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Abstract: An accurate identification of objects from the acquisition system depends on the clear
segmentation and classification of remote sensing images. With the limited financial resources and the
high intra-class variations, the earlier proposed algorithms failed to handle the sub-optimal dataset.
The building of an efficient training set iteratively in active learning (AL) approaches improves
classification performance. The heuristics-based AL provides better results with the inheritance of
contextual information and the robustness to noise variations. The uncertainty exists pixel variations
make the heuristics-based AL fail to handle the remote sensing image classification. Previously, we
focused on the extraction of clear textural pattern information by using the extended differential
pattern-based relevance vector machine (EDP-AL). This paper extends that work into the novel
pixel-certainty activity learning (PCAL) based on the information about textural patterns obtained
from the extended differential pattern (EDP). Initially, distributed intensity filtering (DIF) is used
to eliminate noise from the image, and then histogram equalization (HE) is used to improve the
image quality. The EDP is used to merge and classify different labels for each image sample, and this
algorithm expresses the textural information. The PCAL technique is used to classify the HSI patterns
that are important in remote sensing applications using this pattern collection. Pavia University and
Indian Pines (IP) are the datasets used to validate the performance of the proposed PCAL (PU). The
ability of PCAL to accurately categorize land cover types is demonstrated by a comparison of the
proposed PCAL with existing algorithms in terms of classification accuracy and the Kappa coefficient.

Keywords: active learning; heuristics; hyperspectral images; multi-class classification; relevance
vector machine; remote sensing; spectral-spatial classification

1. Introduction

The accurate discrimination of an object of interest (land cover classes) depends on the
clear spectral information and spatial resolution of the sensors used remotely. The real-time
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remote sensing image systems provide a large set of images corresponding to the various
fields such as hydrological, geological, precision agriculture [1,2], ecological and military
applications. Among them, the estimation of bio-mass, bio-diversity, and the changes in the
land cover through hyperspectral images (HSI) is an attractive research area in ecological
science [3,4]. Spectral dimensionality and the need for specific spectral-spatial classifiers
are the major challenges in the HSI during the last decade. The increase in internal class
variability due to the spatial variability of spectral signatures makes the HSI a challenging
problem. A review of statistical learning theory (SLT) [5], based on HSI classification
methods, suggests that specific loss functions and the regularization parameters are to be
designed to handle the HSI classification against the spatial homogeneity variations. The
developed classifiers should meet the following constraints.

• Robustness to the changes in image representation;
• Absence or a small amount of differences in classifiers during the manipulation of

objects and pixels.

The design of an adequate classification model can produce accurate results within
reasonable time and cost. Recently, the automatic classification techniques based on the
supervised learning approach require a set of labeled reference samples for the training
process. For each time the input image is to be classified, new training samples are required,
which leads to cost and additional constraints. To overcome these issues, active learning
(AL) is applied to create an effective and efficient training set. The periodical update of the
land cover image is also a major issue in the geographical area with large size images. To
overcome such issues, assumptions such as the remote sensing images and the related
labeled sample from previous analysis are made. The classification of new geographical
images with the same land-cover classes and similar characteristics is regarded as the do-
main adaption (DA) problem. The inclusion of spatial/temporal variability of the spectral
signatures addresses the DA problems effectively [6]. The maximization of discrimination
capabilities not only depends on the solution to DA but also depends on the cost of the
labeling process. The powerful strategy in the AL is a margin-sampling-based support
vector machine (SVM) [7] that describes the importance of samples based on the distance
to the hyperplane. The distance metric describes the pixel uncertainty and its importance
for classification.

The selection of important samples for the labeling of images of the multi-source
environment is largely affected by pixel uncertainty. Most of the uncertainty measures [8]
are effective due to the capture of the relationship among the candidate instances and the
classification model. They do not consider the data distribution information in unlabeled
data, which leads to few usage instances for labeling. Hence, the query selection process in
the AL model includes the adaptive combination of uncertainty and information density.
This combination provides the probabilistic weight to the class instances that minimizes the
expected classification error. The assumption to perform such probabilistic weight-based
AL data is homogeneous throughout the image. Due to the coverage of small regions in
the image, the shift between the distributions of training samples and classification is
verified. When this model is used for classification, the incompatibility of the model is
to be optimized [9]. The spatial adaptation of heuristics requires contextual information:
so far, the heuristics AL includes the positional information and textures. The robustness
of the noise based on the uncertainty of the pixels is a major issue in the AL approaches.
Hence, this paper proposed pixel-certainty active learning (PCAL) to overcome the issues
in the traditional approaches. The technical contributions of the proposed PCAL are listed
as follows:

• The use of distributed intensity filtering (DIF) and histogram equalization (HE) reduces
noise and improves image quality [10], ensuring the accuracy of pixels.

• The fusion and classification of labels under the merging of spectrum bands are sup-
ported by an extended differential pattern (EDP) dependent texture patterns extraction.
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• The utilization of PCAL on the EDP-based features provided the labeled output
corresponding to the cluster index value. This facilitates the inclusion of contextual and
positional information and improves the robustness of the noise variations in pixels.

The following is a breakdown of the paper’s structure: In Section 2, a full overview
of related works on heuristic active learning models in spectral-spatial domains is given.
Section 3 describes the pixel-certainty active learning (PCAL) implementation process. In
Section 4, there is a comparison of PCAL with existing approaches. Finally, in Section 5, the
conclusions about the use of PCAL to remotely sensed data are presented.

