
Citation: Fadhil, H.M.; Abdullah,

M.N.; Younis, M.I. TWGH: A

Tripartite Whale–Gray Wolf–

Harmony Algorithm to Minimize

Combinatorial Test Suite Problem.

Electronics 2022, 11, 2885. https://

doi.org/10.3390/electronics11182885

Academic Editors: Laith Alzubaidi,

Jinglan Zhang, Ye Duan and Jose

Santamaria

Received: 14 July 2022

Accepted: 3 September 2022

Published: 12 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

TWGH: A Tripartite Whale–Gray Wolf–Harmony Algorithm
to Minimize Combinatorial Test Suite Problem
Heba Mohammed Fadhil 1,2,* , Mohammed Najm Abdullah 1 and Mohammed Issam Younis 3

1 Department of Computer Engineering, University of Technology, Al Wihda 10075, Iraq
2 Department of Information and Communication, Al-Khwarizmi College of Engineering,

University of Baghdad, Al Jadriya 10070, Iraq
3 Department of Computer Engineering, College of Engineering, University of Baghdad, Al Jadriya 10070, Iraq
* Correspondence: ce.19.15@grad.uotechnology.edu.iq or heba@kecbu.uobaghdad.edu.iq

Abstract: Today’s academics have a major hurdle in solving combinatorial problems in the actual
world. It is nevertheless possible to use optimization techniques to find, design, and solve a genuine
optimal solution to a particular problem, despite the limitations of the applied approach. A surge
in interest in population-based optimization methodologies has spawned a plethora of new and
improved approaches to a wide range of engineering problems. Optimizing test suites is a com-
binatorial testing challenge that has been demonstrated to be an extremely difficult combinatorial
optimization limitation of the research. The authors have proposed an almost infallible method
for selecting combinatorial test cases. It uses a hybrid whale–gray wolf optimization algorithm in
conjunction with harmony search techniques. Test suite size was significantly reduced using the
proposed approach, as shown by the analysis of the results. In order to assess the quality, speed,
and scalability of TWGH, experiments were carried out on a set of well-known benchmarks. It was
shown in tests that the proposed strategy has a good overall strong reputation test reduction size and
could be used to improve performance. Compared with well-known optimization-based strategies,
TWGH gives competitive results and supports high combinations (2 ≤ t ≤ 12).

Keywords: combinatorial testing; whale optimization algorithm; harmony search algorithm; grey
wolf optimization; evolutionary algorithms; metaheuristics algorithms; test suite optimization;
software testing

1. Introduction

In order to avoid customer complaints, software testing ensures that products meet the
user’s needs. For example, failure to conduct enough testing at any stage of the software
development lifecycle may result in the loss of critical data [1]. An optimal solution to
a discrete, well-defined problem is sought using combinatorial methods. Combinatorial
optimization problems are difficult to solve analytically because of their NP-completeness,
and an accurate search may degenerate into complete enumeration. Given the constraints
of time and resources, a thorough enumeration is practically impossible [2].

For interaction test generation (or t-way), the combinational optimization problem is
addressed in this study (where t indicates the combination degree). In order to determine
the most optimal test cases for the needed interaction in vast lists of values, numerous
research methodologies (in the form of t-way strategies) have been created in recent years.
As a result, there are numerous PC-based (pure computation) solutions. Current techniques
have some drawbacks; however, they are prone to local minimums using simulated an-
nealing and hill climbing strategies. Recent empirical findings in [3] suggest that higher
combination degrees of t > 6 are appropriately required to assess highly interconnected
and interacting computer programs. As a result, a combined degree is considered to be
limited [4,5].
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In such cases, conventional optimization methods cannot achieve the requirements for
speed and accuracy. When compared to conventional approaches, metaheuristic algorithms
are often capable of providing the best possible solution. In addition to being easy to
implement, these algorithms are also capable of avoiding local optima. This set of algo-
rithms was designed to tackle high-dimensional and complicated problems and produce
high-quality results quickly. For example, they use concepts from the study of neurological
systems, statistical mechanics, evolutionary biology, and intelligent problem solving to
support their theories. Metaheuristic algorithms can be separated into groups based on
the usual wonders they follow, such as evolutionary, physics-based, swarm-insight-related,
and human-conduct-related. As a result of this, experts around the world are constantly
looking for new ways to improve the existing methods [6].

