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Abstract: Spiral waves are an intriguing phenomenon that can be found in a variety of chemical and
biological systems. We consider the fractional-order resistor–capacitor shunted Josephson junction
chaotic oscillator to investigate the spiral wave pattern. For a preliminary understanding, we look
at the dynamics of isolated FJJs and show that infinitely coexisting periodic and chaotic attractors
depend on the fractional order. In addition, we perform bifurcation analysis to show the dynamical
transition of the attractors as a function of fractional order and basin stability analysis to show the
infinitely coexisting attractors. This is followed by the existence of spiral waves which is observed
under various intrinsic and extrinsic system parameters. Finally, the impact of noise on SW is also
analyzed by dispersing it to the entire stimulation period or defined time-period.

Keywords: Josephson junction; fractional-order; bifurcation; collective dynamics

1. Introduction

Fractional-order (FO) systems can be found in many fields of science, including
physics, electronics, biology, and engineering [1–3]. Hence, a wide range of studies have
been conducted in recent years to better understand the dynamics of FO systems. From
earlier reports, it has been revealed that fractional order (non-integer order) systems can
more effectively mimic the real-time dynamics than integer order systems [1,2]. In addition,
researchers have discovered that FO models are the most effective tool for examining
memory effects and the genetic characteristics of biological systems [4–6]. Furthermore,
the FO calculus can improve the accuracy and flexibility of computations and has applica-
tions in computation optimization and control performance [6–8]. As a result, there has
been an increase in interest in studying FO-induced dynamical behaviors in recent years;
many nonlinear systems can be modeled and studied as FO systems. Synchronization
and chimera have been observed in FO neurons, including Hindmarsh–Rose (HR) and
FitzHugh–Nagumo (FHN) neurons, depending on the fractional derivative and coupling
strength [9–11]. Various spiking and bursting patterns have been reported using the re-
alistic biological Izhikevich model [12]. Furthermore, under electromagnetic radiation,
adaptive synchronization has been observed in FO HR neurons [13]. The occurrence of
synchronization has also been demonstrated by extending the multiplex FO network [14].

On the other hand, the Josephson junction is a critical component in superconduct-
ing electronics (SCE) that is typically developed by separating two superconductors by
extremely thin non-superconducting layers [15]. Due to the thin insulating barrier, the
electrons could easily travel from one superconducting layer to the next. This is known as
Josephson tunneling [16]. Since then, the JJ has had a wide range of applications in imple-
menting SCE devices in advanced technologies [17]. As a result, the JJ plays a crucial role in
employing the different SC devices including SQUIDS, superconducting qubits, radiation
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detectors, rapid single flux quantum (RSFQ), a digital electronic device, etc. [18–21]. In
addition, based on the application, several kinds of JJ have been implemented which in-
clude resistively shunted junctions (RSJ), resistive and capacitive shunted junctions (RCSJ),
resistive-capacitive-inductance shunted junctions (RCLSJ), and periodically modulated
Josephson junctions (PMJJ) (PMJJ). Originally, the existence of chaos and intermittent
chaos was demonstrated using RSJ [22–24]. Subsequently, the periodic-to-chaotic transi-
tion and coexisting chaotic attractor with phase-locking conditions were reported using a
RCSJ [25,26]. This has been followed by the synchronization and control of chaos which
were achieved using nonlinear-RCLSJ with DC bias [27,28]. Eventually, distinct slow–
fast dynamics have been detected when replacing the nonlinear resistance with linear
resistance [29]. The significance of a commensurate fractional derivative was investigated
using FO chaotic no equilibrium linear-RLCSJ and demonstrated synchronization with
applications in digital cryptography [30].