2. Related Work

The availability of rich information in HSI provides a significant chance to identify
and classify the materials in the images. The inheritance of the high-number of channels
with the few training samples leads to the curse of the dimensionality problem. The im-
provement of classification accuracy depends on the removal of noise bands generated.
Jia et al. [11] proposed a new strategy to select the bands automatically without a man-
ual removal technique. The wavelet shrinkage and the affinity propagation are applied
to select the most representative bands to reduce the dimensionality. The spectroscopic
analysis plays a major role in the identification of materials from the high-resolution im-
ages. Accurate estimation of classification performance depends on the unmixing strategy.
Bioucas-Dias et al. [9,12] presented a brief overview of unmixing methods such as sig-
nal sub-space, geometrical, statistical, sparsity-based, and spatial-contextual unmixing
with the mathematical solutions and experimental results. The integration of spatial and
spectral information is a necessary task in HSI analysis. Dopido et al. [13] developed the
new unmixing-based feature extraction technique that integrated the spectral and spatial
information by combining the clustering with the partial spectral unmixing. They studied
conditional correlations between the multiple sparse representations of different spatial
neighborhood pixels. Srinivas et al. [14] proposed the probabilistic graphical method for
explicitly mining conditional dependencies between the distinct sparse features. The re-
mote sensing image classification by using the morphological profiles (MP)-based tools was
alternate research to improve the classification performance. Huang et al. [15] discussed the
strategies involved in the construction of morphological profiles such as linear, non-linear,
manifold-learning, and multi-linear transformation-based methods. The hyper dimensional
feature space was considered by using the decision function and sparse classifier.

The difference between the reflectance and the shading of objects from a single image.
In the intrinsic image decomposition (IID) model, the spectral reflectance and shading com-
ponent were the major factors to improve the classification performance. Kang et al. [16]
proposed the novel feature extraction technique based on the IID model to reduce the spec-
tral dimension and estimate the reflectance/shading components in the HSI classification.
Li et al. [17] developed the framework to classify the hyperspectral scenes by pursuing the
combination of multiple features. The major objective of mixing models was to investigate
the linear and non-linear class boundaries for HSI interpretation. The utilization of multiple
features improves the classification performance effectively. However, the increase in
feature dimensionality induced the limitations in kernel-based classification. Liu et al. [18]
provide the simultaneous learning of class-specific features that enforced the automatic
learning of the sparsity in either group or feature level. By using this simultaneous way of
learning, the relevant features were retained for classification. However, the high dimen-
sional data with few labeled samples were the major difficulty in such a sparsity approach.
Ul-Haq [19] exploited the certain special properties of the HSI through sparse representa-
tion models. In addition, the Homotopy-based sparse classification was proposed to prove
the sparsity against the time and computational limitations. The learning of sparse-spectral
representation required the spatial smoothness of the pixels to lie within the same region.
Zhang et al. [20] exploited the fixed neighbor system that enforced the neighboring pixels
to share the common sparsity information. The development of kernel-based group sparse
coding (GSC) with the incorporation of kernel tricks to capture the non-linear relationships.
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The combination of seasonal data into the spectral data faced major issues such as
reduction in dimensionality and the selection of most informative samples. Rodriguez-
Galiano et al. [21] used the pseudo cross and cross variograms to incorporate the sea-
sonal/temporal information with the sparsity models. Further, the random forest (RF) [22]
classifier was used to reduce the subset of input variables with better classification accuracy.
Xia et al. [23] extended the RF approach into the integration of the rotation forest with
the Markov random field (MRF) to model the contextual information as the maximum a
posteriori problem. The adaptation of a supervised classifier depends on the trained image
to the classification of other similar images. Persello et al. [24] discussed the domain adap-
tation (DA) problems through the AL approaches in which there is the iterative labeling
and adding of the labeled samples to the set which contains the most informative samples.
With the inclusion of limited resources and the human expert, the selection of samples
utilizes the pool-based AL approaches in [25,26], respectively. The generalization capability
of training samples from the high-dimensionality input was the recent attractive research
in remote sensing applications. The SVM [27] and the wavelet domain-based multi-view
learning AL [28,29] reduce the redundancy within the contention pool.