Metaheuristics algorithms can be divided into two groups based on these criteria:
population-based (e.g., swarm intelligence, evolutionary algorithms) and single-solution-
based (e.g., local search and simulated annealing). It is important to strike a healthy balance
between these two objectives. In order to attain this equilibrium, a hybrid model can be
used, combining at least two techniques to improve each technique’s effectiveness. It is
the goal of this research to leverage the recently proposed whale optimization algorithm
(WOA), gray wolf optimization (GWO), and harmony search algorithm (HSA) to create a
novel hybrid approach to advance the performance of wide-ranging classification tasks [7].
In order to address the issues of weak diversity and premature convergence in the WOA,
this study’s primary contributions are as follows:

(1) A creative strategy to combine the three strategies in a hybrid approach;
(2) An HSA algorithm incorporated into WOA and GWO by utilizing a modified mechanism;
(3) Additionally, an asynchronous approach, employed to improve accuracy.

A few more sections will follow: Section 2 summarizes prior studies in this field.
Section 3 concisely explains the concept of a covering array, while Section 4 summarizes the
metaheuristic algorithms used. Section 5 describes the suggested methodology. Detailed
descriptions of the experimental strategy and the data analysis may be found in Section 6.
Section 7 focuses on statistical evaluation. Finally, Section 8 summarizes the findings and
outlines the development’s future path.

2. Related Work

Several well-known solutions use this approach, such as Test Vector Generator (TVG),
Jenny, and Intelligent Test Case Handler (WHITCH) [4], to put that into perspective. The
sequential creation of the test case takes place one parameter at a time when using the
strategic approach, which uses horizontal extension and step-by-step construction. IPOG
and MIPOG are two recent variation strategy implementations that use this approach to
build a t-way test suite. The strategy performs a coverage check and finds the optimal
value for each parameter component [3].

In recent years, many scholars have resorted to hybrid metaheuristics [8,9]. Plenti-
ful practical and academic challenges can be tackled more efficiently by utilizing hybrid
algorithms. In the subject of combinatorial testing, many effective hybrid metaheuristic
algorithms have been proposed. Alazzawi et al. suggested a new algorithm that incor-
porates two cutting-edge methods. PhABC is a new paired test suite generation strategy
that combines an artificial bee colony (ABC) method with the particle swarm optimiza-
tion (PSO) algorithm. When building the final test suite, the PhABC strategy sometimes
outperforms other approaches and produces results similar to the competition. Arram
et al. [10] proposed five metaheuristics for a hybrid bird mating optimizer (BMO): hill
climbing, late-acceptance hill climbing, simulating annealing, iterative greedy heuristics,
and variable iterative greedy heuristics. By combining these methods, researchers could
better explore the BMO population’s search space and develop new solutions. Regression
test case selection was developed by Agrawal et al. [11]. The authors utilized a hybrid
whale optimization algorithm, which used bat search (BS)- and ant colony optimization
(ACO)-based regression test case-selection procedures to extract subject programs from
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the software artifact infrastructure repository to evaluate the algorithm. A study of the
findings shows that the proposed strategy reduces the size of the test suite by a consid-
erable margin of error. Alazzawi et al.‘s [12] primary objective of this investigation was
to propose an alternative method for reducing the number of test instances. An ABC
and PSO method are combined to create a hybrid artificial bee colony (HABC) approach.
High-interaction-strength combinatorial test suites up to t = 6 are needed. Experiments
show that the HABC strategy outperforms other strategies when creating the best test case.
Alazzawi et al.’s [13] study proposed a novel metaheuristic-based t-way strategy known
as the hybrid artificial bee colony (HABCSm) strategy, which combines the advantages of
the ABC algorithm with the advantages of the PSO. The t-way strategy HABCSm is the
first algorithm to utilize Hamming distance to create a final test set and to use it as a final
selection criterion for discovering innovative solutions. It is possible to compensate for
the weaknesses of one algorithm with the strengths of others by combining two or more
algorithms. Nasser et al. [14] suggested that hybrids of the flower pollination algorithm
(FPA) combine with other algorithmic components to create four hybrid variations. FPA
hybrids outperform existing t-way techniques in test suite size, as shown by the results
of the experiments, by overcoming the sluggish convergence issues of the original FPA.
Alsewari et al. [4] introduced a new combinatorial test list-generating technique based
on the harmony search algorithm and its design and implementation. The general t-way
harmony search-based strategy (GTHS) is a new approach to generating designed and
implemented combinatorial test lists. HS was chosen as the principal engine for test gener-
ation because of its capacity to balance intensification and diversification. In [15], Alazzawi
et al. presented a T-way-generating approach for uniform- and variable-strength test suites
(ABCVS) illustrated by applying the ABC technique to lower the total size of a test suite
while simultaneously increasing the interaction between tests in the suite.

