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Abstract: A high-definition map of the autonomous driving system was built with the target points
of interest, which were extracted from a large amount of unordered raw point cloud data obtained
by Lidar. In order to better obtain the target points of interest, this paper proposes an improved
RandLa-Net algorithm incorporated with NDT registration, which can be used to automatically
classify and extract large-scale raw point clouds. First, based on the NDT registration algorithm,
the frame-by-frame raw point cloud data were converted into a point cloud global map; then, the
RandLa-Net network combined random sampling with a local feature sampler is used to classify
discrete points in the point cloud map point by point. Finally, the corresponding point cloud data
were extracted for the labels of interest through numpy indexing. Experiments on public datasets
senmatic3D and senmatickitti show that the method has excellent accuracy and processing speed for
the classification and extraction of large-scale point cloud data acquired by Lidar.

Keywords: NDT registration; map building; RandLa-Net; random sampling; semantic segmentation

1. Introduction

Lidar is an application system that integrates laser technology, global positioning
system technology, and inertial measurement unit (IMU) technology, and it is also an
important sensor for environmental perception in autonomous driving systems. The
proper processing of the collected raw point cloud data can provide important data for
a high-definition map, and furthermore, as a scarce resource and just-needed product
in the field of autonomous driving, high-definition road maps also play a central role
in its entire field, which helps cars perceive complex road information (such as slope,
curvature, heading, etc.) in advance, and to make the right decisions combine intelligent
path planning [1].

Using the point cloud data obtained by the vehicle laser to build high-definition
road maps mainly includes three steps: data acquisition, point cloud data processing
and drawing. Among them, point cloud data processing is the key step to ensure the
accuracy and quality of the point cloud. The traditional method firstly maps the road
surface according to discriminative point cloud mapping features, and then manually
labeled as point clouds for classification. Some scene elements and blind areas that cannot
be recognized and scanned by point cloud classification algorithm still need to be accounted
for by additional manual mining. In short, traditional methods have shortcomings, such as
needing a long production cycle due to a large amount of control and measurement tasks,
and thus they cannot meet the needs of making high-definition maps very well. Traditional
methods also have difficulty in identifying path elements when dealing with some road
sections [2].

An important purpose of raw point cloud data classification and extraction research is
to quickly and accurately distinguish points in roads, cars, people, traffic signs and classes
of interest; however, most of the defects of traditional methods come from manual point
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cloud classification. In response to this problem, many scholars have begun to pay attention
to the research on the automatic classification and extraction of point clouds, which can
greatly improve the timeliness of processing point cloud data when making high-definition
maps. Deep learning has shown excellent performance in object classification, extraction
and recognition in computer vision, but it cannot directly deal with such discrete and
irregular point cloud data and it can only process the point cloud data frame by frame.
Based on the above description, there will be some problems as follows:

(1) The quantity of point cloud data is very large. Current point cloud semantic segmen-
tation algorithms take a long time to train on large-scale data sets.

(2) In order to quickly obtain complete road sections, trees and other components to make
high-definition maps, most point cloud semantic segmentation algorithms segment
data frame by frame to reduce the amount of computation. Therefore, it is necessary
to construct the original data into a complete point cloud map, and then perform
semantic segmentation. In this way, the complete information of the road section can
be obtained.

(3) The point cloud semantic segmentation is designed to assign labels to each point and
classify points, though it is impossible to obtain point cloud sets from unclassified
point data. In other words, the region of interest cannot be directly extracted, it is
necessary to make labels for the point clouds, and then extract the corresponding
point cloud data in turn according to the corresponding index.

To solve the above problems, the aim of this paper was to find an automatic classifica-
tion and extraction method for large-scale point cloud data, and our method can achieve the
fast and efficient classification and extraction of a large number of original point cloud data
for the construction of high-definition maps of autonomous driving systems. Furthermore,
our method can also provide accurate data. The contributions of our method are as follows:

(1) Based on analyzing and comparing the existing registration and semantic segmen-
tation methods, we chose to integrate NDT registration into the RandLa semantic
segmentation algorithm to process original point cloud data.

