditions. Ref. [9] also used STFT to obtain jamming time–frequency images and
used two convolutional neural networks, AlexNet [11] and VGG-16 [12], for recognition
experiments, with significantly higher recognition accuracy than the traditional model.
The research mentioned above demonstrates that it is practical and efficient to implement
jamming recognition using neural network models and time–frequency domain data related
to jamming signals. However, the recognition networks of [8,9] choose mature models
in the field of computer vision and are not designed according to the characteristics of
time–frequency images, so they cannot make full use of the information in time–frequency
images and require a large number of samples for training. Ref. [10] extracts the real
part, imaginary part, mode, and phase of the jamming time–frequency map to construct
multiple datasets and uses an integrated CNN with weighted voting and transfer learning to
achieve jamming recognition with excellent performance, even under small sample training
conditions. However, Ref. [10] does not consider how lightweight the recognition network
should be, and its recognition network requires multi-dimensional data to determine the
type of jamming, resulting in a complex recognition network structure and a large number
of parameters. It is not conducive to the deployment of actual devices.

In addition, there are still some problems with the above deep learning-based radar
jamming recognition methods. Firstly, the existing studies above on jamming recogni-
tion based on a CNN with jamming time–frequency images as input do not exploit the
global representation of time–frequency images. The time–frequency distribution image
is distinct from the natural image, which is an image reflecting the change in jamming
signal frequency with time and which has significant global context information. Getting
the global representation of the jamming time–frequency image can help enhance the
feature extraction ability of the recognition network. However, the structural limitations of
CNNs prevent them from fully utilizing the time–frequency images’ global representation.
Convolution is a straightforward and efficient method for obtaining local information
from images, but it is difficult to capture global representations [13]. CNNs need to ex-
pand the receptive field by continuously stacking convolutional layers and using pooling
operations in order to achieve global information extraction. This mechanism leads to a
bloated recognition network, with a significant increase in computation and the number of
parameters. The Vision Transformer (ViT) [14] is able to establish long-term dependencies
in the input data using self-attention mechanisms and has the outstanding ability to capture
global representations [15], and ViT is gradually becoming a new approach to replace
CNNs. Unlike CNNs, ViT is heavy in terms of weight, and the performance improvement
of ViT-based models comes at the cost of increased network parameters and delays [16].
Unfortunately, in contrast to CNNs, the self-attention module in ViT ignores local feature
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details [13]. Apparently, if the different characteristics of CNNs and ViT can be combined
for global representation and local information extraction, the recognition performance
of jamming recognition networks can be better enhanced by fusing global representation
and local information of time–frequency images. Therefore, this paper extracts a recog-
nition network that fuses the global representation and local information in the jamming
time–frequency domain, extracts the local information of the jamming time–frequency
image using a convolutional operation, and captures the global representation using the
self-attention mechanism of ViT.

In addition, the jamming recognition task has strict requirements for real-time perfor-
mance [17], and a jamming recognition network with a large model and many parameters
will struggle to deploy applications on devices with limited resources and power. Therefore,
in this paper, the local information is obtained first with a lower number of convolutional
module parameters by adjusting the operational mechanism of convolution. Secondly,
ViT is fused between convolution modules, which can implicitly combine convolutional
characteristics in the whole network and deal with global representation at the same time.
This ViT application method can model local information and global representation in the
input tensor with fewer parameters [16]. Based on the above improvements, this paper
proposes a lightweight jamming recognition network with better performance compared
to the large number of parameters in CNN networks, but with very a low number of
parameters.

1. The research questions addressed in this paper are as follows. To address the prob-
lem that the existing CNN-based radar jamming recognition network cannot fully
utilize the global representation of jamming signals in the time–frequency domain,
the JR-TFViT is proposed that can fuse the global representation of jamming in the
time–frequency domain with local information to improve jamming recognition per-
formance.

2. For the lightweight requirement of the jamming recognition network, the traditional
convolutional operation mechanism is adjusted and ViT is fused into the convolutional
structure between, which significantly reduces the number of parameters in the
jamming recognition network.

The rest of the paper is organized as follows. Section 2 describes the construction
method of the radar jamming dataset required for the experiments. Section 3 presents the
principle and details of the proposed JR-TFViT construction. Section 4 presents the details
of the experiments, the experimental results, and the analysis of the results. Section 5
summarizes the work of this paper and discusses the future research outlook.