The abundant spectral information and the high dimensionality are the major chal-
lenges in conventional HSI processing. Cui et al. [30] presented the tabu search optimization
technique to reduce the dimensionality of the features and developed the Compactness-
Separation Coefficient (CS Coefficient) to calculate the optimal feature reduction number.
The application of traditional AL classifiers such as support vector machine (SVM) and the
relevant vector machine (RVM) on the reduced features yielded high classification accuracy.
The minimal reconstruction error is used to determine the class label of the test pixel. To
achieve this, the sparse representation classifier (SRC) based on the joint sparsity model
is constructed. Zhang et al. [31] reviewed the conventional SVM and SRC-based models
(joint sparse representation classifier (JSRC)) with the differential morphological profile
(DMP)-based features. The review in terms of classification accuracy conveyed that the
preservation of spatial information and the utilization of complementary information was
achieved effectively. Due to the dimensionality of the features, the prediction of optimal
features from the diverse features was the research issue in HSI classification. Feature
fusion and the composite kernels support the optimal feature selection. Chunsen et al. [32]
discussed the issues in the traditional vector stacking (VS)-based SVM and proposed the
minimum noise fraction (MNF)-based feature extraction technique for a single feature. The
information in HSI is fully utilized to compute the marginal probability estimation. Li
et al. [33] discussed the marginal probability estimation model called maximum a posteriori
marginal (MPM) with the loop belief propagation (LBP) algorithm. They discussed the
issues in the logistic regression via splitting and augmented Lagrangian (LORSAL) and
the integration of LORSAL with multi-level logistic (MILL). The comparison between the
MPM-LBP with the exiting methods suggested the effectiveness of MPM-LBP methods
in HSI applications. The addition of similar samples to the training dataset provides the
enrichment of the semi-supervised classification process. Ayerdi and Romayin [34] pro-
posed anticipative hybrid extreme rotation forest (AHERF) that defines the rank-based
selection of probability distribution. The utilization of clustering and maximization of class
spatial compactness removes the classification errors significantly. Wan et al. [35] proposed
collaborative active and semi-supervised learning (CASSL), which combines AL and SSL to
improve learning performance when compared to “multiclass level uncertainty-enhanced
cluster-based diversity” (MCLU-ECBD) [36], “locally linear embedding with manifold
Co-Regularization” (LLE-mCR) [37], and CASSL-no pseudo label verification (NoPLV).
In recent studies, adequate learning with decreased time consumption was identified as
a research topic in the HSI categorization. Sun et al. [38] discussed the Gaussian process
(GP)-Al method, including GP-Random Selection (RS), GP-Init, GP-full, GP-AL1, GP-AL3,
and GP-AL2 heuristics, among others. The above listed methods were based on heuristic
approaches where the inclusion of contextual information and the robustness to the noise
variations (pixel uncertainty) were the major issues. To overcome such issues, the PCAL
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method is proposed in this paper with the clear extracted texture patterns and the enhanced
image quality. Other work conducted in [39–43] highlighted several GIS applications of
GIS in the area of crop disease identification and mitigation strategies. Finally, mixture
learning models were applied with success to solve such problems [44].

3. Pixel Certainty Active Learning

The implementation details of the proposed pixel-certainty active learning (PCAL) for
distant sensing applications are discussed in this section. The proposed study relies on the
following models, as illustrated in Figure 1, to accomplish simultaneous development of
huge training samples and superior categorization.

1. Distributed intensity filtering (DIF);
2. Extended differential pattern (EDP);
3. Pixel-certainty active learning (PCAL).
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Figure 1. Workflow of proposed PCAL.

Low-quality images that contain noise have an impact on the depth information. The
depth information is critical for hyperspectral image classification. Initially, noise in the
images is removed by distributed intensity filtering (DIF), and the integration of histogram
equalization (HE) improves the image quality for clear depth information analysis. The
extraction of texture pattern information is then a key stage in the proposed study. The
extended differential pattern (EDP) approach collects the necessary texture patterns that
add significantly to the analysis’ relevant information. The PCAL is utilized with the
retrieved pattern set to categorize the samples based on the clustered index values that are
required for processing of optical data processing. The accuracy of the proposed PCAL
model is demonstrated by comparing it to existing models on several accuracy criteria such
as Kappa coefficient, false rejection rate (FRR), false acceptance rate (FAR), and genuine
acceptance rate (GAR).

3.1. Distributed Intensity Filtering

The noise in the input image, as illustrated in Figure 2, has an impact on the quality
of edge information, resulting in misclassification and limiting the relevant information
prediction. The input image is projected into a window with a size of 3 × 3 to remove the
noise contained in the image. The image projection window is shown in Figure 3.
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The distributed intensity filtering (DIF) method is developed for removing image
noise. The following are the primary procedures involved in this filtering:

• Locating the neighborhood about the point to be examined.
• Using the center value, examine the pixel intensities of the neighborhood.
• Substitute the analyzed result from the previous step for the original pixel value.

The image’s window is initially generated with row values ranging from I − 1 to i + 1
and column values ranging from j − 1 to j + 1. The neighborhood then moves over each
pixel in the image one at a time, predicting the replacement value. The difference between
the center pixel and the boundary is first calculated, then the difference value is compared
to the center pixel to see if it is greater. If the condition is met, replace the pixel value with
the window element’s average value as follows:

Ip(i, j)=
∑ Wtemp

n
(1)

where Ip(i, j)= Preprocessed image

Wtemp=
(
W(x), ′x′ 6= center

)
n = Total number of neighborhoods.
The noise in the image is reduced when the neighborhood values are replaced with

the estimated value. As a result, the DIF process’ output has reduced noise, as seen in
Figure 4. The interpretation of information contained in an image is not just dependent
on the image’s noise-free portions. The image quality is improved even more for clear
image analysis. To improve the quality of the input image, Gaussian modeling is used. In
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the classic Gaussian model [45], the standard deviation is reconstructed as the root mean
square (RMS) value of the difference between every pixel and the total pixel value, as
shown below:

σ =

√√√√ 1
a ∗ b

a∗b
∑
i=1

(
Ip(i)−

∑ Ip

a

)2
(2)
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With the updated standard deviations from Equation (2), the image quality is improved
as follows by Equation (3).

Ie =
Ip

max
(

Ip

(
∑ Ip

a ∗ σ
)) (3)

3.2. Extended Differential Pattern

The window size is increased to 5 × 5 in this stage to allow for the display of an
enhanced image. The median value of the projected image is then calculated. The window
over the enlarged image is initially generated with a size of 5 × 5. The cells with 3 × 3 size
are retrieved independently within this window. The rules required for vector prediction are
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developed by using angle-based difference estimation. This section contains the algorithm
for computing patterns in multi-angular form.

