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Abstract: Fractional-order calculus and derivative is extended from integral-order calculus and
derivative. This paper investigates a nonlinear robust control problem using fractional order and
operator theory. In order to improve the tracking performance and antidisturbance ability, operator-
and fractional-order-based nonlinear robust control for the spiral counter-flow heat exchanger de-
scribed by the parallel fractional-order model (PFOM) is proposed. The parallel fractional-order
model for the spiral counter-flow heat exchanger was identified by particle swarm optimization (PSO)
and the parameters of a fractional-order PID (FOPID) controller were optimized by the PSO. First,
the parallel fractional-order mathematical model for a spiral counter-flow heat exchanger plant was
identified by PSO. Second, a fractional-order PID controller and operator controller for the spiral heat
exchanger were designed under the identified parallel fractional-order mathematical model. Third,
the parameters of the operator and fractional-order PID were optimized by PSO. Then, tracking
and antidisturbance performance of the control system were analyzed. Finally, comparisons of two
control schemes were performed, and the effectiveness illustrated.

Keywords: system identification; parallel fractional model; fractional-order PID control; swarm
particle optimization; right coprime factorization

1. Introduction

The first appearance of fractional-order calculus was in a letter from Leibniz in 1695
which expanded integral order calculus. However, fractional-order calculus has attracted
great interest in the last several decades or so [1]. Some researchers have found that it allows
them to present a real object more accurately than the conventional integer-order derivative
and calculus in some fields such as the voltage–current relation of a semi-infinite lossy
transmission line [2], economic systems [3], electric power systems [4], thermal systems [5],
and the diffusion of heat through a semi-infinite solid, where heat flow is equal to the
half-derivative of the temperature [6].

In real industries, proportional–integral–derivative(PID) control is considered to
be the best control in the control system family for good control performance and ro-
bustness in linear or approximately linear systems [7]. By calculating and controlling
three parameters—the proportional, integral, and derivative of how much a process vari-
able deviates from the desired set point value—we can achieve different control actions
for specific work. Therefore, the tuning of a PID controller’s parameters is very impor-
tant. Fractional-order PID (FOPID) control extended from the conventional PID control
is extensively used by many scientists in order to achieve the most robust performance
in control systems. The fractional PID controller was introduced by Podlubny, I. in 1994
for a fractional-order system [6]. A FOPID controller has five parameters to tune. Thus,
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it is more flexible than a classical PID controller [8]. However, it is more difficult to tune.
In references [9–12], different designs and tuning methods were presented. In this paper,
different design methods along with available software tools and tuning methods are
described. Basic definitions of fractional order are introduced with their use in control
systems (or in engineering applications).

A spiral heat exchanger is widely used because it needs a smaller space for installation
than traditional heat exchanger solutions and it has excellent heat transfer efficiency [13–15].
However, the spiral heat exchanger is a nonlinear system with uncertainties influenced
by the input temperatures and flow rates of cold-fluid side and hot-fluid side, and other
factors [16]. Therefore, it is difficult to control for the heated or cooled output temperature
in variable working conditions.

Nonlinear robust control has been considered by many researchers in different meth-
ods in different fields [17–19]. In reference [20–22], the coprime right factorization was
considered to compensate the nonlinearity of the system and the robust control perfor-
mance of the system was improved. The coprime factorization is suited to not only linear
feedback control but also nonlinear feedback control. It provides a convenient approach to
study the input–output stability of nonlinear feedback control systems. The papers [23–26]
studied the robust right coprime factorization of a nonlinear system with perturbations. A
spiral heat exchanger mathematical model is described by integer differential equations
in traditional methods. Reference [5] demonstrated a spiral heat exchanger mathematical
model constructed by fractional differential equations was more accurate than traditional
integer differential equations. In reference [27], Operator Based Fractional Order Control
System for a spiral heat exchanger with uncertainties is proposed. However, the order of
the fractional-order derivative was difficult to determine by a theoretical method, so the
parameters of the fractional-order model were determined by a testing method. Therefore,
motivated by the previous references, in order to improve its tracking performance and
antidisturbance ability, an operator- and fractional-order-based nonlinear robust control
for the spiral counter-flow heat exchanger described by a parallel fractional-order model
(PFOM) is proposed. The parallel fractional-order model for the spiral counter-flow heat
exchanger is identified by particle optimization (PSO) and the parameters of the fractional-
order PID (FOPID) controller are optimized by PSO. A fractional-order PID controller
and operator controller for the spiral heat exchanger are designed under the identified
parallel fractional-order model. Comparisons of two control schemes are performed, and
the effectiveness is illustrated.