2. Radar Jamming Signal Data Preparation
2.1. Generating Jamming Signals

The radar transmit signal uses a line frequency modulation signal to generate the
jamming signal dataset required for training and testing based on mathematical models of
suppression and deception jamming. To verify the effectiveness of the JR-TFViT, 12 typical
radar jamming techniques are used to build network training and test datasets. The main
simulation parameters of jamming signals are set as shown in Table 1. Among them, there
are three kinds of suppressive jamming: aiming jamming (AJ), blocking jamming (BJ), and
sweeping jamming (SJ). There are four kinds of deceptive jamming: distance deception
jamming (DDJ), velocity deception jamming (VDJ), interrupted sampling repeater jamming
(ISRJ), and smeared spectrum jamming (SMSP). There are five types of composite jamming:
DDJ + ISRJ, DDJ + SMSP, VDJ + ISRJ, VDJ + SMSP, and ISRJ + SMSP.

As for the training dataset, 50, 75, and 100 samples were generated for each class
of jamming to construct a training set with three sample sizes and a validation set with
100 samples per class, for a total of 12 × (50 + 75 + 100 + 100) = 3900 sets of samples.
Test data are generated at 2 dB intervals between −6 dB and 12 dB JNR, for a total of
10 JNR environments. Each jamming signal generates 100 sets of samples for a total of
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12 × 10 × 100 = 12,000 sets of test samples. Pjam is the jamming signal power, Pnoise is
the noise power added to the jamming signal, and JNR is defined as follows:

JNR = 10 log10
Pjam

Pnoise
(1)

Table 1. Main simulation parameter settings for the jamming signals.

Signal Parameter Value Ranges

JNR −6:1:12 dB
center frequency 10~15 MHz

pulse repetition period 100 µs
bandwidth 40 MHz

sampling frequency 200 MHz
number of false targets 4

2.2. Time Frequency Transformation

To obtain the time–frequency domain data of the jamming signal, the generated
jamming signal is analyzed in time–frequency using the short-time Fourier transform
(STFT) to obtain the time–frequency distribution image of the jamming signal, and the
image size is scaled to 256 × 256 pixels in size. The time–frequency image is used as the
input for the JR-TFViT, thus extracting the global representation and local information of
the jamming signal in the time–frequency domain. For a jamming signal j(t), g ∗ (t) is the
conjugate of the window function g(t). The STFT calculation expression is:

STFT(t, f ) =
∫

j(τ)g∗(τ − t)e−j2π f τdτ (2)

The time–frequency distribution images of the 12 randomly selected and generated
types of jamming signals are shown in Figure 1.
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3. Methods

In this section, the global representations and local information present in the time–
frequency images are first introduced, and the salient ability of the ViT’s self-attentive
mechanism to capture global representations is then presented. This is followed by a de-
scription of the structure and lightweight implementation details of the two basic modules
that make up the JR-TFViT. Finally, the complete architecture of the JR-TFViT is described.

3.1. Global Representation and MSA

The spatial frequency model of vision [18] suggests that, in natural images, pictures
are divided into a low-frequency part and a high-frequency part [19]. The low and high
frequencies are the low- and high-frequency parts corresponding to the picture after Fourier
transform, as shown in Figure 2. The low-frequency part corresponds to the global represen-
tation of the picture, specifically the part of the grayscale map that changes gently, such as
the global shape and structure of a scene or object. The high-frequency part corresponds to
the local information of the picture, specifically the part of the grayscale map that changes
drastically, such as local edges and textures. Similarly, these global representations and local
information are also contained in the jamming time–frequency images, and the features in
both the global representations and local information should be used as information for
the jamming recognition network. However, existing jamming recognition methods do
not make good use of the exploitation of global representations in time–frequency images
because the convolutional operation is equivalent to a high-pass filter [20], and the jamming
recognition network built with the convolutional operation as the basic module is good at
extracting local information while finding it difficult to extract global representations.
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Figure 2. Natural images can be decomposed into a low and a high spatial frequency part. (a) Original
picture; (b) low-frequency part; (c) High-frequency part.