The amount of the difference between the window formations (temp, temp1) is stated
numerically as follows by Equation (4):

mag =

√(
double

((
(temp( i, j + 1) temp( i, j))2

)
+
(
(temp( i− 1, j) temp( i, j))2

)))
(4)

where initial i = 3 and j = 3.
To extract the patterns, a comparison between the center pixels and nearby pixels

is conducted, followed by decimal coding. The multiplication is performed using two
different types of patterns (Pt2, Pt1) to retrieve the required patterns. These relevant
patterns have a significant impact on classification, as shown in Figure 6.

Algorithm 1. Extended Differential Pattern

Input: Enhanced Image ‘Ie’
Output: Texture pattern ‘out’
S-1: Initialize the 5 × 5 window matrix
S-2: Project window over the enhanced image (Ie)
For (i = 3 to row_size-2) For (j = 3 to Column_size-2)temp = Ie

(
i2 + j2

)
S-3: Compute the median value for the window

med1 = temp(j)

S-4: Check the difference between the center of the pixelwith the neighborhood
If temp (, i−1,j)>= med1&&temp (i−1,j+1) ≥ med1
Igc(1) = 1;

Else if temp (i−1,j)<med1&&temp(i−1,j+1) ≥ med1
Igc(2) = 2;

Else if temp (i−1,j)<med1&&temp (i−1,j+1) < med1
Igc(3) = 3;

Else if temp(i−1,j)>= med1&&temp (i−1,j+1) < med1
Igc(4) = 4;

End if
S-5: Compute the magnitude value from the newlyformed window by using Equation (4)
S-6: Compute the patterns Pt1 = mag× Igc
S-7: For (i=2 to (Row_size)−1)
For (j=2 to (Column_size)−1)
Assign the original image to the temporary variable

temp1 = Ie(i, j);

S-8: Check the condition

temp2(i− 1, j− 1) = Ie(i− 1, j− 1) > temp1;

S-9: Compute the patterns
Pt2 = temp2

End Loop j
End Loop i
S-10: Perform the bitwise OR operation between two patterns

out = Pt1 ∗ Pt2
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3.3. Active Learning

Active learning is the process of learning with a customized program to gain control over
the many inputs required for training. The main goal of such systems is to perform selected
input queries against a large number of classifiers. When compared to random sampling,
sample selection utilizing active learning (AL) [46] is more discriminative. The suggested
work is based on the presence of a zone of uncertainty among a collection of training
samples. In the repetitive training stage, the samples available are more likely to be
identified wrongly. The following are the primary steps in the active learning framework:
the manual labeling of positive and negative samples used in training is referred to as
passive learning.

The queries are derived from the outputs generated by utilizing passive trained
classifiers to manually determine true and false positives.

The AL decreases false detection rates while retaining a high detection rate. Consider
the X = (xi, yi)

l
i=1 list of labeled samples that mapped into the input space χ of dimension

(d). Furthermore, unlabeled samples are considered to be part of the U = (xi)
l+u
i=l+1 the

pool of candidates. The performance of the classification model is improved by feeding
it with fresh tagged pixels on a regular basis. The following are the algorithmic steps for
classical AL.

1. For each iteration, initialize the training sets and pool of candidates, as well as the
number of pixels provided to the classification model.

2. Use the present training set to train a model.
3. For every candidate in the candidate pool, compute the user-defined heuristic.
4. Each contender is given a rank based on the heuristic score.
5. Choose the most intriguing pixels based on the rank values.
6. Set the label to the pixels you have chosen.
7. Include the batch in the practice set.
8. Remove that batch of candidates from running.
The communication between the user and the model is a key prerequisite for active

learning. The primary requirement for an AL training system is the availability of labeled
material with class-knowledge and the interpretive outcomes of distributed classes. The rel-
evant pixels are required to complete the execution, which is a critical task in the traditional
framework. In addition, the ranking of pixels follows the heuristic process that leads to
difficulty in labeling against the practical conditions such as illumination, and pose varia-
tions. Then, the lack of clear information on texture patterns provided misguided results
in existing methods. The inclusion of contextual information in the heuristics requires
both spectral and positional information for the learning algorithm. The robustness to
noise is the crucial issue that is based on the uncertainty that leads to useless heuristics in
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existing methods. To alleviate these issues, pixel-certainty active learning (PCAL) model is
proposed in this paper. The employment of DIF and EDP in the proposed work removes
the noise level in the image and extracts the detailed texture patterns, respectively. These
patterns are applied to the PCAL to obtain the labeled output image effectively.

Pixel-Certainty Active Learning

The proposed algorithm receives the inputs from the feature extraction block and
produces the labeled output from the cluster-based heuristic process. The parameters used
in PCAL are illustrated in Table 1.

Table 1. PCAL Parameters.

S.No Variable Parameter

1 α Distance Function

2 β Accumulation Array

3 θ Total Sum Distance

4 ω Index

5 λ Best Total Sum Distance

6 ϑ Summed

7 µ Best Summed

8 N Emptyerror

In the proposed work, the pool of candidates is regarded as the pattern outputs from
the feature extraction block. The user defined heuristic values are distance function, index,
and accumulation array. The sequential processes for the proposed PCAL algorithm are
listed as follows:

PCAL Algorithm

Input: Image Pattern
Output: Clustering Output (C)
Step_1: Initialize the cluster for output (C) and the variable (m) to store the minimum index
Step_2: Select the sample from the patterns
Step_3: Compute the d distance among samples
Step_4: Extract minimum index score correspond to minimum distanceω = min (d)
Step_5: Construct the array() for minimum index, distance values