In addition to the foregoing, the spiral wave is a remarkable spatiotemporal pattern
compared to the other dynamical behaviors [31–34] found in many excitable chemical and
biological systems [35–39]. The spiral wave pattern was first detected in the Belousov–
Zhbotinsky (RZ) reactions [40]. Subsequently, the investigation of the spiral waves has
received increasing attention over the years. As a result, it has been studied in a variety
of map-lattices, neuronal systems, chaotic systems, and many other systems [41–43]. For
instance, the formation of different spiral wave patterns such as periodic, banded, and do-
main patterns has been discovered using a 2D lattice of sine-circle maps [44]. Furthermore,
the spiral wave chimera where the occurrence of asynchronous behavior at the core of the
ordered spiral waves has been realized in a large population of chemical oscillators [45].
Such spatio-temporal patterns were also observed in nonlocally coupled Fitzhugh–Nagumo
systems [46], as well as regular and fractal adaptive exponential integrate-and-fire (AEIF)
neurons [47]. As a result of the inter-layer coupling interaction, the multilayer networks of
the Fitzhugh–Nagumo neural networks also exhibit a spiral wave in one layer and a homo-
geneous state in the other layer [48]. Furthermore, the occurrence of spiral waves has also
been demonstrated using an FO discrete neuron map and memristor-based hyperchaotic
system [49,50]. Furthermore, the suppression mechanism for the spiral waves has been
described using impulse triggering [50]. Motivated by the aforementioned findings, we
investigate the dynamics and properties of the FO resistor–capacitor shunted Josephson
junction chaotic oscillator. Furthermore, the emergence of spiral waves in FO JJ is still
unknown and has not been thoroughly investigated in FJJ. To do so, we examine whether
the lattice network FJJ can exhibit a spiral wave pattern. If so, what are the influences of
other parameters such as external stimulus amplitude and coupling strength? To respond
to the foregoing, the dynamics of the FJJ are examined, and it is discovered that the local
dynamics exhibit infinitely coexisting periodic and chaotic attractors. We also show that,
depending on the fractional-order and coupling strength, network dynamics can exhibit a
spiral wave pattern.

Furthermore, noise is ubiquitous and can inevitably exist in many practical sys-
tems [51,52]; a wide range of studies have been conducted in the literature to explore
the impacts of noise in dynamical systems. In particular, state-dependent noise is used
to suppress chaos in fractional order chaotic systems [53]. Furthermore, noise-induced
and enhanced complete synchronization were found in FO chaotic systems [54]. It has
been shown that noise can enhance the oscillatory behavior of FO parametrically driven
nonlinear systems [55]. We analyze the influence of noise in FJJO by giving it during a fixed
time period and the entire simulation time period to study the impact of noise on spiral
waves because of its importance in FO systems.

The remaining sections of the article are as specified: Section 2 introduces the proposed
model of FJJ oscillators. Section 3 discusses the dynamical behaviors of the considered FJJ
using bifurcation analysis. Furthermore, the infinite coexistence of periodic and chaotic
attractors is illustrated using a basin of attraction. The corresponding network dynamics of
FJJ are detailed in Section 4. We specifically explore the influence of various parameters
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such as external force amplitude, coupling strength, and d on the occurrence of spiral wave
patterns. Subsequently, we address the influence of Box–Muller noise on SW by dispersing
it throughout the whole simulation period or a specified time-period in Section 5. Finally,
the findings will be summarized in Section 6.

2. Fractional-Order JJ Oscillator (FJJO)

In [56], the authors discussed a simple autonomous chaotic oscillator with a Josephson
junction resonator and an inductor, a capacitor, and an amplifier. The authors have shown
the various dynamical properties of the oscillator and interestingly, the oscillator exhibits
multiple coexisting attractors. It should be noted that the oscillator in [56] is an integer
order circuit, but as it was in [57], the authors have shown the effectiveness of the fractional
order analysis of circuits with electrical components such as active semiconductor devices,
capacitors, and inductors. Hence, we investigate the fractional-order model of the oscillator
in Figure 1, and we have shown the modified circuit with fractional-order capacitor and
inductor [58] along with a fractional-order Josephson junction resonator.