Unlike the architecture of CNNs, ViT has the characteristic of a low-pass filter [15]
due to the fact that MSA mainly captures low-frequency information and ignores high-
frequency components. The basic module that makes up ViT is the transformer encoder,
whose structure is shown in Figure 3. The transformer encoder consists of two main
modules, the MSA module and the MLP Block [21], each of which is connected to each
other using residuals [22]. LayerNorm and Dropout layers help the network to aggregate
better and prevent network overfitting, GELU is an activation function, and Linear is a
fully connected layer.
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Self-attention can model the long-term dependencies in the input sequence data,
and self-attention is calculated as shown in Equations (3) and (4). Q, K, and V represent
query, key, and value matrices, respectively, and value represents the extracted information.
The query is matched with the key by calculating the correlation between them, and the
calculation process is the softmax part in Equation (3) with dk as the length of vector k.
The final multiplication with V indicates that greater correlation corresponds to the greater
weight of the vector in V.

Attention (Q, K, V) = softmax
(

QKT
√

dk

)
V (3)

Q =

 q1

. . .
qL

, K =

 k1

. . .
kL

, V =

 v1

. . .
vL

 (4)

For sequence data x of length L, the q, k, and v generation mechanisms are shown in
Figure 4. The input is L nodes xi, i = 1, 2, . . . , L− 1, L, mapped to ai by the input embedding
operation. Wq, Wk, Wv are trainable parameter matrices, and ai can obtain the correspond-
ing qi, ki, vi by multiplication with the three transformation matrices Wq, Wk, Wv.

MSA in Figure 3 developed from self-attention by using MSA to be able to combine
information learned from different head parts [23]. MSA is calculated as shown in Equations
(5) and (6) with Wo, WQ

i , WK
i , WV

i as trainable weight matrices and j = 1, . . . , h, h as the
number of heads in the MSA.

MultiHead(Q, K, V) = Concat(head1, . . . , headh)Wo (5)

headj = Attention
(

QWQ
j , KWK

j , VWV
j

)
(6)

Based on the above inspiration of the transformer encoder and MSA in ViT, and with
the help of MSA exhibiting a low-pass filter effect [19], the JR-TFViT proposed in this
paper introduces a transformer structure to extract the global representation of jamming
time–frequency images while retaining the convolutional operation to obtain local infor-
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mation of time–frequency images and fuses the global representation of time–frequency
images with local information to improve the feature extraction ability and recognition
accuracy of jamming recognition networks.
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3.2. Lightweight Improvements
3.2.1. Ghost Convolution

Conventional CNNs have a large number of redundant feature maps generated by
convolutional operations in the spatial dimension, which are very similar to each other. This
rich or even redundant information usually guarantees a comprehensive understanding
of the input data [24] and is crucial to the accuracy of the model. However, the process
of generating these redundant feature maps consumes a large amount of computational
resources and contains a large number of network parameters. The authors of [24] investi-
gated whether it was possible to generate these redundant feature maps in a cost-effective
way without removing them directly. Therefore, a new GhostConv module is proposed
that uses fewer parameters to generate more features and validates the recognition on the
ImageNet ILSVRC2012 classification dataset.

In this paper, the standard convolutional operation is lightly improved based on Ghost
convolution, which can significantly reduce the number of network parameters. Suppose a
set of input feature map sizes is Cin × Hin ×Win, with Cin, Hin, and Win as the number of
input feature map channels, height, and width respectively, and the output feature map size
is Cout × Hout ×Wout. For a standard convolution with a convolutional kernel size of K× K,
the number of parameters for this operation is (K×K×Cin)×Cout. For Ghost convolution,
the operation’s process is divided into two stages, as shown in Figure 5. Let the size of
the convolution kernel remain as K × K; thus, the input feature map is first obtained by
a standard convolutional operation for Cin/s Channels and the number of parameters of
the process is (K× K× Cin)× Cout/s. These feature maps are then linearly transformed to
generate redundant feature maps. φ refers to the linear transformation operation, and the
figure is a depthwise convolution which can be considered as a grouped convolution of
G = Cin. The number of parameters for the process is K×K×Cout × (s− 1)/s. The feature
maps of these two parts are combined into the final output feature map, and the number of
parameters of the whole process is (K× K× Cin)× Cout/s + (K× K×Cin)× Cout/s. Ghost
convolution is about 1/s of the number of standard convolutional parameters, which means
that when s is set to 2, the number of Ghost convolutional parameters can be reduced by
half compared to the standard convolution.
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The Ghost Block required for the JR-TFViT is built according to Ghost convolution, and
the structure is shown in Figure 6, where ‘1 × 1’,‘3 × 3’ indicates the size of the convolution
kernel and ‘SiLU’ indicates that the activation function used is SiLU. When stride = 1,
the input data in the Ghost Block after three levels of GhostConv operations are summed
with the input as Ghost Block output according to the inverse residual mechanism [25].
When stride = 2, there is no inverse residual mechanism within the Ghost Block, but a
downsampling operation is performed to compress the feature map size to half of the input.
With the Ghost Block as the basic module for extracting local information in the JR-TFViT,
the number of parameters and the amount of operations are reduced while ensuring the
feature extraction capability.