∂ = β

Step_6: Add the sample corresponding to the minimum index or distance value

θ = ∑(ϑ)

Step_7: If θ < λ

Step_8: Replace the index with the best indexω and best =ω.
Step_9: Update the distance, index and cluster values
Step_10: Update the Distance function by using the following equation

d = (D(i) + X(j)− C(i, j)2), i Row, and j Column

Step_11: Extract the clustered output with the updated centroid value (C)

The labeled output from the clustered index and the corresponding labeled image is
shown in Figures 7 and 8, respectively. From Figure 8, it is observed that the labels are
assigned to the different classes of input images from Indian Pines (IP) and Pavia University
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(PU). There are 16 and 9 classes available in IP and PU datasets. The proposed algorithm
assigned the labels to each class effectively with detailed information.
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4. Performance Analysis

This subsection depicts the proposed PCAL’s performance analysis in terms of recall,
precision, specificity, and sensitivity. In hyperspectral image analysis, the suggested PCAL
was compared to the current SVM [30], class level joint sparse representation classifier
(CL-JSRC) [31], probabilistic weighed strategy [32], and EDP-AL.

Dataset: To validate the performance of the proposed PCAL, two datasets were
used: Indian Pines hyperspectral datasets and Pavia University [47]. The reflective optics
spectrographic imaging system (ROSIS) sensor, which has 610× 340 pixels and 103 spectral
bands ranging from 0.43 to 0.86 µm, was used to acquire the Pavia University dataset. It
has a spatial resolution of 1.3 m. The AVIRIS sensor collects the Indian Pines dataset. With
220 spectral bands ranging from 0.4 to 2.5 µm and a spatial resolution of 20 m, the dataset
includes 145 × 145 pixels. Tables 2 and 3 list the information classes and labeled samples
for Indian Pines and Pavian University.
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Table 2. Number of labeled samples and information classes (Pavia University).

Class Train Test

Asphalt 310 6206

Meadows 806 16,123

Gravel 94 1880

Trees 146 2933

Metal 67 1345

Bare Soil 251 5029

Bitumen 66 1330

Bricks 184 3682

Shadow 47 947

Total 1971 39,475

Table 3. Number of labelled samples and information classes (Indian Pines).

Class Train Test

Oats 10 20

Grass-mowed 13 26

Alfalfa 27 54

Bldg-grass-drives 50 380

Corn 50 234

Corn-Min 50 834

Corn-notill 50 1434

Grass/Pasture 50 497

Grass/Trees 50 747

Hay-windrowed 50 489

Soybeans-clean 50 614

Soybeans-Min 50 2468

Soybeans-notill 50 968

Stone-steel-towers 50 95

Wheat 50 212

Woods 50 1294

Total 700 10,366

4.1. Classification Accuracy and Kappa Coefficient Analysis

The suggested PCAL was compared to the SVM-DMP [26,31], approaches that were
already in use. Tables 4 and 5 indicate the differences in accuracy rate (for every class of
the dataset) and Kappa coefficient for JSRC-DMP, Raw, NMF, and VS-SVM [32].



Electronics 2022, 11, 2799 13 of 19

Table 4. Accuracy and Kappa Coefficient Analysis (Indian Pines).

CLASS SVM-DMP [31] SRC-DMP [31] JSRC-DMP [31] Raw [32] MNF [32] VS-SVM [32] EDP-AL PCAL

1 82.75 83.14 85.1 82.93 68.85 100 97.92 97.6

2 83.48 87.85 90.92 60.66 73.99 94.26 97.8 99.6

3 87.83 89.18 86.74 41.07 53.99 91.39 99.96 100

4 91.35 88.92 87.34 31.82 55.76 82.65 99.96 99.92

5 92.22 93.41 91.36 59.13 80.39 96.77 100 99.76

6 96.11 94.36 92.98 88.29 96.3 99.59 100 100

7 92.5 97.08 81.67 96.3 100 100 100 99.96

8 97.16 97.13 95.54 97.1 99.35 100 99.96 99.44

9 51.58 56.32 48.95 63.64 100 100 100 100

10 71.64 83.48 86.83 61.32 61.83 88.54 100 99.72

11 90.22 90.51 96.17 78.29 83.24 97.42 100 100

12 73.46 78.78 79.78 45.29 56.86 97.93 100 99.84

13 97.61 97.91 98.61 88.44 97.14 99.66 100 100

14 97.99 98.19 98.9 89.99 93.34 100 100 99.8

15 94.93 96.45 88.53 56.28 70.36 94.88 100 99.76

16 78.11 79.56 74.67 98.89 95.7 97.84 100 99.96

Kappa Coeff 86.65 89.21 90.71 62.5 72.92 95.16 96.42 97.1

Table 5. Accuracy and Kappa Coefficient Analysis (Pavia University).

CLASS SVM-DMP [31] SRC-DMP [31] JSRC-DMP [31] RAW [32] MNF [32] VS-SVM [32] EDP-AL PCAL

1 93.77 84.41 87.95 81.99 84.86 92.12 99.68 98.2

2 97.35 97.09 97.89 94.22 84.5 99.56 98.4 100

3 65.04 56.76 61.9 68.11 74.32 85.65 98.72 99.48

4 93.7 90.64 93.75 79.92 75.06 98.24 97.97 99.52

5 72.91 83.9 89.9 97.94 99.55 99.7 97.49 99.84

6 81.84 64.12 71.66 65.43 78.58 94.43 97.01 99.68

7 65.28 75.05 77.43 67.85 82.72 90.45 96.53 100

8 89.35 72.21 79.21 67.79 78.9 92.34 96.05 100

9 69.03 84.02 89.21 100 100 100 95.57 100

Kappa Coeff 86.7 80.28 84.65 76.76 77.89 94.72 95.87 97.72

When compared to other approaches, the JSRC-DMP and VS-SVM offered improved
classification accuracy and kappa coefficient for each image class. However, in the sug-
gested work, the differential pattern extracts relevant patterns from a variety of patterns,
improving the accuracy rate and coefficient value even more.