Figure 1. Circuit diagram of the resistor–capacitor shunted Josephson junction chaotic oscillator. The
fractional order Josephson Junction and junction capacitor, respectively, are denoted by the symbols
J Jq and Cq

J . The fractional order inductor and capacitor are designated as Lq and Cq, respectively. R1,
R2 and RJ are resistors.

Applying KCL and KVL to the circuit shown in Figure 1 and by considering the phase
difference between the semiconductor in the FJJ, voltage across the FJJ, voltage across the
capacitor and current through the inductor as the four states, the dynamical equations are
derived as

dqx
dtq = VJ ,

Cq
J

dqVJ

dtq = IL −
VJ

RJ
− IJ sin(x),

Cq dqVc

dtq = IL,

Lq dq IL
dtq = ((K− 1)R1 − R2)IL − (VJ + Vc). (1)

To derive the dimensionless model of (1), we use the states as Vj = y, Vc = z, IL = Cq
J w

and the parameters as a = Ic
Cq

j
, b =

Cq
j

Cq , c = −((K−1)R1−R2)
Lq , d = 1

Cq
j Lq , α = 1

RjC
q
j
. Using

these assumptions, the dimensionless model of (1) is derived as
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dqx
dtq = y,

dqy
dtq = w− αy− a sin(x),

dqz
dtq = bw,

dqw
dtq = cw− d(y + z), (2)

From Equation (1), we consider the parameters as defined in Equation (3) for our
simulations unless otherwise specified.

α = 1.18, a = 0.25, b = 0.08, c = 0.17, d = 0.31. (3)

The initial value problem of system (2) is achieved using the predictor–corrector
scheme of the Adams–Bashforth–Moulton (ABM) method [59,60] In order to do so, we
consider a generalized form of the FO differential equation, which can be written as

Dqu(t) = f (t, u(t)), 0 ≤ t ≤ T, (4)

where uj(0) = uj
0, j = 0, 1, ...,

⌈
q
⌉
− 1. The solution of Equation (4) can be written as a

Volterra integral form, as given below

u(t) =

⌈
q
⌉
−1

∑
j=0

uj
0

tj

j!
+

1
Γq

∫ 1

0

f (τ, u)
(t− τ)1−q dτ. (5)

The numerical solution of Equation (4) is obtained for with n = 0, 1, 2, ..., N. N is an
integer and h is the stepsize h = T/N. The discrete form of Equation (5) for the corrector is
obtained as

uh(tn+1) =
q−1

∑
N=0

uN
0

tN

N!
+

hq

Γq + 2
f (tn+1, up

h(tN+1)) +
hq

Γ(q + 2)

n

∑
k=0

(ak,n+1 f (tk, uh(tk))), (6)

where

ak,n+1 =


nq+1 − (n− q)(n + 1)q, k = 0,
(n− k + 2)q+1 + (n− k)q+1 − 2(n− k + 1)q+1, 1 ≤ k ≤ n,
1, k = n + 1.

(7)

Furthermore, the predictor can takes the form

up
h(tn+1) =

n−1

∑
j=0

uj
0

tj

j!
+

1
Γq

n

∑
k=0

bk,n+1 f (tk, uh(tk)), (8)

where bk,n+1 is obtained as

bk,n+1 =
hq

q
((n + 1)− j)q − (n− kq). (9)

The system variables of Equation (2) are discretized using Equations (6)–(8) to obtain
the numerical solutions.
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3. Dynamical Behavior and Its Transitions of FJJO

The dynamical behavior of the system (2) is investigated in the following subsections
using phase portrait trajectory, bifurcation analysis, and basin stability analysis.

3.1. Infinitely Coexisting Periodic and Chaotic Attractors

For a primary understanding of the dynamical behavior of FJJO, we plotted the phase
portrait trajectory of the observed attractors in Figure 2 by fixing the FO as q = 0.98. It
is noticeable that the (x, y) plane has infinitely many attractors. Distinct colors represent
different attractors for various initial conditions. We observed a few periodic attractors
coexisting with chaotic attractors, while prior studies have shown that chaotic attractors
can coexist with torus attractors alone [61,62]. As a result, the coexistence of periodic
and chaotic attractors that we observed here is interesting and has yet to be reported in
the literature.