Electronics 2022, 11, 2794 9 of 17 
 

 

JR-TFViT, the number of parameters and the amount of operations are reduced while en-
suring the feature extraction capability. 

 
Figure 6. Ghost Block structure. (a) Stride = 1 Ghost Block. (b) Stride = 2 Ghost Blocks. 

3.2.2. Ghost–MobileViT 
The standard ViT is shown in Figure 7. For an image with input size C H W´ ´ , it 

is first flattened into a set of patches with size N PC´ , where N is the number of patches 
and P is the number of pixels per patch; thus, P wh=  and ,w h  is the width and height 
of each patch. Each patch is then mapped to a one-dimensional vector by a linear mapping 
and N tokens meeting the transformer input requirements are obtained, each of length d. 
Positional encoding operations are then performed to superimpose location information 
on the tokens. Finally, the L-group stacked transformers are used to learn the inter-patch 
representations. 

 
Figure 7. Standard Vision Transformer. 

In terms of the number of model parameters, the standard ViT has a much larger 
number of parameters than the easily optimized and integrated lightweight CNN and 
requires a large number of data samples for network training. This is because the ViT 
encodes the global representation of the input data by learning inter-patch information 
using a transformer; however, the ViT loses the image specific sensing bias inherent to 
CNNs. As a result, the ViT requires more parameters to learn visual representations, re-
sulting in ViT models that are often deep and wide [16]. 

Ghost Conv，1×1
SiLU

Input

+

Output

(a) (b)

Ghost DWConv，3×3
SiLU

Ghost Conv，1×1
SiLU

Input

Ghost Conv，1×1
SiLU

Stride=2
Ghost DWConv，3×3

SiLU

Ghost Conv，1×1
SiLU

Output
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3.2.2. Ghost–MobileViT

The standard ViT is shown in Figure 7. For an image with input size C× H ×W, it
is first flattened into a set of patches with size N × PC, where N is the number of patches
and P is the number of pixels per patch; thus, P = wh and w, h is the width and height of
each patch. Each patch is then mapped to a one-dimensional vector by a linear mapping
and N tokens meeting the transformer input requirements are obtained, each of length d.
Positional encoding operations are then performed to superimpose location information
on the tokens. Finally, the L-group stacked transformers are used to learn the inter-patch
representations.
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Figure 7. Standard Vision Transformer.

In terms of the number of model parameters, the standard ViT has a much larger
number of parameters than the easily optimized and integrated lightweight CNN and
requires a large number of data samples for network training. This is because the ViT
encodes the global representation of the input data by learning inter-patch information
using a transformer; however, the ViT loses the image specific sensing bias inherent to
CNNs. As a result, the ViT requires more parameters to learn visual representations,
resulting in ViT models that are often deep and wide [16].

In the JR-TFViT, a Ghost–MobileViT is used instead of the standard ViT. A MobileViT,
proposed by Apple in 2021, is able to implicitly combine convolutional features in the
network to model local information and global representations in the input tensor with
fewer parameters. In the original MobileViT Block, both the standard convolution and
transformer are used to learn the local and global representations, respectively, and the
transformer is responsible for replacing the local processing in the convolution with global
processing. In this paper, the MobileViT Block is further lightened and improved by using
Ghost convolution to replace the standard convolution in the MobileViT Block, and the
Ghost–MobileViT Block is proposed as shown in Figure 8.