4.2. Acceptance/Rejection Rate Analysis

Two measures called false acceptance rate (FAR) and false rejection rate (FRR) define
the number of inaccurate labeling for each unauthorized user attempt and the rejection.
The following are the mathematical formulas for facial expression recognition: FAR, FRR,
and genuine acceptance rate (GAR) Equations (5)–(7):

FAR = (Falseclaimsacceptance)/(Totalclaims)× 100 (5)

FRR = (Falseclaimsrejection)/(Totalclaims)× 100 (6)

GAR = 100− FAR (7)
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The analysis of FAR, FRR, and GAR for the randomly selected two image classes
from the dataset is depicted in Figures 9–11, respectively, for the PU and IP datasets.
The comparison of PCAL (proposed) and the existing SVM states that the FAR and GAR
values for the proposed PCAL are better than the existing SVM approaches.

Electronics 2022, 11, x FOR PEER REVIEW 14 of 20 
 

 

6 81.84 64.12 71.66 65.43 78.58 94.43 97.01 99.68 
7 65.28 75.05 77.43 67.85 82.72 90.45 96.53 100 
8 89.35 72.21 79.21 67.79 78.9 92.34 96.05 100 
9 69.03 84.02 89.21 100 100 100 95.57 100 

Kappa 
Coeff 

86.7 80.28 84.65 76.76 77.89 94.72 95.87 97.72 

When compared to other approaches, the JSRC-DMP and VS-SVM offered improved 
classification accuracy and kappa coefficient for each image class. However, in the sug-
gested work, the differential pattern extracts relevant patterns from a variety of patterns, 
improving the accuracy rate and coefficient value even more. 

4.2. Acceptance/Rejection Rate Analysis 
Two measures called false acceptance rate (FAR) and false rejection rate (FRR) define 

the number of inaccurate labeling for each unauthorized user attempt and the rejection. 
The following are the mathematical formulas for facial expression recognition: FAR, FRR, 
and genuine acceptance rate (GAR) Equations (5)–(7): 

𝐹𝐹𝐹𝐹𝑅𝑅 = (𝐹𝐹𝑎𝑎𝑑𝑑𝑠𝑠𝑐𝑐𝑐𝑐𝑑𝑑𝑎𝑎𝑖𝑖𝑚𝑚𝑠𝑠𝑎𝑎𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡𝑐𝑐𝑎𝑎𝑐𝑐𝑐𝑐𝑐𝑐) (𝑇𝑇𝑑𝑑𝑐𝑐𝑎𝑎𝑑𝑑𝑐𝑐𝑑𝑑𝑎𝑎𝑖𝑖𝑚𝑚𝑠𝑠)⁄ × 100  (5) 

𝐹𝐹𝑅𝑅𝑅𝑅 = (𝐹𝐹𝑎𝑎𝑑𝑑𝑠𝑠𝑐𝑐𝑐𝑐𝑑𝑑𝑎𝑎𝑖𝑖𝑚𝑚𝑠𝑠𝑐𝑐𝑐𝑐𝑗𝑗𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖𝑑𝑑𝑐𝑐) (𝑇𝑇𝑑𝑑𝑐𝑐𝑎𝑎𝑑𝑑𝑐𝑐𝑑𝑑𝑎𝑎𝑖𝑖𝑚𝑚𝑠𝑠)⁄ × 100  (6) 

𝐺𝐺𝐹𝐹𝑅𝑅 = 100 − 𝐹𝐹𝐹𝐹𝑅𝑅  (7) 

The analysis of FAR, FRR, and GAR for the randomly selected two image classes 
from the dataset is depicted in Figures 9–11, respectively, for the PU and IP datasets. The 
comparison of PCAL (proposed) and the existing SVM states that the FAR and GAR val-
ues for the proposed PCAL are better than the existing SVM approaches. 

  

(a) (b) 

Figure 9. FAR analysis for: (a) Indian Pines and (b) Pavia University. Figure 9. FAR analysis for: (a) Indian Pines and (b) Pavia University.

Electronics 2022, 11, x FOR PEER REVIEW 15 of 20 
 

 

  

(a) (b) 

Figure 10. FRR analysis for: (a) Indian Pines and (b) Pavia University. 

  

(a) (b) 

Figure 11. GAR analysis for: (a) Indian Pines and (b) Pavia University. 

For image classes 1 and 2, the FAR values of the existing SVM are high and low for 
the proposed PCAL. The inclusion of differential patterns and the PCAL based methods 
improved the acceptance rate performance effectively. 