(2) We tested the two algorithms on the public datasets KITTI [3], Semantic3D [4], and
SemanticKITTI [5], respectively, and we chose to fuse the two algorithms according to
the experimental results.

(3) We give the description of the basic process of the improved RandLa-Net (network
structure based on random sampling and local feature aggregation) algorithm incor-
porated with NDT, and use the improved method to perform many experiments on
public datasets. The experimental results show that the data processed by our method
can be directly used for the construction of a high-definition map.

2. Related Work
2.1. Methods for Point Cloud Data Registration and Semantic Segmentation

The traditional algorithms of point cloud registration are roughly divided into two
categories: coarse registration and fine registration [6]. Coarse registration refers to the
registration by calculating an approximate rotation and translation matrix between two
point clouds. This method is generally used when the relative positional relationship
between two point clouds is unknown. The fine registration refers to making the rotation
and translation matrix more accurate by calculation when the rotation and translation
matrix is known. Most of the point cloud information collected by vehicle radar is coarse
registration, which mainly includes:

(1) A registration method based on local feature description. The point feature histograms
(PFH) methods proposed by Rusu et al. [7] use point feature histograms to characterize
the local geometry of 3D points for registration;

(2) Method based on probability distribution. The normal distributions transform (NDT)
algorithm proposed by Biber [8] et al. is a rough registration method that uses range
scanning first, that is, the normal distribution transformation is performed after point
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cloud matching. In recent years, point cloud registration methods based on deep
learning have also been widely proposed and applied. Aoki [9] et al. used PointNet
to map the found feature points to a high-dimensional space, and then regarded the
vector formed by each feature point as an image in the high-dimensional space, and
finally used the traditional image registration algorithm (Lucas-Kanada, LK) [10] for
point cloud registration. Wang [11] et al. extracted the features of the point cloud to
be registered; they used the improved transformer network to merge the information
between the point clouds, calculated the soft matching between the point clouds,
and then used the differentiable singular value decomposition module to extract the
rigid body changes for point clouds. Here, cloud registration [12] was combined
with keypoint detection to solve the non-convexity and local registration problems of
registration.

One type of method is to improve the traditional point cloud semantic segmentation al-
gorithms, such as random sample consensus (RANSAC), density-based spatial clustering of
applications with noise (DBSCAN), and region growth algorithm (region growing) [13–15].
These algorithms have high requirements for the quality of point cloud data and have low
accuracy and slow speed when processing large-scale point cloud data. The other type of
method is based on deep learning network, which mainly includes:

(1) Projection-based network [16]: due to the inhomogeneity of point cloud data, it is
impossible to directly use the convolutional neural network on point cloud. To make
use of two-dimensional convolutional neural network, the projection-based network
chooses to project a three-dimensional point cloud onto a two-dimensional image and
then input it into the network [17], but the projection process may lead to the loss
of geometric information, and the method lacks the ability of non-local geometric
features [18];

(2) Voxelization-based network [19]: for the disorder and irregularity of the point cloud,
the disordered point cloud is voxelized into an ordered voxel block, and then a three-
dimensional convolutional neural network is used to process the ordered voxel block.
The main limitation of the method is that the computational cost is too high, especially
when dealing with large-scale point clouds. It cannot meet practical applications [20],
and the volume setting of the voxel block will affect the final segmentation effect.
Furthermore, due to the sparsity of the point cloud, there will be empty voxel blocks
generated, wasting the computational cost [21];

(3) Network based on the neural architecture: Hu Q [22] et al. designed an efficient
neural architecture network structure based on random sampling and local feature
aggregation (RandLa-Net). It can directly process large-scale point cloud data without
any preprocessing.

2.2. Data Format Requirements in Unmanned High-Definition Map Construction

In order to make the high-definition electric urban map, a designed unmanned vehicle
(shown in Figure 1) equipped with two 32-line lidars was used to collect the point cloud
data of some road sections, and the sampling frequency of this lidar is 10 Hz. In order to
restore the real road, we need to extract the feature information of the road from the large
amount of point cloud data collected by this lidar, such as roads, vehicles, trees, buildings
and pedestrians.
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The construction of high-definition maps requires the classification of road point
features by class and the three-dimensional coordinates of each point. The coordinates are
listed in (x, y, z) format, and the coordinate system is based on the starting position of the
driverless car as the origin.