Electronics 2022, 11, 2794 10 of 17 
 

 

In the JR-TFViT, a Ghost–MobileViT is used instead of the standard ViT. A Mo-
bileViT, proposed by Apple in 2021, is able to implicitly combine convolutional features 
in the network to model local information and global representations in the input tensor 
with fewer parameters. In the original MobileViT Block, both the standard convolution 
and transformer are used to learn the local and global representations, respectively, and 
the transformer is responsible for replacing the local processing in the convolution with 
global processing. In this paper, the MobileViT Block is further lightened and improved 
by using Ghost convolution to replace the standard convolution in the MobileViT Block, 
and the Ghost–MobileViT Block is proposed as shown in Figure 8. 

 
Figure 8. Ghost–MobileViT Block. 

The operational process of the Ghost–MobileViT Block is divided into three stages: 
extraction of local representations, extraction of global representations, and feature fusion. 
For the input feature map X of size C H W´ ´ , the Ghost–MobileViT Block first extracts 
the local information using the Ghost convolution layer of n n´ , and then maps X to the 
d-dimensional space using the Ghost convolution layer of 1 1́ to get LX , where d C>
. After entering the global representation extraction phase, LX  is first expanded to con-
tain N non-overlapping flattened patches UX . Where , /P wh N HW P= = , ,w h  are 
the width and height of each patch and ,w n h n£ £ . UX  obtains the global representa-
tion between the patches using the transformer to obtain GX .The process can be ex-
pressed as follows: 

( )X ( ) Transformer X ( ) ,1G Up p p P= ≤ ≤  (7)

GX  is then collapsed to get FX , which preserves the patch order and the spatial 
order of pixels within each patch and does not lose the pixel spatial order as ViT does. In 
the fusion phase, FX  is mapped to low C-dimensional space using 1 1́ Ghost convo-
lution and is combined with X by the concatenation operation. Finally, these concatenated 
features are fused using n n´  Ghost convolution. 

3.3. JR-TFViT 
The JR-TFViT takes the time–frequency domain data of radar jamming signal as in-

put and, after a series of Ghost Block, Ghost–MobileViT Block, and other computing mod-
ules, extracts the local information from the time–frequency domain data of radar jam-
ming signals and fuses the global representation before finally outputting the jamming 

Figure 8. Ghost–MobileViT Block.

The operational process of the Ghost–MobileViT Block is divided into three stages:
extraction of local representations, extraction of global representations, and feature fusion.
For the input feature map X of size C× H ×W, the Ghost–MobileViT Block first extracts
the local information using the Ghost convolution layer of n× n, and then maps X to the
d-dimensional space using the Ghost convolution layer of 1× 1 to get XL, where d > C.
After entering the global representation extraction phase, XL is first expanded to contain N
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non-overlapping flattened patches XU . Where P = wh, N = HW/P, w, h are the width and
height of each patch and w ≤ n, h ≤ n. XU obtains the global representation between the
patches using the transformer to obtain XG. The process can be expressed as follows:

XG(p) = Transformer(XU(p)), 1 ≤ p ≤ P (7)

XG is then collapsed to get XF, which preserves the patch order and the spatial order
of pixels within each patch and does not lose the pixel spatial order as ViT does. In the
fusion phase, XF is mapped to low C-dimensional space using 1× 1 Ghost convolution and
is combined with X by the concatenation operation. Finally, these concatenated features are
fused using n× n Ghost convolution.

3.3. JR-TFViT

The JR-TFViT takes the time–frequency domain data of radar jamming signal as
input and, after a series of Ghost Block, Ghost–MobileViT Block, and other computing
modules, extracts the local information from the time–frequency domain data of radar
jamming signals and fuses the global representation before finally outputting the jamming
recognition results. Based on the Ghost Block and Ghost–MobileViT Block, the complete
framework of the JR-TFViT for radar jamming identification proposed in this paper is
shown in Figure 9, where Ci, i = 0, . . . , 9 indicates the number of channels in the current
module and the values are given in Table 2. The input JR-TFViT time–frequency image size
is 3 × 256 × 256. Firstly, the time–frequency image is downscaled by Ghost convolution
with stride = 2 and 3 × 3 size to obtain a feature map of C0 × 128 × 128. The feature map
size is C3 × 32 × 32 after three groups of Ghost Blocks. Next, the Ghost–MobileViT Block
models local and global information in the input feature map. After two iterations of the
Ghost Block, the Ghost–MobileViT Block is used to obtain a C8 × 8× 8 feature map. Finally,
a set of global pooling and fully connected layers are used to output the jamming class
probability of this time–frequency image.
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Table 2. Parameter settings of JR-TFViT_S, JR-TFViT_M, and JR-TFViT_L.