The remainder of this paper is structured as follows. In Section 2, preliminaries and
problem statement are presented. Section 3 introduces the parallel fractional-order model
for the spiral counter-flow heat exchanger. The parallel fractional-order model for the
spiral counter-flow heat exchanger is identified by PSO, with the least squares method
as the performance index. In Section 4, operator- and fractional-order-based nonlinear
robust control for the spiral counter-flow heat exchanger described by the identified parallel
fractional-order model is proposed. Then, the parallel fractional-order operator controller
and compensator are designed, with the compensator aiming to reduce disturbance. Sec-
tion 5 optimizes the parameters of the fractional-order PID controller by PSO. Comparisons
of two control schemes are performed to analyze the tracking and antidisturbance per-
formance for the spiral counter-flow heat exchanger, and the effectiveness is verified in
Section 6. Finally, a conclusion is given.

2. Preliminaries and Problem Statement

In this section, several definitions of fractional-order calculus, operator theory, and the
modified swarm optimization are introduced.
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2.1. The Definitions of Fractional Order
2.1.1. The Caputo Definition of Fractional Order

C
a Dq

t y(t) =
1

Γ(n− q)

∫ t

a

y(n)(t)
(t− τ)

dτ, n− 1 ≤ q ≤ n (1)

where Γ(·) is Gamma function defined by Γ(ε) =
∫ ∞

0 e−ttε−1 and n is a positive inte-
ger number.

2.1.2. Grunwald–Letnikov’s Definition of Fractional Order

GL
a Dq

t y(t) = lim
h→0

h−q

[
t− a

h

]
∑
j=0

(−1)j Γ(q + 1)
Γ(j + 1)Γ(q− j + 1)

y(t− jh) (2)

where [·] means the integer part. (1) and (2) are equivalent if y( ·) is differentiable.
Grunwald–Letnikov’s definition of fractional order is a discrete form of the fractional
order definition, which is implemented easily on a CPU. Therefore, Grunwald–Letnikov’s
fractional order was used in this paper.

2.2. Particle Swarm Optimization

Particle swarm optimization (PSO) is a population-based stochastic optimization
technique developed by Eberhart and Kennedy in 1995, inspired by the social behavior
of bird flocking or fish schooling [28]. PSO shares many similarities with evolutionary
computation techniques such as genetic algorithms (GA) and ant colony optimization
(ACO) algorithms [29]. The system is initialized with a population of random solutions and
searches for optima by updating iterations. However, unlike GA, PSO has no evolution
operators such as crossover and mutation [30]. In PSO, potential solutions, called particles,
fly through the problem space by following the current optimum particles.

It has been successfully applied to many problems in several fields such as biomedicine
and energy conversion. Image analysis is one of the most frequent applications and it has
been performed on biomedical images, microwave imaging, among others.

2.3. Operator Theory

In this section, operator theory is described. The robust stability analysis can be
performed even with uncertainties that are difficult to model in mathematics. Here, a
nonlinear control system with uncertainties can be designed in the time domain by operator
theory and does not convert into the frequency domain by using a transfer function. A
nonlinear feedback system based on operator theory is shown in Figure 1.

Figure 1. Nonlinear feedback system based on operator theory. Here, the plant P and operator
controllers A, B−1 are nonlinear, r∗ is the reference input signal.
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2.3.1. Right Factorization

Let the plant be the operator P : U → Y : y(t) = P(u(t)) . If spaces U and Y of the
input and output signals are two different extended linear spaces, plant P is unstable. A
stable operator N : w(t) ∈ W → y(t) ∈ Y and stable operator D : w(t) ∈ W → u(t) ∈ U
can be invertible. At this time, plant P is said to have a right factorization of N, D−1.