Because there are a lot of complex targets in the point clouds and the number of data
collected is large, not all the collected road section information have a unified initial position,
so the registration method based on the deep learning registration method is difficult and
time-consuming to train. At the same time, although the RandLa-Net algorithm can
effectively segment the point cloud map, the format of the single frame data output is
‘.label’, which cannot be directly used to build the high-definition electric urban map.

Based on the above analysis, we integrated the traditional mature NDT registration
algorithm into the RandLa-Net algorithm, so that the results of the semantic segmentation
are more suitable for the construction of high-definition maps.

3. Creation of Global Map of Point Cloud Based on NDT
3.1. Registration Algorithm Based on NDT

NDT is normal distribution transformation. After gridding the reference point, the
normal distribution transformation is performed one by one to complete the modeling of
all reconstructed points. The specific operations are as follows.

First, the point cloud space is divided into cells with the same size according to
certain rules.

Then, the following actions are performed on each cell:
Step1. Collect all points contained in this box: Xi = 1 . . . n;
Step2. Calculate the average:

q =
1
n ∑

i
Xi (1)

Step3. Calculate the covariance matrix:

Σ =
1
n ∑

i
(Xi − q)(Xi − q)t (2)

Step4. The probability of measuring a sample at point x contained in this cell is now
modeled by the normal distribution N (q, Σ):

P(x) ∼ exp

(
− (x− q)tΣ−1(x− q)

2

)
(3)

Figure 2 shows the effect after meshing the 3D point cloud, the original frame and the
visualization after NDT. The visualization is created by evaluating the probability density
of each point, with bright areas indicating high probability density. Then, the normal
distribution transformation is used for the registration between the two frames of point
clouds, and the spatial mapping T between the radar coordinate systems of the two frames
of point clouds is given by:

T :x
′

y′=

(
cos(ϕ) −sin(ϕ)
sin(ϕ) cos(ϕ)

)(
x
y

)
+

(
tx
ty

)
(4)

where (tx, ty) refers to the original position of the reference frame, (x′, y′) is the position of
the frame to be registered, T describes the translation and rotation relationship between the
two, ϕ is the rotation angle, and x and y are the translation distances.
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Figure 2. The original data and the resulting probability density: (a) mesh the point cloud; and (b) the
original scan and the resulting probability density.

The specific operations of registration are as follows:
Step1. Build the NDT based on the first frame scan;
Step2. Estimate initialization parameters;
Step3. For each sample to be registered, map the reconstructed point into the coordi-

nate system of the reference frame according to the parameters;
Step4. Determine the corresponding normal distribution for each mapped point;
Step5. Determine the score of the parameter by evaluating the distribution of each

mapped point and sum up the results;
Step6. Return to step 3 until the convergence criteria are met and the registration is

completed.
The score is calculated as follows:

score(p) = Σiexp

(
−(x′ − qi)

t ∑−1
i (xi

′ − qi)

2

)
(5)

where p is a vector of parameters to be estimated, xi is the point in the second frame of point
cloud data, xi

′ is the point xi mapped to the coordinate system of the first frame point cloud
data according to the parameter p, that is, xi

′ = T (xi, p). Σi and qi are the covariance matrix
of the point cloud data in the first frame and the mean value of the normal distribution
corresponding to the point xi

′. A mapping according to p can be considered optimal if the
sum of the normal distributions of all points xi

′ evaluated using the parameters Σi and qi
are at maximum, that is, the sum of the scores of p is optimal.

The overall process of point cloud data registration based on NDT is shown in Figure 3.
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3.2. Point Cloud Map Creation Based on NDT

The point cloud map is created to avoid frame-by-frame processing for subsequent
point cloud classification, and to improve the efficiency of the automatic classification of
point cloud data. The main task of point cloud mapping is to use the collected point cloud
data frame by frame to build a complete point cloud map. The algorithm flow is shown in
Figure 4.
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In Figure 4, the coordinate system transformation adopts the TF coordinate system
transformation. If the coordinates of a point in the radar coordinate system are PL (XL, YL),
then the coordinates of a certain point in the map after conversion are PM (xm, ym), and
the map coordinate system is a fixed coordinate system. The coordinate system is the same
as the world coordinate system, then:

R× PL + t = PM (6)

where R is the transformation matrix, so that the poses of the two coordinate systems are
consistent.