3. Covering Array

T-way testing can be mathematically based on orthogonal array notation (OA). Each
subarray of the orthogonal array contains all ordered subsets of size t from the level of
interdependence that is represented by N, the number of generated test cases, the parameter
count (k), the number of values (v), and the degree of interdependence (t). However, OA
is typically viewed as restrictive because it requires all component values to be the same,
which is a limitation. In order to address this issue, the covering Array (CA) notation was
added. In the CA notation CA (N; t, k, v), each subarray contains all prearranged subsets
of the same size from v levels. To denote the combination degree of the covering array
and the number of parameters (or factors) and values (or levels), the symbols t, k, and
v are used here. Once in the CA is usually adequate to cover all t-interactions between
the components. In this case, the notation is CA (N; 2, 4, 3), which is an example of a
system with two-way interaction with four three-valued parameters. The mixed covering
array (MCA) can handle situations where one or more component values (v) change. In
order to make matters more confusing, N and t have the same meaning as in CA and
MCA but with the addition of a new symbol, C, which represents the parameters and
values of each configuration in the following format: (v1k1, v2k2,... vnkn) where there are k1
parameters with v1 values and k2 parameters with v2 values. Consider MCA (9, 2, 36, 24)
as an example. The interaction strength degree is 2, and the number of parameters is six,
linked with three values each, and four are linked with two values each [4,16,17].

4. Metaheuristic Algorithms

Metaheuristic and evolutionary optimization algorithms are unusual in that they are
widely considered useful in tackling NP-hard problems, as they can find near-optimal
solutions to the given optimization issues in an acceptable period. Many metaheuristic
techniques for solving combinatorial problems, particularly those using covering arrays,
have been developed in the literature. Optimizing a fitness function is the goal of these opti-
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mization methods, which are used to find the best possible solution to a given problem [18].
The proposed system’s metaheuristic algorithms are detailed in this section.

4.1. Whale Optimization Algorithm

In terms of metaheuristic optimization algorithms, the whale optimization algorithm
(shown in Algorithm 1) is one of the most recent. It is based on swarm intelligence. It
closely mimics the natural behavior of humpback whales when hunting using bubble nets.
This approach has been used successfully in many fields to deal with complex optimization
problems. However, it performs poorly in large-scale settings because it requires substantial
computational work. When dealing with large-scale problems, distributed computing is an
excellent way to increase WOA’s scalability [19,20].

Algorithm 1 Whale Optimization Algorithm

Input population size N, halt criteria
Output the best solution X*

Generate initial population Xi (i = 1, 2,...,N)
Calculate the fitness for each solution in the population
Find the best solution X* with the best fitness

while halt criteria not satisfied do
Update a
for i=1 to N do

Update WOA parameters (A, C, l, and p)
for j=1 to m do

if p < 0.5 then
if |A| < 1 then

Update the current search agent by
→
D =

∣∣∣∣→C →X∗(t)−→X(t)
∣∣∣∣

→
X∗(t + 1) =

→
X(t)−

→
A
→
D

else if |A| ≥ 1 then
Select a random search agent (Xrnd)
Update the current search agent by
→
D =

∣∣∣∣→C →X∗(t)−→X(t)
∣∣∣∣

→
X∗(t + 1) =

→
X(t)−

→
A
→
D

end if
else if p > 0.5 then

Update the current search agent by
→
X(i + 1) = ebk cos(2πk)

→
D∗ +

→
X∗(i)

→
D∗ =

∣∣∣∣→X∗(i)−→X(i)
∣∣∣∣

end if
end for
Evaluate the search agent X*

end for
Find the best solution X*

end while

4.2. Gray Wolf Optimizer

As a population-based metaheuristic algorithm, GWO is a novel addition to the family
of algorithms; like all other metaheuristic algorithms, it begins with evenly distributed
random positions of the gray wolves. At the end of each cycle, the positions are recalculated.
Wolf packs refer to a large group of wolves living nearby. In order to hunt, the gray wolf
group has a social hierarchy in which the leader of the pack is the most powerful. Alpha,
Beta, and Delta wolves are members of the gray wolf pack’s leadership hierarchy. The
three most powerful wolves in the pack are responsible for making important decisions



Electronics 2022, 11, 2885 5 of 16

and updating the wolves’ position while hunting. In gray wolf society, the hierarchy is
carefully maintained, and decisions are made by the best-hunting agents, Alpha, Beta, and
Delta. In every iteration, the current best agents are re-evaluated, and their positions are
revised, as shown in Algorithm 2. Omega wolves are the rest of the wolves that follow the
leaders’ orders. Using information from the Alpha, Beta, and Delta wolves, Omega wolves
constantly recalculate their positions and values [21,22].