P = ND−1 (3)

2.3.2. Right Coprime Factorization

Suppose there is a right factorization operator N,D in plant P. The Bezout equation is
obtained as follows.

AN + BD = M, ∀ M ∈ U (W, U) (4)

If a stable operator A and a stable and invertible operator B satisfies the above Bezout
Equation (4), then plant P is said to have a right coprime factorization of A, B, N, and D as
shown in Figure 2. The stability of the control system can be guaranteed.

2.3.3. Robust Right Coprime Factorization

In general, there are many uncertainties in an actual nonlinear control system that
are difficult to express in a mathematical model. So, the stability of the nonlinear control
system with uncertainties is no longer guaranteed. Therefore, by constructing a nonlinear
feedback system with robust right coprime factorization, it is possible to analyze robust
stability with uncertainties. The nonlinear feedback system with uncertainties is shown
in Figure 2. Plant P without uncertainties is the nominal plant, and the actual plant with
uncertainties ∆P is P̃ = P + ∆P.

Figure 2. Nonlinear feedback control system with uncertainties. Here, the plant P is a nonlinear
system with uncertainty ∆N, r∗ is the reference input signal.

P̃ = P + ∆P = (N + ∆N)D−1 (5)

A(N + ∆N) + BD = M̃ (6)

A(N + ∆N) + BD = AN + BD = M (7)

‖(A(N + ∆N)− AN)M−1‖Lip < 1 (8)
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If the following inequality (8) is satisfied, M̃ is unimodular. In other words, the
nonlinear feedback system with uncertainties can be said to have robust stability only if (8)
is satisfied.

2.4. Statement Problem

A spiral heat exchanger is a nonlinear system with uncertainties. It is used widely
in industry. In real application, the heated or cooled output temperature should track
a timely reference input temperature in variable load conditions. However, the output
temperature of the spiral heat exchanger is difficult to control for nonlinearity, uncertainties,
and many disturbances. In conventional control methods, a PID controller is used to derive
a good control performance in slow or no disturbances. In real application, there are many
disturbances for the spiral heat exchanger, such as input temperature and flow rate on the
hot-fluid side, input temperature on the cold-fluid side. Thus, due to the disturbances,
control performance is poor in conventional control methods.

3. Fractional-Order System Identification for a Spiral Heat Exchanger by PSO
3.1. Parallel Fractional-Order Model for the Spiral Counter-Flow Heat Exchanger
3.1.1. Fractional-Order Model for the Spiral Counter-Flow Heat Exchanger

According to the law of heat energy balance of two fluids, the fractional-order deriva-
tive model for the spiral-plate counter-flow heat exchanger (See Appendix A) is derived as
follows [31]. 

Dq1
θ Th(θ, t) =

(k + ∆k)FAZ
QL1chρh

(Tc(θ, t)− Th(θ, t)

Dq2
θ Tc(θ, t) =

(k + ∆k)FAZ
QL2ccρc

(Th(θ, t)− Tc(θ, t)

θ ∈ [0, 11π]

(9)

where k = δs
λ , k + ∆k = 1

hh
+ δs

λ + 1
hc

, kc = ccρc, kh = chρh , and ∆T(θ, t) = Tc(θ, t)− Th(θ, t).

A =
√

a2 + b2, and A + ∆A=
√

a2 + (b + a ∗ 11π)2 F ∈ [1, 2], which is related to the
plant of the spiral-plate heat exchanger. ρc, ρh are the densities of the cold fluid and the
hot fluid, respectively. cc, ch are the specific heat capacities of the cold fluid and the hot
fluid, respectively.

3.1.2. Parallel Fractional-Order Model for the Spiral Counter-Flow Heat Exchanger

The parallel fractional-order model for the spiral-plate counter-flow heat exchanger is
described as follows. {

Thk = (∆θ)q1 Dh f rac + BhThk−1

Tck = (∆θ)q2 Dc f rac + BcTck−1
(10)

where Thk, Thk−1, Dh f rac ∈ RN , Bh ∈ RN×N , Tck, Tck−1, Dc f rac ∈ RN , and Bc ∈ RN×N

Thk =


Th(∆θ)

Th(2(∆θ))
...