R =

[
cos(θ) −sin(θ)
sin(θ) cos(θ)

]
(7)

In Formula (6), t is the position where the origin of the sensor coordinate system is
mapped to the map coordinate system. In general, the initial position of the sensor is the
origin of the map, and t = (xo, yo) can be set directly.

In Formula (7), θ is the heading angle during the driving process. According to the
right-hand rule, the counterclockwise rotation around the z axis of the map coordinate
system is positive, then θ can be directly brought into the transformation matrix, and the
distance from the sensor coordinates to the map coordinates is transformed to:

PM =

(
cos(θ) −sin(θ)
sin(θ) cos(θ)

)
× PL +

(
xo
yo

)
(8)

The relationship between the sensor coordinate system and the map coordinate system
is shown in Figure 5.
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3.3. Test of NDT Global Mapping
3.3.1. Dataset Selection

The KITTI dataset consists of point cloud data collected by 64-line 3D Lidar combined
with two gray-scale cameras, two color cameras and four optical lenses, and the sampling
frequency of Lidar is 10 Hz. The entire dataset consists of 389 pairs of stereo images and
optical flow images, and more than 200 k 3D annotated objects. The KITTI dataset is often
used in 3D object detection and point cloud segmentation, the part samples of dataset are
shown in Figure 6.
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3.3.2. Test Results

The CPU model of the computer is i7-10700k, the GPU model is NVIDIA RTX3090,
and the memory size is 30 GB; the operating system is Ubuntu18.04, and the operating
platform is Pycharm and PCL 1.10.0. The pseudocode for NDT registration is shown in
Figure 7.
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The point cloud global mapping is performed on the test sets 11–21 of KITTI and the
results are shown in Figure 8, where we can see that the point cloud global mapping is very
densely reconstructed by NDT algorithm, and we can clearly see the vehicles on the road
and the trees and buildings on both sides, even in the unsegmented state. In addition, due
to the NDT registration using a one-time initialization, the process of algorithm execution
does not need to consume much computing power to calculate the nearest search matching
point, and the registration only takes 0.18 s per meter distance.
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4. Point Cloud Semantic Segmentation Based on RandLa-Net
4.1. Point Cloud Semantic Segmentation Algorithm Based on RandLa-Net

Point cloud semantic segmentation is to add semantic labels for each point, and to
classify point clouds into different point subsets, and to make sure the same point cloud set
has similar features, such as vehicles, roads, or pedestrians.

The semantic segmentation of a point cloud based on RandLa-Net: first, reduce the
density and computational cost of the point cloud by random sampling, and then use
the local feature aggregator to collect the features of the point cloud so as to avoid losing
some important feature information of the point cloud due to random sampling. Finally,
these features are aggregated and the point cloud is classified so that each point has
corresponding label information. The specific segmentation process is shown in Figure 9.
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In Figure 9, (N, D) represent the point cloud number and feature dimension, respec-
tively. FC represents the fully connected layer, LFA represents local feature aggregation,
RS represents the random sampling, MLP represents shared multilayer perceptron and US
represents upsampling.

4.1.1. Random Sampling

RS is to take n points from N points as samples, where each point has the same
probability of being selected, and there is no special correlation between any two points.
Its computational complexity is O (1). Compared with farthest point sampling and inverse
density importance sampling, random sampling is the most computationally efficient,
which only takes 0.004 s to process 106 points [22].