Params Ci,i=0,. . . ,9 Li,i=1,2,3 d

JR-TFViT_S 0.67 M [16,16,24,48,48,64,64,80,80,320] [2,4,3] [64,80,96]
JR-TFViT_M 1.5 M [16,32,48,64,64,80,80,96,96,384] [2,4,3] [96,120,144]
JR-TFViT_L 3.66 M [16,32,64,96,96,128,128,160,120,640] [2,4,3] [144,192,240]

4. Experiments and Results
4.1. Experiment Settings

In this paper, three different sizes of models were set up for training on the JR-TFViT,
namely JR-TFViT_S, JR-TFViT_M, and JR-TFViT_L. The three network architectures remain
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consistent with Figure 9 but different parameters are set. The number of parameters for
the three networks, the number of output channels Ci, i = 0, . . . , 9 for each module, the
number of cascades Li, i = 1, 2, 3 of transformers in the three Ghost MobileViT Blocks, and
their internal spatial mapping dimension d are set as shown in Table 2. In addition, three
mainstream CNNs (VGG16, ResNet50, and ResNet18) and three typical lightweight CNNs
(Mobilenet v2, Mobilenet_v3_small, and Mobilenet_v3_large) were set up simultaneously
for comparison experiments. The parametric quantities of the six compared networks are
shown in Table 3.

Table 3. Comparison of network parameters.

VGG16 ResNet50 ResNet18 Mobilenet v2 Mobilenet_v3_small Mobilenet_v3_large

Params 134.91 M 23.53 M 11.18 M 2.24 M 1.53 M 4.22 M

The hardware environment built for the experiment includes an Intel Xeon Gold 6246
CPU, 256 GB RAM, and an NVIDIA Quadro GV100 graphics card; the software platform
is the Windows 10 operating system, python 3.6.13, Pytorch 1.8.1 as the network model
building framework, PyCharm 2019.3.5 (Community Edition) as the compiler, and CUDA
11.1.

The main hyperparameters of all networks in the training process are set as follows:
training epochs, 128; batch size, 32; Stochastic Gradient Descent (SGD) selected as the
optimizer; weight decay coefficient of 0.00005; initial learning rate of 0.001.

4.2. Evaluation Metrics

In order to evaluate the effectiveness of the JR-TFViT’s jamming recognition, Overall
Accuracy (OA), Kappa coefficient K, and F1 score were used as evaluation metrics to assess
the effectiveness of recognition of different networks. OA is the ratio of the number of
jamming samples correctly predicted by the recognition network on the test set to the total
number of jamming samples on the test set, which can directly reflect the proportion of
correct classifications. The expression of OA calculation is:

OA =
n
N
× 100% (8)

The Kappa coefficient [26] performs an evaluation of bias for the recognition network,
and the stronger the bias, the lower the Kappa value, defined as shown in Equation (9). The
total number of test samples for all kinds of jamming is N. There are s classes of jamming
samples, the number of test samples in each class is ti, i = 1, . . . , s, and the number of
samples identified in each class is pi, i = 1, . . . , s.

kappa =
OA− pe

1− pe
, pe =

t1 × p1 + t2 × p2 + . . . + ts × ps

N × N
(9)

The true category of jamming samples and the predicted category of the recognition
network can be classified as true positive (TP), false positive (FP), true negative (TN), or false
negative (FN). The definitions of Precision and Recall are shown in Equations (10) and (11).
The F1 Score is used to take into account both the precision and recall of the model, also
known as the balanced F-score, which is the summed average of recall and precision. The
F1 Score is calculated as shown in Equation (12).