Th(N(∆θ))

 (11)
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Bh =



−Γ(q1+1)
Γ(2)Γ(q1)

0 . . . 0
Γ(q1+1)

Γ(3)Γ(q1−1)
−Γ(q1+1)
Γ(2)Γ(q1)

. . . 0
...

...
...

...
(−1)N Γ(q1+1)

Γ(N+1)Γ(q1−N+1)
(−1)(N−1)Γ(q1+1)
Γ(N)Γ((q1−N+1) . . . −Γ(q1+1)

Γ(2)Γ(q1)

 (12)

Thk−1 =


Th(0)

Th(∆θ)
...

Th((N − 1)(∆θ))

 (13)

Bc =



−Γ(q2+1)
Γ(2)Γ(q2)

0 . . . 0
Γ(q2+1)

Γ(3)Γ(q2−1)
−Γ(q2+1)
Γ(2)Γ(q2)

. . . 0
...

...
...

...
(−1)N Γ(q2+1)

Γ(N+1)Γ(q2−N+1)
(−1)(N−1)Γ(q2+1)
Γ(N)Γ((q2−N+1) . . . −Γ(q2+1)

Γ(2)Γ(q2)

 (14)

Tck =


Tc(∆θ)
Tc(2∆θ)

...
Tc(N(∆θ))

 (15)

Tck−1 =


Tc(0)

Tc(∆θ)
...

Tc((N − 1)(∆θ))

 (16)

Therefore, the parallel fractional-order derivative model for the spiral-plate counter-
flow heat exchanger is obtained.

Thk = (∆θ)q1
FkZA

QL1chρh
(HTcK−1 − ThK−1) + BhThk−1

Tck = (∆θ)q2
FkZA

QL2ccρc
(HThK−1 − TcK−1) + BcTck−1

Tcout = CTck

(17)

where

H =


0 0 0 . . . 0 1
0 0 0 . . . 1 0
...

...
...

...
...

...
1 0 0 . . . 0 0

 (18)

C =
(

0 0 0 0 . . . 1
)

(19)
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where C ∈ R1×N and H ∈ RN×N . The parallel fractional-order model for the spiral counter-
flow heat exchanger is a model with parallel input data.

3.2. Parallel Fractional-Order Model Identification for the Spiral Heat Exchanger

The schematic block of the parameter estimation for a parallel fractional-order model
of the spiral counter-flow heat exchanger is shown in Figure 3.

Figure 3. The schematic block of parameter estimation for the parallel fractional-order model of the
spiral counter-flow heat exchanger.

The specific parameter estimation steps are follows.

(1) Determine the searched spaces for the estimated model.

Let Kh =
FkZA
chρh

, Kc =
FkZA
ccρc

, then the parallel fractional-order model for the spiral

counter-flow heat exchanger derived from (17) is the model’s identified object as follows.
Thk = (∆θ)q1

Kh
QL1

(HTcK−1 − ThK−1) + BhThk−1

Tck = (∆θ)q2
Kc

QL2
(HThK−1 − TcK−1) + BcTck−1

Tcout = CTck

(20)

The researched space vector is defined as

x = {q1, q2, Kh, Kc} (21)

where Kh, Kc are the model parameters and q1, q2 are the orders of the model. The range of
the model parameter (Kh, Kc) was set to be [0 10], and the range of the model parameter
(q1, q2) was set to be [0 2].

(2) Determine the performance index (evaluation function).

In this paper, the input flow rate of the hot-fluid side QL1, the input flow rate of
the cold-fluid side QL2, the input temperature of the cold-fluid side Tcin, and the input
temperature of the hot-fluid side Thin were introduced as input signals of identified object.
The sum of the squared errors between the output T̂cout and the true value T̂cout,

J =
∫ T

0
[Tcout(t)− T̂cout(t)]2dt (22)

was used as the performance evaluation function.

(3) The parameters of the algorithm are initialized to generate random search vectors.
(4) According to the steps of the PSO algorithm, the parameters in the parallel fractional-

order model are identified.
(5) The iteration is repeated until the performance index is satisfactory or the sum of

iterations go up to a maximum of 200.