Figure 2. Phase portrait trajectory of infinitely coexisting attractors for the fractional order q = 0.98
and initial conditions (x0, 0, 0, 0) with x0 varying between −30 and +30 for an increment of 5. We
can notice the existence of several periodic attractors with chaotic attractors.

3.2. Stability of the Equilibrium Points

To determine the stability, we find the equilibrium points that correspond to Equation (2),
which is given as E = (sin−1(0), 0, 0, 0) where sin−1(0) = nπ and n is an integer. The
obtained fixed points imply the existence of an infinite number of equilibrium points. The
observed equilibrium points are stable when the following criterion is satisfied.

|arg(λj)| >
qπ

2
, j = 1, 2, 3, ... (10)

where (λj) j ∈ 1, 4 are the eigenvalues of the characteristic equation det(diag(λq
1, λ

q
1,

λ
q
2, λ

q
3, λ

q
4)− JE) = 0, where q is the commensurate fractional-order and JE is the Jacobian at

the equilibrium point. Using the above condition (given in Equation (9)), we demarcated the
stability region by varying the parameter a and initial state x0 with respect to the fractional-
order q in Figure 3. In (q, a) space, the increasing stability area while the parameter a
reduces is noticeable. As illustrated in Figure 3 (left plot), the occurrence of stable and
unstable regions switches depending on the value of x0, and it becomes fully unstable
beyond a certain fractional order threshold.
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Figure 3. The stability of the equilibrium points of the FJJ oscillator with the left plot showing the
stability for q versus and a the right plot for q versus x0.

3.3. Dynamical Transitions through Bifurcation Analysis

Furthermore, the dynamical transitions of FJJO are analyzed through a one-parameter
bifurcation diagram using the local maxima of the variables as illustrated in Figure 4. Firstly,
the zmax is portrayed as a function of a in Figure 4. When increasing the magnitude of a,
we can observe the transition from periodic to chaotic through the period doubling (PD)
route (see right plot). Following that, the one-parameter bifurcation diagram is plotted by
varying the fractional order q and finding the local maxima of the x variable in Figure 4
(left plot). It is clear that increasing fractional-order leads to a chaotic attractor from periodic
attractor via period-doubling.

Figure 4. One parameter bifurcation diagram for zmax as a function of a (left plot) and xmax as a
function of fractional order q (right plot).

The bifurcation diagram is shown by varying the initial state of the x-variable (i.e., x0),
to demonstrate the infinitely coexisting attractors. The attractor basin is obtained by
providing the chosen range of the initial state as an equilibrium point of a variable. The
shifting of the attractor basins as a function of the initial states is evident from Figure 5
(left plot). For a more clear understanding of the coexisting attractors, we plotted the basin
of attraction by varying the initial state of x0 and y0. Depending on the initial state values
of x0 and y0, the basins of each attractor shift from one attractor to the other as shown in
Figure 5 (right plot). As a result, the coexistence of infinite attractors based on the initial
states is evident in Figure 5.
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Figure 5. The bifurcation of different attractors as a function of initial state x0 (left plot). Basin of
attraction by varying the initial state of (x0, y0) for q = 0.98 (right plot). The distinct colors represent
the basins for different attractors.

From the observation, it is clear that the isolated FJJO can produce infinitely coexisting
periodic and chaotic attractors with respect to the fractional orders. The dynamical behavior
of the FJJO network is further discussed below by extending it to a two-dimensional array.