Precision =
TP

TP + FP
(10)

Recall =
TP

TP + FN
(11)

F1 = 2 · Precision × Recall
Precision + Recall

(12)
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4.3. Results and Analysis

The OA of jamming recognition for the JR-TFViT and the other six comparison recogni-
tion networks under different JNR conditions are shown in Figure 10. Apparently, the nine
recognition networks perform differently in their ability to cope with small sample training.
The best performance of JR-TFViT_L is obtained when the number of training samples is 50,
and OA can be maintained above 97% under different JNR conditions. ResNet50 performs
close to JR-TFViT_L, but JR-TFViT_L has only 15% of the total number of parameters of
ResNet50. ResNet18 and VGG16 perform preferably, but their number of parameters is still
much higher than that of JR-TFViT_L. The performance of JR-TFViT_S and JR-TFViT_M
lags behind that of JR-TFViT_L under the small sample training condition because of the
small number of parameters, but the OA of JR-TFViT_S and JR-TFViT_M is still superior
compared to that of Mobilenet series models with similar parameter quantities. This shows
that the JR-TFViT structure not only has the advantage of being lightweight, but, with
the ability to fuse global representations in the time–frequency domain of jamming, it
can also obtain superior recognition performance compared to CNNs under small sample
conditions.
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The OA, Kappa, and F1 scores of the JR-TFViT and the six comparison recognition
networks under different JNR conditions when the number of training samples is 100 are
shown in Tables 4–6, respectively. According to the test results, when the training samples
are sufficient, the OA of each recognition network’s performance can reach more than 99%
for the jamming scenario with JNR > −4 dB, and the OA of JR-TFViT_S, which has the
lowest number of parameters at this time, reaches more than 99.8%. JR-TFViT_S has the
same or even better recognition performance compared to various comparison networks,
while the number of parameters for JR-TFViT_S is only 0.5% of VGG16 parameters and
2.8% of ResNet50 parameters. Compared to lightweight CNNs, the number of parameters
for JR-TFViT_S is also only 43.8% of that of Mobilenet_v3_small. This indicates that
the lightweight improvement method of the JR-TFViT is very effective in reducing the
number of parameters for the model. Under the low JNR condition of JNR −4 dB, the
OA of the CNN-based recognition network shows a significant decrease, while the JR-
TFViT still maintains excellent recognition results. This is because the local information,
such as image texture in the radar jamming time–frequency image, is affected by noise
occlusion in the low JNR environment. In this case, the JR-TFViT extracts the global
representation with the help of a transformer and, by fusing the local information of the
time–frequency image with the global representation, a higher recognition accuracy can be
achieved compared to recognition networks that rely solely on convolutional operations to
obtain local information. The difference between the OA of JR-TFViT_S and JR-TFViT_L is
only 0.6%, which indicates that adding global representation extraction capability can help
identify the network to further reduce the parameters and make the JR-TFViT even lighter.

Table 4. The OA of the nine networks in different JNR conditions. The best accuracy is highlighted
in bold.

Network Params
JNR

−6 −4 −2 0 2 4 6 8 10 12

JR-TFViT_S 0.67 M 98.9 99.8 100 99.9 99.9 99.9 99.9 99.8 99.8 99.8
JR-TFViT_M 1.5 M 99 99.6 99.9 99.8 99.9 99.5 99.7 99.6 99.8 99.4
JR-TFViT_L 3.66 M 99.5 99.8 100 99.9 99.8 100 100 100 99.9 99.9

VGG16 134.91 M 96.4 98.9 99.7 99.8 99.8 99.4 99.8 99.7 99.8 99.3
ResNet50 23.53 M 98.8 99.6 99.9 99.8 99.8 99.8 99.8 99.9 99.9 99.7
ResNet18 11.18 M 97.6 99.3 99.2 99.7 99.9 99.8 99.8 100 100 99.9

Mobilenet v2 2.24 M 97.9 99.8 99.9 99.8 99.8 99.8 99.8 99.9 99.9 99.6
Mobilenet_v3_small 1.53 M 96.3 98.8 99.3 99.3 99.3 99.3 99.7 99.7 99.7 99.5
Mobilenet_v3_large 4.22 M 93.2 99.6 99.4 99.8 99.8 99.9 100 99.8 99.8 99.8

Table 5. The Kappa of the nine networks in different JNR conditions.