The evolutionary curves of the estimated parameters are plotted in Figures 4–7.
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Figure 4. Evolutionary curve of the estimation of Kc.

Figure 5. Evolutionary curve of the estimation of Kh.

Figure 6. Evolutionary curve of the estimation of q2.
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Figure 7. Evolutionary curve of the estimation of q1.

The evolutionary curve of the performance index is plotted in Figure 8.

Figure 8. Evolutionary curve of the performance index.

The comparison of the output value from the identification system and the true value
from the experiment is shown in Figure 9.

Figure 9. Comparison of the output value from the identification system and the true value from
the experiment.
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4. Operator-Based Fractional-Order PID Nonlinear Robust Control for the Spiral
Heat Exchanger

In this section, two control schemes were designed in order to verify the tracking and
antidisturbance performance of the operator-based fractional-order PID nonlinear robust
control of the spiral heat exchanger, as shown Figures 10 and 11.

Figure 10. FOPID controller with operator.

Figure 11. FOPID controller without operator.

4.1. Parallel Fractional-Order Model for the Spiral Heat Exchanger with Uncertainties

The heat transfer coefficient of the spiral heat exchanger plant k̃ is a relationship
between not only the flow velocity of water, but also others. We know that the spiral heat
exchanger model is nonlinear. Therefore, the spiral heat exchanger model is nonlinear
system with uncertainties. The nonlinear fractional-order equations for the spiral heat
exchanger model are described as follows.

Thk = (∆θ)q1
Kh

QL1
(HTcK−1 − ThK−1) + BhThk−1

Tck = (∆θ)q2
Kc

QL2
(HThK−1 − TcK−1) + BcTck−1

Tcout = CTck

(23)
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Thk = (∆θ)q1

(k + ∆k)ZA1

QL1chρh
(HTcK−1 − ThK−1) + BhThk−1

Tck = (∆θ)q2
(k + ∆k)ZA2

QL2ccρc
(HThK−1 − TcK−1) + BcTck−1

Tcout = CTck

(24)

k =
δs

λ
(25)

where ∆k are the uncertainties for the spiral heat exchanger.

4.2. Operator-Based Controller Design

In Figure 2, we show an operator nonlinear control system, where operators V and Y
are the input and output spaces of this plant. Let (N, D) be the right factorization of P. The
feedback nonlinear control system shown in Figure 2 is BIBO stable if there exist two stable
operators A: Y→ V, B: V→ V (B is also invertible) satisfying Bezout’s identity equation.

AN + BD = M (26)

where M is a unimodular operator. Considering the uncertain term in the nonlinear system,
with the designed operators A and B in Figure 2, the following equation could be satisfied.

‖A((N + ∆N)− AN)M−1‖Lip < 1 (27)

where ‖ • ‖Lip is a Lipschitz norm. Then, the nonlinear feedback control system has robust
stability and M is a unimodular operator. The mathematical modeling P̃ considering the
uncertain term ∆P can be given for the the spiral heat exchanger system as follows.

P : 
Thk = (∆θ)q1

kZA1

QL1chρh
(HTcK−1 − ThK−1) + BhThk−1

Tck = (∆θ)q2
kZA2

QL2ccρc
(HThK−1 − TcK−1) + BcTck−1

Tcout = CTck

(28)

Ks :

Thk−1 =


0 0 . . . 0 0
1 0 . . . 0 0
0 1 . . . 0 0
...

...
...

...
...

0 0 . . . 1 0

Thk +


1
0
0
...
0

Thin (29)

Tck−1 =


0 0 . . . 0 0
1 0 . . . 0 0
0 1 . . . 0 0
...

...
...

...
...

0 0 . . . 1 0

Tck +


1
0
0
...
0

Tcin (30)

where Z−1 denotes a time delay of one sample period.
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P + ∆P : 
Thk = (∆θ)q1

(k + ∆k)ZA1

QL1chρh
(HTcK−1 − ThK−1) + BhThk−1

Tck = (∆θ)q2
(k + ∆k)ZA2

QL2ccρc
(HThK−1 − ITcK−1) + BcTck−1

Tcout = CTck

(31)

The plant can be right-coprime-factorized as follows.
N + ∆N : W → Y

Tck = (∆θ)q2
(k + ∆k)ZA2

QL2ccρc
(Hw− TcK−1) + BcTck−1 (32)

D−1 : V →W

w = (∆θ)q1(
kA1Z

QL1chρhδh
(HTcK−1 − ThK−1)) + BhThk−1 (33)

The operator-based feedback control system is shown in Figure 10. The operators A
and B were designed as follows.