Algorithm 2 Grey Wolf Optimization Algorithm

Input population size of wolves’ pop, MaxIter
Output optimal grey wolf position Xα

Initialize the grey wolf population Xi Randomly
initialize a, A and C
Determine the fitness of each wolf Xi
Xα = the best solution
Xβ = the second best solution
Xδ = the third best solution
while i ≤MaxIter do

for each wolf Xi do
update the position
→
Dα =

∣∣∣∣→C1 ·
→
Xα

∣∣∣∣
→
Dβ =

∣∣∣∣→C2 ·
→
Xβ

∣∣∣∣
→
Dδ =

∣∣∣∣→C3 ·
→
Xδ

∣∣∣∣
→
X1 =

→
Xα −

→
A1.(

→
Dα)

→
X2 =

→
Xβ −

→
A2.(

→
Dβ)

→
X3 =

→
Xδ −

→
A3.(

→
Dδ)

→
X (t + 1) =

(→
X1 +

→
X2 +

→
X3

)
/3

end for
update a, A and C
determine the fitness of each wolf Xi
update Xα, Xβ and Xδ

i = i + 1
end while

return Xα

4.3. Harmony Search Algorithm

The harmony search Algorithm is an evolutionary algorithm that mimics the process
of musical improvisation in order to achieve a beautiful harmony. Optimization issues in a
variety of fields were effectively addressed using this approach. As a result, the algorithm
has a serious flaw in solving difficult tasks. Pitch modification and random consideration
are part of the algorithm’s improvisational functionality. There are three ways in which a
musician can improve their pitch:

(1) An old pitch from the musician’s recollection is played back;
(2) The adjacent stored pitch is played;
(3) Any pitch that falls within the normal range is played.

There are three steps to selecting a value for each variable in the method:

(1) A memory value is chosen from among those already stored there;
(2) Some adjacent values to the recorded data are chosen;
(3) An arbitrary number that falls within the standard range is chosen.
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Both of the HSA’s primary pillars are responsible for enforcing the activities outlined
above. These are known as the harmony memory considering rate, or HMCR, as well as
the pitch adjusting rate (PAR) [23,24].

In the same way, as artists iteratively enhance their music (see Algorithm 3), the
harmony search algorithm (HSA) imitates this process. To obtain the best possible harmony,
each musician takes turns playing an instrument during this procedure. In order to discover
a global answer, the algorithm generates a value for each choice variable that represents a
musician [25].

Algorithm 3 Harmony Search Algorithm

Input Generate the initial harmonics randomly
Output Optimal solution with its fitness value

Initialize the parameters of the HS HMCR, PAR and etc
Initialize harmony memory (HM)
Evaluate all solutions using the fitness function

while Termination criteria do
new solution = 0
if rand HMCR then

Memory consideration
if rand < PAR then

Pitch adjustment
end if

else
Random consideration

end if
Evaluate the fitness function of the new solution
Replaces the worst solution in HM by the new solution

end while

5. Proposed Work

Failures caused by system interactions can be found via combinatorial testing, which
is a powerful technique. Swarm intelligence and population-based algorithms have been
successfully applied to the resolution of a wide variety of optimization issues. There are
some challenging issues for which the conventional methods cannot identify the most
appropriate solution at a given time. Metaheuristic search algorithms provide the best
answer in existing t-way procedures regarding test suite size. The most current examples
of metaheuristic optimization algorithms are known as WOA and GWO. These algorithms
are population-based and based on swarm intelligence, and they are what are known as
swarm-based. The whale and gray wolf optimization algorithms, considering innovative
approaches to the optimization problem, have been combined by us in the construction of
the hybrid scheme.

A TWGH algorithm that generates a set of optimal initial solutions in TWGH using
the one-test-at-a-time technique is proposed as a new and extensively used optimization
technique in portfolio design. To speed up the convergence, the new algorithm constantly
adjusts the values of HMCR and PAR to prevent the program from sliding into local optima
by using the HAS algorithm. In addition, the performance of WOA and GWO algorithms
in exploration and exploitation has been the focus of this research. Two variations, either
heterogeneous or homogeneous, can be hybridized using low-level or high-level strategies,
such as relay or coevolution, respectively, as stated by [1]. TWGH uses a low-level mixed
hybrid to combine the WOA and GWO algorithms. The hybrid is low since it is a coevolu-
tionary process that does not use each variant one after the other. What this means is that
they operate simultaneously or in parallel. The benchmark test and real-world problems
are optimally solved using a hybrid method that combines two different methodologies.
This update aims to strengthen the capability of exploitation in the GWO by combining it
with the capability of exploration in the WOA. This enables us to demonstrate the benefits
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of both techniques. At first, TWGH begins with establishing a baseline population size
for the search agents (which include both whales and wolves). The population will go
through a process to adjust the agents if they travel beyond the search space. Thus, it is
necessary to compute the fitness function. If the fitness score is lower than the Alpha score,
also known as the Best Score, then the Alpha score is the same as the fitness score. After
then, the following variables are given fresh values: a, A, C, L, and p. Secondly, it checks
if the random number is smaller than 0.5, then it moves on to check if (A < 1) condition.
In this case, the new coordinates can be determined with the help of the first equation in
the algorithm (1). When comparing the two, if the new one is superior, the previous one is
changed to reflect that.