4. Network of FJJ and Its Collective Dynamics

In addition, we extend our analysis to the network FO-resistor–capacitor shunted
Josephson junction, and the corresponding dynamical equation for a two-dimensional array
of FJJ with nearest-neighbor interaction can be written as

dqxi,j

dtq = yi,j + G(t)βij + D(xi+1,j + xi−1,j + xi,j+1 + xi,j−1 − 4xi,j) + η(t)

dqyi,j

dtq = wi,j − αyi,j − a sin(xi,j),

dqzi,j

dtq = bwi,j,

dqwi,j

dtq = cwi,j − d(yi,j + zi,j). (11)

Here, we considered the 2D lattice network with i, j = 1, 2, ..., N—where N is the
number of nodes in a lattice array that can take the value N = 100. D is the coupling
strength. η(t) is the Box–Muller noise defined as η(t) = (−4δ

∆t ln(c1)) 0.5 cos(2πc2) where c1
and c2 are randomly chosen between [0, 1], δ is the variance of the noise and ∆t is the step
size. G(t) = A sin(ωt), which represents external periodic stimuli, is applied at the center
of the node. If i = j = 75 then βij = 1, the periodic stimulus is applied, otherwise βij = 0,
and the periodic stimulus is not applied. Here ω denotes the frequency of the external
stimuli, which is set to ω = 0.001. The collective dynamical behavior of the system (4) is
explored by computing the energy of each node in the lattice network, as detailed below.

Impact of Distinct Intrinsic and Extrinsic Parameters in a Network of FJJ

We first demonstrate the formation of spiral wave patterns in a network of FJJ by
determining the energy of each node for different values of external stimulus amplitude (A)
in Figure 6. For A = 0.001, it is evident that the nodes are in lower and higher intensities.
Such heterogeneity in energy levels confirms the presence of SW. Analogously, SW patterns
can also be noticed when A is increased to A = 0.01, A = 1.0, and A = 5.0. If the amplitude
of external forcing is raised to A = 10, all the nodes experience lesser intensity due to energy
dissipation. As a result, we witnessed SW disappear with lesser intensity plane waves.
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Figure 6. The energy of each node in a lattice network of FJJ by fixing different values of the amplitude
of external stimulus (A). Other parameter values are fixed as D = 1.0, q = 0.98, d = 0.31, and δ = 0.0.

We exemplified the energy of each node in Figure 7 by setting different coupling
strengths to explore the influence of coupling strength on the occurrence of the SW. If the
coupling strength is minimal for D = 0.1, the energy spread occurs just in a portion of the
array of nodes, while the remaining remains at rest. As a result, the partial nodes exhibit
the SW pattern while the other nodes are in the rest state. Furthermore, we can observe
the spread of dynamics over the entire array while the coupling strength is increased to
D = 0.3. As the coupling strengths are raised to D = 0.5, 0.7, and 0.9, a spiral wave with
several arms appears. Furthermore, we discovered a more prominent spiral wave pattern
when the coupling strength is increased to D = 1.0.

Figure 7. The energy of a network of FJJ by fixing different values of coupling strength (D). Other
parameter values are defined as A = 5.0, q = 0.98, d = 0.31, and δ = 0.0.

The dynamical behavior of the system (4) is further examined by changing the value
of d in Figure 8. When d = 0.25, we determined that the onset of SW occurs with hetero-
geneous lower intensity nodes, while the remaining nodes are in a lower intensity rest
state, implying that the energy is dispersed across just a portion of the nodes. A spiral
wave with multiple arms arises when the parameter value is raised to d = 0.3. At d = 0.35,
increasing the value of d further decreases the arms and generates turbulent behavior.
Under turbulent conditions, a low-intensity traveling wave can also be detected.
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Figure 8. The energy of a network of FJJ by fixing d = 0.25, d = 0.3, d = 0.32, and d = 0.35. Other
parameter values are defined as D = 1.0, A = 5.0, q = 0.98, and δ = 0.0.