To evaluate the sampling efficiency of common types of samplings including farthest
point sampling (FPS), inverse density importance sampling (IDIS), random sampling (RS),
generator-based sampling (GS), continuous relaxation-based sampling (CRS) and policy
gradient-based sampling (PGS), each of the above sampling methods is tested with point
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cloud data with the numbers of 103, 104, 105 and 106 in turn. Point cloud data generally
need to be downsampled five times, and each downsampling on a single GPU only retains
1/4 of the original points. The time and memory consumption of each sampling method
are compared, and the results are shown in Figure 10 [23], the dashed lines represent the
estimated value of the memory consumption.
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4.1.2. Local Feature Aggregator

In order to retain the important feature information of the next point, the algorithm
performs local feature aggregation after random sampling. This local feature aggregator is
applied once at each point, which consists of three parts: (1) local spatial encoder (LocSE);
(2) attention pooling layer; and (3) dilated residual block. The specific network structure is
shown in Figure 11.
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(1) Local Spatial Encoder

Given a point cloud P and the features of all points, this local space encoder stores
the xyz coordinates of all adjacent points so that the features of the corresponding points
also have corresponding coordinate positions. The local spatial encoder can also observe
geometric patterns in blocks or regions, and the entire network can efficiently learn the
complex local structure of point cloud data. Specific steps are as follows:

Step1. Find neighbors.
Step2. Position encoding of relative points. For each nearest point {p1

i . . . pk
i . . . pK

i } of
center point pi, the corresponding positions are encoded as follows:

rk
i = MLP

(
pi ⊕ pk

i ⊕
(

pi − pk
i

)
⊕ ‖pi − pk

i ‖
)

(9)

where ⊕ is the connection operation and ‖ · ‖ represents the calculation of the Euclidean
distance between adjacent points and a given point p .
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Step3. Point feature enhancement. For each adjacent point pk
i , concatenate the encoded

relative point position rk
i with its corresponding point feature f k

i to obtain an enhanced
feature vector f̂ k

i .
Step4. The output is a new set of adjacent features:

F̂i =
{

f̂ 1
i . . . f̂ k

i . . . f̂ K
i

}
(10)

(2) Attention Pooling Layer

This module is used to aggregate adjacent point features F̂i and uses the attention
mechanism to learn important local features spontaneously. The attention mechanism
consists of the following parts:

Part1. Calculate the attention score. The formula is as follows:

sk
i = g

(
f̂ k
i , W

)
(11)

where g() represents a shared function to learn a unique attention score for each feature
and W is the learnable weight of the shared MLP.

Part2. The formula for the weighted summation is as follows:

f̂i =
K

∑
K=1

(
f̂ k
i · sk

i

)
(12)

(3) Dilated Residual Block

Finally, in order to preserve an important feature information of all points before sam-
pling as much as possible, this algorithm uses multiple local spatial encoders and expands
the residual block formed in the stack of attention-eating layers and skip connections.

4.2. Point Cloud Semantic Segmentation Test Based on RandLa-Net
4.2.1. Dataset Selection

The experiment was conducted on the SemanticKITTI dataset. We selected the point
cloud data from the first sequence to tenth sequence as the training set, and the point
cloud data from the eleventh sequence to twenty-first sequence as the test set. Annotation
categories are divided into: cars, bicycles, motorcycles, trucks, other vehicles, people,
cyclists, motorcyclists, roads, parking lots, sidewalks, other surfaces, buildings, fences,
vegetation, tree trunks, terrain, utility poles and traffic signs—19 categories in total, which
are all important components in the autonomous driving traffic environment [5].

The Semantic3D dataset is a global point cloud image of different urban scenes ob-
tained by static scanning with advanced equipment, and the dataset has more than 4
billion points in total. The annotation categories are artificial terrain; natural terrain; high
vegetation; low vegetation; buildings; landscapes; objects; and cars—all of which are the
main components of the urban environment [4].

4.2.2. Algorithm Testing

The CPU model of the test computer is i7-10700k, the GPU model is NVIDIA RTX3090
and the memory size is 30 GB; the operating system is Ubuntu18.04, the platform for deep
learning uses the TensorFlow, the initial learning rate is set to 0.01 and it is reduced by
5% after each epoch. The number of closest points K is set to 16, the batch processed per
iteration is set to 8 and a fixed number of points (approximately 105) are sampled as input.
The SemanticKITTI and Semantic3D datasets are used as the training and testing sets,
respectively.