A : Y → V

b = (1− Kp)H−1[Tck−1 +
QL2ccρc

(∆θ)q2 ZkA2
(T̂ck − BcTck−1)] (34)

T̂ck =
Tcout

Tck(end)
Tck (35)

B−1 : V → V

QL1 = (∆θ)q1 kp
ZkA1(HTcK−1 − ThK−1)

chρh(e− BhThk−1)
(36)

Operators A and B−1 were designed to satisfy the Bezout identity and kp is the gain to
be determined.

‖A((N + ∆N)− AN)M−1‖Lip < 1 (37)

4.3. Fractional-Order Tracking Controller Design

The differential equation of fractional-order controller PIλDδ is described as follows.

q(t) = Kp1e(t) + KiD−λ
t e(t) + KdDδ

t e(t) (38)

It is obvious that the fractional-order controller not only need three parameters Kp1, Ki,
and Kd, but also two orders λ, δ of integral and derivative controller. The orders λ, δ
are not necessarily integers, but any real numbers. As shown in Figure 12, the FOPID
(fractional-order PID) controller generalizes the conventional integer-order PID controller
and expands it from a point to a plane. This expansion could provide much more flexibility
in PID controller design.
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Figure 12. PID controller with the fractional orders.

5. Parameter Optima for Fractional-Order PID Controller

The specific parameter estimation steps were follows.

(1) Determine the searched spaces for the fractional-order PID controller.

The researched space vector was defined as

x = {Kp, Ki, Kd, λ,µ} (39)

where Kp, Ki, Kd are the gains and λ, µ are the orders. The range of the model parameter
(Kp, Ki, Kd) was set to be [0 100], and the range of the model parameter (λ, µ) was set to
be [0 1].

(2) Determine the performance index (evaluation function).

For determining the optimum values of the gains of the controller, the integral of time
multiplied by the absolute value of the error (ITAE), the integral of the absolute value of
the error (IAE), the integral of time multiplied by the squared error (ITSE), and the integral
of the squared error (ISE) were taken as objective functions. The expression for these error
functions are given below:

ITAE =
∫ T

0
t|Tcr(t)− Tcout(t)|dt (40)

IAE =
∫ T

0
|Tcr(t)− Tcout(t)|dt (41)

ITSE =
∫ T

0
t(Tcr(t)− Tcout(t))2dt (42)

ISE =
∫ T

0
(Tcr(t)− Tcout(t))2dt (43)

where Tcout is the output temperature, Tcr is the reference input temperature, and T is
the time range of the simulation. In this paper, The ITSE was used as the performance
evaluation function.

(3) The parameters of the algorithm are initialized to generate random search vectors.
(4) According to the steps of the PSO algorithm, the parameters of fractional-order PID

controller are identified.
(5) The iteration is repeated until the performance index is satisfactory or the sum of

iterations is maximal.
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The evolutionary curves of the estimated parameters are plotted in Figures 13–16. The
evolutionary curves of the performance index are plotted in Figures 17 and 18.

Figure 13. Evolutionary curve of estimated parameters (Kp, Ki, Kd) for FOPID controller
with operator.

Figure 14. Evolutionary curve of estimated parameters (λ, µ) for FOPID controller with operator.

Figure 15. Evolutionary curve of estimated parameters (Kp, Ki, Kd) for FOPID controller without operator.
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Figure 16. Evolutionary curve of estimated parameters (λ, µ) for FOPID controller without operator.

Figure 17. Evolutionary curve of the performance index for FOPID controller with operator.

Figure 18. Evolutionary curve of the performance index for FOPID controller without operator.