5. Impact of Box–Muller (BM) Noise in a Network of FJJ

In the following, we looked at the influence of BM noise [51,52] on observed SW
in the array of FJJ by distributing it in two distinct ways. Firstly, the behavior of the
network is analyzed by distribution noise throughout the simulation time. Subsequently,
the noise is applied only between 500–700 s times. The observed outcomes are described in
detail below.

5.1. Noise Applied for the Entire Simulation Time Period

The influence of noise is investigated by setting the parameter at SW and fixing
different values of the variance of BM noise. At extremely low variance values, δ = 0.0001,
there is not much effect on SW behavior. Furthermore, the SW retains its behavior when
the variance is raised to δ = 0.01, δ = 0.1, and δ = 1. When the BM noise variation is raised
further, a spiral wave with multiple arms forms for δ = 5. At larger variance δ = 10, the
spiral waves are suppressed, resulting in the creation of two different zones with varying
intensities. The first zone has nodes with greater intensities than the second zone, which
comprises nodes with lower intensities shown in Figure 9.

Figure 9. The energy of a network by fixing the variance of the BM noise as different values,
δ = 0.0001, δ = 0.01, δ = 0.1, δ = 1, δ = 5, and δ = 10. Other parameter values are defined as
D = 1.0, A = 5.0, q = 0.98, and d = 0.31.
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5.2. Noise Applied for a Specific Time Period between 500 and 700 s

In addition, we examined the influence of noise on the SW pattern by applying the
noise only for a defined time period of 500–700 s, as compared to the earlier research, in
which the noise was distributed throughout the simulation. Figure 10 strongly demonstrates
that a spiral wave exists for the noise variance δ = 0.0001 and δ = 0.001. The number of
arms in the spiral waves increased when the variance is increased to δ = 0.01, resulting
in multi-arm spiral waves. We also noted that the suppression of SW as the variance is
increased to δ = 0.03. Furthermore, the lattice array shows two distinct zones for δ = 0.05,
one with high-intensity nodes and the other with low-intensity nodes.

Figure 10. The energy of a network by fixing the variance of the BM noise as different values,
δ = 0.0001, δ = 0.01, δ = 0.1, δ = 1, δ = 5, and δ = 10. Other parameter values are same as
in Figure 9.

Based on the observations, it is clear that the considered FJJ can exhibit neuron-like
dynamics in the form of a coexisting periodic and chaotic attractor as well as a spiral wave
pattern depending on various factors such as fractional-order, coupling strength, amplitude
of external periodic external stimuli, and noise intensity.

6. Conclusions

In this study, we considered the fractional-order resistor–capacitor shunted Josephson
junction to investigate the local and network dynamics with respect to the fractional-order.
We discovered that the considered system has infinitely coexisting chaotic attractors inter-
spersed with a few periodic attractors depending on the FO. Furthermore, the dynamical
transitions of the attractors were investigated using bifurcation analysis, and the existence
of infinitely coexisting attractors was validated using a basin of attraction. As a function of
fractional order, the bifurcation transition portrayed the transition from periodic attractor
to chaotic attractor via period-doubling route. More significantly, we extended the study to
the FJJ network by considering the 2D lattice array of JJ and demonstrated the influence
of several parameters such as amplitude external forcing, coupling strength, and d. We
found that the formation of spiral waves by fixing different values of the amplitudes of
external stimulus (A) which suppresses further when increasing A to larger values. We
also identified that the sufficient strength of coupling strength and the magnitude of d was
essential for the formation of SW over the entire nodes in the lattice. Finally, the impact
of BM noise was addressed by employing it in two distinct ways. First, the SW dynamics
were investigated by dispersing noise throughout the simulation. It was further examined
by dispersing it at specific time intervals. By comparing the two cases, it was shown that
providing noise just for a specific time interval can suppress the SW at lower noise variance
values than applying noise throughout the whole simulation, which suppresses the SW at
higher magnitudes of variance. Thus, we believe that the obtained results may shed light on
the dynamics of JJ in superconducting electronic devices, particularly in the implementation
of superconducting quantum computing and superconducting switching devices.
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