Table 1 shows the results of the training with different approaches on the semantickitti
dataset. The average intersection ratio (mIoU) of all categories is used as a quasi-index, and
the parameter column refers to the number of network parameters in the algorithm. It can
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be seen that the mIoU of all categories obtained by RandLa-Net is significantly better than
that of other algorithms, and RangeNet53++ has the best segmentation accuracy for small
targets such as traffic signs and bicycles [24], which is because the network parameters of
RangeNet53++ [24] are more than 40 times higher than those of RandLa-Net.

Table 1. Quantitative results of different approaches on semantickitti.

Methods PointNet PointNet++ SqueezeSeg DarkNet21Seg RangeNet53++ RandLa-Net

mIoU(%) 14.1 19.8 28.8 45.6 52.1 53.7
parameter (M) 3 6 1 25 50 1.24

road 61.6 71 85.3 91.4 91.8 91.7
side-walk 35.5 41.3 54.1 73 74.2 77.1
parking 15.6 18.3 26.9 56 63.9 41.2

other-ground 1.2 5.2 4.4 26.4 27.8 38.9
building 41.2 61.5 56.3 81.9 87.4 88.2

car 46.1 53.7 68.5 85.1 90.4 93.3
truck 0.1 0.9 3.3 18.1 24.7 40.1

bicycle 1.3 1.9 15 26.2 25.7 15.5
motorcycle 0.3 0.2 4.1 26.5 34.4 28.8

other-vehicle 0.7 0.2 3.5 15.6 22.9 38.5
vegetation 30 46.5 60 77.6 80.5 84.5

trunk 4.6 13.8 24.3 47.4 55.1 40.1
terrain 17.6 30 53.7 63.6 64.5 72.1
person 0.2 0.9 12.9 31.8 38.3 53.4

bicyclist 0.2 1 13.1 33.6 38.8 53.36
motorcyclist 0 0 0.9 4 4.8 7.2

fence 12.9 16.9 29.9 52.3 58.6 44.5
pole 2.4 6 17.8 36 47.9 51.3

traffic sign 3.7 8.9 24.5 50 55.9 38.6

Table 2 shows the train results of different approaches on Semantic3D, and the mean
cross-over-union ratio (mIoU) and overall accuracy (OA) for all classes were used as
standard metrics.

Table 2. Quantitative results of different approaches on Semantic3D.

Methods SnapNet ShellNet GACNet KPConv RandLa-Net

mIoU(%) 59 69.1 70.7 74.6 77.4
OA(%) 88.6 91.8 94 92.9 94.8

man-made terrain 81 86.4 96.4 90.9 94.2
natural terrain 77.2 77.7 92.6 82.8 91.4
high vegetation 79.7 88.5 87.9 84.1 82.9
low vegetation 22.9 60.6 44 47.8 52

buildings 91.1 94.2 83.2 94.5 94.7
hard scape 18.4 37.3 31 40 54.9

scanning artefacts 37.3 43.5 63.5 77.3 70.9
Cars 64.4 77.8 76.2 79.7 76.9

RandLa-Net significantly outperforms other algorithms in mIoU and OA. The test
accuracy of different methods for eight kinds of targets can be seen in Table 2, and the test
accuracy of RandLa-Net algorithm is also better than most algorithms. The point cloud
segmentation effect on different datasets is shown in Figure 12.
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Table 3 shows the total time and memory consumption of different methods. It can 
be seen in Table 3. RandLa-Net has the shortest processing time and the most maximum 
inference points. Although the number of network parameters of the SPG algorithm is the 
least, the processing time of point clouds is very long and the overall effect is not as good 
as RandLa-Net, due to the complex geometric division and hypergraph construction steps. 
Therefore, RandLa-Net is the most efficient network. 

Figure 12. The segmentation effect on different datasets: (a) frame-by-frame segmentation effect of
SemanticKITTI-11; (b) frame-by-frame segmentation effect of SemanticKITTI-12; (c) panoramic split
effect of Semantic3D-1; and (d) panoramic split effect of Semantic3D-2.