4.3. ROC Analysis 
The fundamental metric to validate the performance of the testing process in learning 

is called receiver operating characteristics, which is the variation of the true positive rate 
(TPR) against the false positive rate (FPR). The mathematical formulations of TPR by 
Equation (8) and FPR (Equation (9)) are described as follows: 

𝑇𝑇𝑐𝑐𝑑𝑑𝑐𝑐𝑃𝑃𝑑𝑑𝑠𝑠𝑖𝑖𝑐𝑐𝑖𝑖𝑇𝑇𝑐𝑐𝑅𝑅𝑎𝑎𝑐𝑐𝑐𝑐 =
𝑁𝑁𝑑𝑑𝑚𝑚𝑏𝑏𝑐𝑐𝑐𝑐𝑑𝑑𝑁𝑁𝑐𝑐𝑑𝑑𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑑𝑑𝑦𝑦𝑐𝑐𝑑𝑑𝑎𝑎𝑠𝑠𝑠𝑠𝑖𝑖𝑁𝑁𝑖𝑖𝑐𝑐𝑑𝑑𝑠𝑠𝑎𝑎𝑚𝑚𝑡𝑡𝑑𝑑𝑐𝑐𝑠𝑠

𝑇𝑇𝑑𝑑𝑐𝑐𝑎𝑎𝑑𝑑𝑐𝑐𝑑𝑑𝑚𝑚𝑏𝑏𝑐𝑐𝑐𝑐𝑑𝑑𝑁𝑁𝑠𝑠𝑎𝑎𝑚𝑚𝑡𝑡𝑑𝑑𝑐𝑐𝑠𝑠
                                      (8) 

𝐹𝐹𝑎𝑎𝑑𝑑𝑠𝑠𝑐𝑐𝑃𝑃𝑑𝑑𝑠𝑠𝑖𝑖𝑐𝑐𝑖𝑖𝑇𝑇𝑐𝑐𝑅𝑅𝑎𝑎𝑐𝑐𝑐𝑐 = 1 − 𝑠𝑠𝑡𝑡𝑐𝑐𝑐𝑐𝑖𝑖𝑁𝑁𝑖𝑖𝑐𝑐𝑖𝑖𝑐𝑐𝑦𝑦 = 

1 −
𝑁𝑁𝑑𝑑𝑚𝑚𝑏𝑏𝑐𝑐𝑐𝑐𝑑𝑑𝑁𝑁𝑖𝑖𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑑𝑑𝑦𝑦𝑐𝑐𝑑𝑑𝑎𝑎𝑠𝑠𝑠𝑠𝑖𝑖𝑁𝑁𝑖𝑖𝑐𝑐𝑑𝑑𝑠𝑠𝑎𝑎𝑚𝑚𝑡𝑡𝑑𝑑𝑐𝑐𝑠𝑠

𝑇𝑇𝑑𝑑𝑐𝑐𝑎𝑎𝑑𝑑𝑐𝑐𝑑𝑑𝑚𝑚𝑏𝑏𝑐𝑐𝑐𝑐𝑑𝑑𝑁𝑁𝑠𝑠𝑎𝑎𝑚𝑚𝑡𝑡𝑑𝑑𝑐𝑐𝑠𝑠
                            

(9) 

Figure 10. FRR analysis for: (a) Indian Pines and (b) Pavia University.

Electronics 2022, 11, x FOR PEER REVIEW 15 of 20 
 

 

  

(a) (b) 

Figure 10. FRR analysis for: (a) Indian Pines and (b) Pavia University. 

  

(a) (b) 

Figure 11. GAR analysis for: (a) Indian Pines and (b) Pavia University. 

For image classes 1 and 2, the FAR values of the existing SVM are high and low for 
the proposed PCAL. The inclusion of differential patterns and the PCAL based methods 
improved the acceptance rate performance effectively. 

4.3. ROC Analysis 
The fundamental metric to validate the performance of the testing process in learning 

is called receiver operating characteristics, which is the variation of the true positive rate 
(TPR) against the false positive rate (FPR). The mathematical formulations of TPR by 
Equation (8) and FPR (Equation (9)) are described as follows: 

𝑇𝑇𝑐𝑐𝑑𝑑𝑐𝑐𝑃𝑃𝑑𝑑𝑠𝑠𝑖𝑖𝑐𝑐𝑖𝑖𝑇𝑇𝑐𝑐𝑅𝑅𝑎𝑎𝑐𝑐𝑐𝑐 =
𝑁𝑁𝑑𝑑𝑚𝑚𝑏𝑏𝑐𝑐𝑐𝑐𝑑𝑑𝑁𝑁𝑐𝑐𝑑𝑑𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑑𝑑𝑦𝑦𝑐𝑐𝑑𝑑𝑎𝑎𝑠𝑠𝑠𝑠𝑖𝑖𝑁𝑁𝑖𝑖𝑐𝑐𝑑𝑑𝑠𝑠𝑎𝑎𝑚𝑚𝑡𝑡𝑑𝑑𝑐𝑐𝑠𝑠

𝑇𝑇𝑑𝑑𝑐𝑐𝑎𝑎𝑑𝑑𝑐𝑐𝑑𝑑𝑚𝑚𝑏𝑏𝑐𝑐𝑐𝑐𝑑𝑑𝑁𝑁𝑠𝑠𝑎𝑎𝑚𝑚𝑡𝑡𝑑𝑑𝑐𝑐𝑠𝑠
                                      (8) 

𝐹𝐹𝑎𝑎𝑑𝑑𝑠𝑠𝑐𝑐𝑃𝑃𝑑𝑑𝑠𝑠𝑖𝑖𝑐𝑐𝑖𝑖𝑇𝑇𝑐𝑐𝑅𝑅𝑎𝑎𝑐𝑐𝑐𝑐 = 1 − 𝑠𝑠𝑡𝑡𝑐𝑐𝑐𝑐𝑖𝑖𝑁𝑁𝑖𝑖𝑐𝑐𝑖𝑖𝑐𝑐𝑦𝑦 = 

1 −
𝑁𝑁𝑑𝑑𝑚𝑚𝑏𝑏𝑐𝑐𝑐𝑐𝑑𝑑𝑁𝑁𝑖𝑖𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑑𝑑𝑦𝑦𝑐𝑐𝑑𝑑𝑎𝑎𝑠𝑠𝑠𝑠𝑖𝑖𝑁𝑁𝑖𝑖𝑐𝑐𝑑𝑑𝑠𝑠𝑎𝑎𝑚𝑚𝑡𝑡𝑑𝑑𝑐𝑐𝑠𝑠