Network Params
JNR

−6 −4 −2 0 2 4 6 8 10 12

JR-TFViT_S 0.67 M 98.8 99.8 100 99.9 99.9 99.9 99.9 99.8 99.8 99.8
JR-TFViT_M 1.5 M 98.9 99.5 99.9 99.8 99.9 99.5 99.6 99.5 99.7 99.4
JR-TFViT_L 3.66 M 99.5 99.8 100 99.9 99.8 100 100 100 99.9 99.9

VGG16 134.91 M 96.1 98.8 99.6 99.8 99.8 99.4 99.7 99.6 99.8 99.2
ResNet50 23.53 M 98.6 99.5 99.9 99.7 99.7 99.8 99.8 99.9 99.9 99.6
ResNet18 11.18 M 97.4 99.3 99.1 99.6 99.9 99.8 99.8 100 100 99.9

Mobilenet v2 2.24 M 97.7 99.7 99.9 99.8 99.7 99.7 99.8 99.9 99.9 99.5
Mobilenet_v3_small 1.53 M 96 98.6 99.2 99.2 99.2 99.2 99.6 99.6 99.6 99.5
Mobilenet_v3_large 4.22 M 92.6 99.5 99.4 99.7 99.8 99.9 100 99.8 99.8 99.8
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Table 6. The F1 score of the nine networks in different JNR conditions.

Network Params
JNR

−6 −4 −2 0 2 4 6 8 10 12

JR-TFViT_S 0.67 M 0.989 0.998 1 0.999 0.999 0.999 0.999 0.998 0.998 0.998
JR-TFViT_M 1.5 M 0.99 0.995 0.999 0.998 0.999 0.995 0.997 0.996 0.997 0.994
JR-TFViT_L 3.66 M 0.995 0.998 1 0.999 0.998 1 1 1 0.999 0.999

VGG16 134.91 M 0.962 0.989 0.997 0.998 0.997 0.995 0.997 0.997 0.998 0.993
ResNet50 23.53 M 0.987 0.996 0.999 0.997 0.998 0.998 0.998 0.999 0.999 0.997
ResNet18 11.18 M 0.975 0.992 0.992 0.995 0.999 0.998 0.998 1 1 0.999

Mobilenet v2 2.24 M 0.978 0.997 0.999 0.998 0.997 0.997 0.998 0.999 0.999 0.996
Mobilenet_v3_small 1.53 M 0.963 0.988 0.992 0.993 0.993 0.993 0.996 0.996 0.997 0.995
Mobilenet_v3_large 4.22 M 0.93 0.996 0.994 0.997 0.998 0.999 1 0.998 0.998 0.998

In addition to OA and Kappa under different JNR conditions, confusion matrices are
also widely used for the analysis of recognition ability in multiclassification problems. The
recognition accuracy of JR-TFViT_S at JNR = −6 dB is 98.9%, and the confusion matrix is
shown in Figure 11, where the horizontal axis is the true type of jamming and the vertical
axis is the type of jamming predicted by JR-TFViT_S. J1-J12 represent AJ, BJ, SJ, DDJ, VDJ,
ISRJ, SMSP, DDJ + ISRJ, DDJ + SMSP, VDJ + ISRJ, VDJ + SMSP, and ISRJ + SMSP. From the
confusion matrix, it can be seen that a part of DDJ + SMSP is incorrectly recognized as DDJ
+ ISRJ, leading to a decrease in the accuracy of JR-TFViT_S recognition. This is because
the spoofing distance parameter of DDJ is randomly generated and DDJ will overlap with
SMSP or ISRJ. In addition, the masking of noise when the JNR is too low threatens the
effectiveness of the recognition network, making it easy to confuse these two types of
composite jamming. However, under the condition of JNR = −6 dB, the accuracy of the
three JR-TFViT networks still outperforms other CNNs.
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5. Conclusions

In this paper, a lightweight radar jamming recognition network (JR-TFViT) is presented
which consists of a transformer cascaded with Ghost convolution modules. Compared with
CNN-based jamming recognition networks, it can focus on the global representation in the
jamming time–frequency domain data. By fully fusing the global representation and local
information of the jamming time–frequency domain data, an excellent feature extraction
capability can be achieved using a small number of network parameters. At the same time,
the Ghost convolution module is used in the JR-TFViT instead of a standard convolutional
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operation to further reduce the number of parameters in the JR-TFViT; the number of
parameters in the lightest JR-TFViT_S is only 0.67 M. The recognition experiments for
12 typical jamming techniques show that the recognition performance of the JR-TFViT is
better than that of mainstream CNNs, and recognition accuracy under low JNR conditions
is especially better than that of the six comparison networks.

Further study to achieve accurate recognition of more types of radar jamming and
deployment testing of jamming recognition networks on actual equipment will be the
key research directions for subsequent work. However, in real scenarios, the types and
compound patterns of radar jamming are more complex and variable.
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