Table 3 shows the total time and memory consumption of different methods. It can
be seen in Table 3. RandLa-Net has the shortest processing time and the most maximum
inference points. Although the number of network parameters of the SPG algorithm is the
least, the processing time of point clouds is very long and the overall effect is not as good
as RandLa-Net, due to the complex geometric division and hypergraph construction steps.
Therefore, RandLa-Net is the most efficient network.

Table 3. Efficiency of the semantic segmentation of different methods on sequence 08.

Total Time (s) Parameters (Millions) Maximum Inference Points
(Millions)

PointNet 192 0.8 0.49
PointNet++ 9831 0.97 0.98
PointCNN 8142 11 0.05

SPG 43584 0.25 -
KPConv 717 14.9 0.54

RandLa-Net 185 1.24 1.03

5. Comprehensive Test of Automatic Classification and Extraction of Raw Point
Cloud Data
5.1. The Flow of the Algorithm

The improved RandLa-Net algorithm incorporated with NDT registration can directly
process the complete point cloud map, and further obtain the data required by the high-
definition map. The specific algorithm flow is shown in Figure 13.



Electronics 2022, 11, 2795 13 of 18

Electronics 2022, 11, 2795 13 of 19 
 

 

Table 3. Efficiency of the semantic segmentation of different methods on sequence 08. 

 
Total Time 
(Seconds) Parameters (Millions) 

Maximum Inference Points 
(Millions) 

PointNet 192 0.8 0.49 
PointNet++ 9831 0.97 0.98 
PointCNN 8142 11 0.05 

SPG 43584 0.25 - 
KPConv 717 14.9 0.54 
RandLa-

Net 
185 1.24 1.03 

5. Comprehensive Test of Automatic Classification and Extraction of Raw Point Cloud 
Data 
5.1. The Flow of the Algorithm 

The improved RandLa-Net algorithm incorporated with NDT registration can 
directly process the complete point cloud map, and further obtain the data required by 
the high-definition map. The specific algorithm flow is shown in Figure 13. 

 
Figure 13. Process of the improved RandLa-Net algorithm. 

5.2. Test Data 
Take the SemanticKITTI Dataset 03 as an example for testing. Figure 14 shows the 

original frame-by-frame data of the 03 point cloud. 

Figure 13. Process of the improved RandLa-Net algorithm.

5.2. Test Data

Take the SemanticKITTI Dataset 03 as an example for testing. Figure 14 shows the
original frame-by-frame data of the 03 point cloud.
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5.3. Point Cloud Mapping

Firstly, load the rosbag of the original dataset, then use the NDT algorithm to perform
the coordinate transformation and registration on the frame-by-frame point cloud data,
and build a map globally. The output effect is shown in Figure 15.
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5.4. Random Sampling

In order to reduce the amount of computation, the random sampling of data is required
before semantic segmentation, and the sampling effect is shown in Figure 16. We can see
that the number of point clouds is significantly reduced and the features become blurred.
However, the local feature aggregator of the subsequent RandLa-Net algorithm will solve
this problem.
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5.5. Point Cloud Semantic Segmentation

Load the bin format file of the global point cloud image, and use the RandLa-Net
algorithm to semantically segment the point cloud image. Figure 17a is the visualization
of semantic segmentation on the dataset using our improved RandLa-Net algorithm,
and Figure 17b is the visualization of semantic segmentation on the same dataset using
the original RandLa-Net algorithm. Table 4 shows the specific effect of the test, which is
reflected from the indicator mIoU. We can see that the segmentation effect does not decrease
the accuracy due to the change from frame-by-frame segmentation to global segmentation.

Figure 17a is the visualization effect of the global point cloud map classification using
RandLa-Net fused with NDT. Figure 17b is the visualization effect of the frame-by-frame
point cloud classification using the original RandLa-Net network. Figure 17c is the label
information corresponding to each color in the visualization. It can be seen that the
algorithm in this paper can be used to classify the point cloud map at one time, and then the
required area can be directly extracted. However, since the point cloud data processed by
the original RandLa-Net algorithm was not registered and then there are a large number of
redundancy points so that the point cloud of each road element cannot be directly extracted
for making high-definition maps.
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Figure 17. The comparison of point cloud semantic segmentation results: (a) segmentation visual-
ization based on the improved RandLa-Net; (b) segmentation visualization based on the original
RandLa-Net; and (c) the label information corresponding to the color.