𝑇𝑇𝑑𝑑𝑐𝑐𝑎𝑎𝑑𝑑𝑐𝑐𝑑𝑑𝑚𝑚𝑏𝑏𝑐𝑐𝑐𝑐𝑑𝑑𝑁𝑁𝑠𝑠𝑎𝑎𝑚𝑚𝑡𝑡𝑑𝑑𝑐𝑐𝑠𝑠
                            

(9) 

Figure 11. GAR analysis for: (a) Indian Pines and (b) Pavia University.



Electronics 2022, 11, 2799 15 of 19

For image classes 1 and 2, the FAR values of the existing SVM are high and low for
the proposed PCAL. The inclusion of differential patterns and the PCAL based methods
improved the acceptance rate performance effectively.

4.3. ROC Analysis

The fundamental metric to validate the performance of the testing process in learning
is called receiver operating characteristics, which is the variation of the true positive rate
(TPR) against the false positive rate (FPR). The mathematical formulations of TPR by
Equation (8) and FPR (Equation (9)) are described as follows:

TruePositiveRate =
Numbero f correctlyclassi f iedsamples

Totalnumbero f samples
(8)

FalsePositiveRate = 1− speci f icity =1− Numbero f incrrectlyclassi f iedsamples
Totalnumbero f samples

(9)

The ROC performance study of the proposed PCAL with the existing SVM for IP and
PU datasets is shown in Figure 12a,b. Due to the differential-based texture pattern and low
dimensionality, the suggested PCAL provides a high true positivity rate for small values of
false positive rate, as shown in Figure 12a,b.
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4.4. Overall Accuracy Analysis

The variations of overall classification accuracy for the existing MPM-LPM, LORSAL-
MILL, LORSAL, SVM [33], and AHERF [34] with different training percentages as shown
in Table 6.

In existing methods, the AHERF provides better results for IP and PU datasets com-
pared to other methods. However, the proper noise removal and improvement of robust-
ness of the pixels to noise variations in the proposed PCAL improves the classification
accuracy to 97.6 and 98.48% compared to AHERF. The hybrid EDP and the pixel-certainty-
based AL improves the classification performance of HSI in remote sensing applications.
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Table 6. Overall accuracy.

METHODOLOGY
(Percentage Training for IP and PU)

Overall Accuracy

INDIAN PINES (IP) PAVIA UNIVERSITY (PU)

MPM-LMP [33]
10.00% (IP), 0.68%(PU) 94.76 85.78

AHERF [34]
2.50% (IP), 3.00% (PU) 93.67 98.09

LORSAL-MILL [33]
10.00% (IP), 0.68% (PU) 92.72 85.57

AHERF [34]
3.00% (IP), 2.50% (PU) 93.58 97.17

LORSAL [33]
10.00% (IP), 0.68% (PU) 82.6 85.42

SVM [33]
10.00% (IP), 0.68% 80.56 80.99

AHERF [34]
1.50% (IP), 0.50% (PU) 87.93 87.81

PCAL 97.6 98.48

4.5. Accuracy Analysis with Existing AL Approaches

The suggested EDP-AL and known approaches of MCLU-ECBD [36], CASSL-NoPLV,
CASSL [35], and LLE-mCR [37] were used to compare AA (average accuracy). Furthermore,
a comparison of the suggested EDP-AA, AL’s OA (overall accuracy), and Kappa coefficient
with the existing GP-based AL versions [38] suggests that the proposed PCAL is useful in
remote sensing applications.

The following is the mathematical formulation of the Kappa coefficient (in percent)
Equation (10),

Kappa Coe f f icient(%) =
OA− AA
100− A

(10)

On the PU and IP, Figure 13 depicts the differences in OA, AA, and Kappa statistics
for proposed and existing AL techniques. The suggested PCAL has an AA of 94.31 percent,
which is higher than existing approaches. Similarly, EDP-OA, AL’s AA, and Kappa statistics
are 96.31, 57.93, and 91.22 percent, respectively, which are higher than the current EDP-
AL technique.
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5. Conclusions

Through the use of a combination of differential texture-pattern extraction and PCAL,
this paper addressed the limits in HSI classification and suggested framework remedies.
The uncertainty exists pixel variations made the heuristics-based AL a failure to handle
the remote sensing image classification. Previously, we focused on the extraction of clear
textural pattern information by using the extended differential pattern-based relevance
vector machine (EDP-AL) [1]. Based on the textural pattern information collected from
the EDP, this research extended that work into the PCAL. Initially, the DIF eliminated the
image’s noise, and the addition of HE improved the image’s quality. The EDP performed
the merging and categorization of distinct labels for each image sample, clearly displaying
the textural information. The PCAL technique is used to classify the HSI patterns that are
important in remote sensing applications using this pattern collection. The usefulness of
PCAL in remote sensing applications was demonstrated by a comparison of the proposed
PCAL with existing AL algorithms in terms of classification accuracy and Kappa coefficient.
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