6. Analysis of Performance on Tracking and Antidisturbances for the Spiral Heat
Exchanger with Disturbances

In this section, the performance of the temperature control system for the spiral heat
exchanger is analyzed. Two control schemes were simulated as shown in Figures 10 and 11.
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6.1. Tracking Performance for the Spiral Heat Exchanger with Disturbances

In the simulation, a reference input signal Tr was decreased from 35 °C to 30 °C in 20 s;
then, the reference input signal Tr was up to 35 °C. Figure 19 shows the operator-based
fractional-order PID control scheme has better tracking performance than the fractional-
order PID control scheme without operator. There is a small overshoot and a short
settling time.

Figure 19. Tracking performance for the fractional-order spiral counter-flow heat exchanger.

6.2. Antidisturbance Performance for the Spiral Heat Exchanger

In real application, if the input flow rate of the hot-fluid side QL1 is as control input,
then the input temperature of the cold-fluid side Tcin, the input temperature of the hot-fluid
side Thin, and the input flow rate of the cold-fluid side QL2 are three disturbances of the
heat exchanger.

In the simulation, the disturbance signal Tcin was decreased from 20 °C to 15 °C
in 20 s, Thin was decreased from 50 °C to 45 °C in 20 s, and QL1 was decreased from
5 L/Min to 3 L/Min in 20 s. Figures 20–22 show the operator-based fractional-order PID
control scheme has better antidisturbance performance than the fractional-order PID control
scheme without operator.

Figure 20. Antidisturbance performance to the input temperature of cold-fluid side.
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Figure 21. Antidisturbance performance to the input temperature of the hot-fluid side.

Figure 22. Antidisturbance performance to the input flow rate of cold-fluid side.

7. Conclusions

This paper proposed operator- and fractional-order-based nonlinear robust control
for a spiral counter-flow heat exchanger described by a parallel fractional-order model
in order to improve the tracking performance and antidisturbance ability. The parallel
fractional-order model for the spiral counter-flow heat exchanger was identified by PSO
and the parameters of the fractional-order PID controller were optimized by PSO. First, the
parallel fractional-order mathematical model for the spiral heat exchanger plant was identi-
fied by PSO. Second, the operator controller for the spiral heat exchanger was designed
under the identified parallel fractional-order model and a compensator was designed to
reduce disturbance. Third, the parameters of the operator- and fractional-order-based
PID controller were optimized by PSO. The tracking and antidisturbance performances
of the control system were analyzed. Finally, comparisons of two control schemes were
performed, and their effectiveness was illustrated.
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the work. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.
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Appendix A. A Spiral Heat Exchanger Plant

A spiral-plate heat exchanger plant is shown in Figure A1. A spiral heat exchanger
has many merits such as the ability to conduct a high-efficient heat exchange, a small size
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compared to other heat exchangers, and having a self-cleaning action. As seen in Figure A2,
a spiral heat exchanger has a spiral inner structure.

A heat spiral exchanger is an excellent process equipment, but it is difficult to obtain
an accurate model due to a complex inner structure. Conventional methods such as the
logarithmic mean temperature difference method, cannot obtain good control results. Another
approach was conducted in [13], but the obtained model was too complex to design a controller
based on the model. Therefore, this study introduced a new model for a spiral-plate heat
exchanger to design the proposed controller. This modeling is one of our novelties. This
section concretely explains the proposed method. Figure A2 shows the inner structure of the
spiral-plate heat exchanger. In this study, the inner structure in Figure A2 was divided into a
microvolume. The modeling considered the heat balance of the high temperature fluid and the
low temperature fluid, respectively.

Figure A1. A spiral heat exchanger plant. Mini Spiral is a super compact spiral heat exchanger from
Kurose Chemical Equipment Co., Ltd. in Japan. Design pressure is 0.6 MPaG. Design temperature is
185 ◦C. Material (JIS) is SUS316.

Figure A2. The inner structure for a spiral heat exchanger.
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r = b− a · θ, θ ∈ [0, 11π] (A1)

The parameters of a spiral heat exchanger are denoted in Table A1.

Table A1. Parameters of a spiral heat exchanger.

Meaning (Symbol) Value

Spiral function’s parameter (a) 0.005
π m/rad

Initial radius in high-temperature side (b) 0.08 m
Width of the flow channel (δh, δl) 0.005 m

Height of the spiral heat exchanger (Z) 0.011 m
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