Table 4. Test accuracy on semantickitti 03.

Methods RandLa-Net Ours

mIoU(%) 60.6 61.5
parameter(M) 1.24 1.24

road 92.1 92.3
side-walk 77.3 78.1
parking 42.6 43.9

other-ground 40.8 41.2
building 89.4 90.2

car 92.1 92.3
truck 50.8 51.3

bicycle 15.6 16.5
motorcycle 30.9 31.2

other-vehicle 41.7 41.5
vegetation 85.9 85.6

trunk 42.3 43.1
terrain 72.5 73.1
person 65.9 65.4

bicyclist 55.8 55.4
motorcyclist 8.9 9.7

fence 47.2 48.3
pole 53.1 53.3

traffic sign 40.4 41.7

From Table 4, it can be seen that the mIoU of all categories are improved after using
the new method. This is because the shape features of each element on the global point
cloud map are more complete, which is more conducive to be identified and extracted.
However, in the classification of some small targets, the accuracy of the original algorithm
is not as high as the frame-by-frame segmentation. This is because the registration of
small targets in the registration time is not complete, which leads to some deviation in the
subsequent classification.
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5.6. Point Cloud Extraction

Since the file is in bin format, in order to find the point cloud data corresponding to the
desired label from the classified point cloud map, the point cloud can be extracted according
to the label. Figure 18a is the point extracted on label 15 cloud data, and Figure 18b is the
point cloud data extracted on label 9.
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Figure 18. Point cloud extraction: (a) vegetation; and (b) road.

Figure 18 is the visual effect of extracting all the points marked vegetation and road in
the SemanticKITTI dataset 03. It can also be converted into txt type and data in (x, y, z, label)
format can be obtained for further operation. In addition to the two extraction examples of
Figure 18, specific extractions can be performed based on 19 labels. The extracted data can
be directly used to create high-definition maps after simple sorting. The sorted part of the
data is shown in Table 5, where the category corresponding to the number is represented
by a label.

Table 5. The form after data output.

Numb Object Type Position Coordinates (x, y, z)

1 car
20.354 40.375 −2.404
20.356 40.374 −2.404
20.359 40.374 −2.399

. . . . . . . . . . . . . . .

6 person
−0.847 −34.686 3.215
−0.852 −34.683 3.212
−0.852 −34.683 3.215

. . . . . . . . . . . . . . .

9 road
−0.003 −31.752 0.002
−0.001 −31.756 0.002
−0.002 −31.759 0.002

. . . . . . . . . . . . . . .

15 vegetation
−8.033 −0.995 −1.201
−8.053 −0.982 −1.200
−8.062 −0.975 −1.201

The data are labeled in the following order: 1. car; 2. bicycle; 3. motorcycle; 4. truck; 5. other-vehicle; 6. person;
7. bicyclist; 8. motorcyclist; 9. road; 10. parking; 11. sidewalk; 12. other-ground; 13. building; 14. fence; 15.
vegetation; 16. trunk; 17. terrain; 18. pole; and 19. traffic sign.

6. Conclusions

This paper proposes a fast automatic classification and extraction method for large-
scale point cloud data. The original point cloud data are globally mapped by NDT regis-
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tration. In order to reduce the amount of computation, the point cloud map is randomly
sampled. The cloud global map is semantically segmented, with each point assigned to
a corresponding label, and then the numpy index is used to extract the point cloud data
corresponding to the label of interest. The training results show that the point cloud data
classification reaches 53.7% on the public dataset SemanticKITTI and 77.4% on Semantic3D.
The test on the SemanticKITTI-03 dataset reflects that our method is more efficient than
traditional manual annotation on large-scale point cloud datasets. However, in order to
save computing power, the algorithm network parameters in the point cloud classification
part are too few, resulting in an unsatisfactory classification effect on small target objects.
In the follow-up research, the classification of small target objects will be further optimized
and tested.
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