To begin, we modified WOA’s hunting process by inserting a new condition into the
exploitation stage. In order to prevent WOA from reaching local optima when p more than
or equal to 1, a new condition has been added to the usual exploitation phase. The change

is made to Equations (1) and (2), then they are employed within the new
→
Dα,

→
Dβ and

→
Dδ

exploitation phase condition. Finally, a new condition is introduced during exploration to
push the present answer closer to the optimal one. Furthermore, this prevents the whale
from moving to a worse location than its current one.

After all that has been done, the new position needs to be checked to see if it lies
outside the search space. Therefore, if they lie outside of the region where human activity
is possible, as a means of hastening convergence, the new algorithm dynamically modifies
HMCR and PAR values to forestall the program from settling into a local optimum. When
constraints are known, the HAS algorithm can adjust the position accordingly. A revised
fitness value is computed, and the highest-scoring value is ultimately returned.

In order to arrive at the best possible solution, the hybrid TWGH combines the most
advantageous characteristics of the GWO during the exploitation phase with those of the
WOA during the exploration phase. The position of the gray wolf, who is responsible for
discovering the global optimum solution to the problem, is swapped out for the position
of the whale, which is equivalent to that of the gray wolf but is much more effective at
nudging the solution in the direction of the optimum. The computational time is decreased,
while the whale optimizer algorithm guides an ideal value. The gray wolf optimizer is
well-known as a method for extracting the optimal solution from a black box of possibilities.
Therefore, combining the greatest features promises to find the best feasible global optimal
solution for real-world and standard issues while avoiding local stagnation and optima.
Utilizing the condition during exploration boosts search efficiency by enhancing the quality
of the answer, assuming one exists.

The following outlines the mathematical model for TWGH: Improving the method’s
convergence performance is the goal of the TWGH variation, which updates the position
of Alpha, Beta, and Delta using the spiral updating equation of the whale optimizer
algorithm. The GWO method and the WOA algorithm share the remaining operations
performed. With this in mind, we derive the following equations for updating the spiral
and hunting position.

ps = ebkcos(2πk)
→
Dl +

→
X∗(i) (1)

→
Dα =

∣∣∣∣→C1·
→
Xα − ps

∣∣∣∣
→

Dβ =

∣∣∣∣→C2·
→
Xβ − ps

∣∣∣∣
→
Dδ =

∣∣∣∣→C3·
→
Xδ − ps

∣∣∣∣
(2)

where
→
Dl

∣∣∣∣→X∗ −→X∣∣∣∣ shows how far away a whale is from its meal, and b is a constant used

to describe the logarithmic spiral’s overall form.
→
Dα,

→
Dβ and

→
Dδ are the positions of the

top three search agents, the mean, and a random integer l between [−1, 1]. Algorithm 4
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presents the pseudocode form, and Figure 1 is a flowchart detailing the TWGH algo-
rithm’s implementation.

Algorithm 4 Pseudo Code of TWGH

Initialize the population for GWO and WAO
Calculate the fitness of each search agent
X* is the best search member
While (it < MaxIter)

For every search agent do
Calculate a, A, C, L, and p.
if (p < 0.5) then

if (A < 1)then
update the position of the current search member by

→
D =

∣∣∣∣→C →X∗(t)−→X(t)
∣∣∣∣

else if (A ≥ 1) then
Select a random search agent (Xrnd).
Update the current search agent by

→
X∗(t + 1) =

→
X(t)−

→
A
→
D

end if
else if (p ≥ 0.5) then

update the position of the present search member by using Equations (1) and (2).
end if
end for

Find the fitness of all search members
If (Objective function of current agent > Objective function of previous position) then

Initialize the parameters of the HS HMCR, PAR and etc
Initialize harmony memory (HM)
Evaluate all solutions using the fitness function

while Termination criteria do
new solution = 0
if rand HMCR then

Memory consideration
if rand < PAR then

Pitch adjustment
end if

else
Random consideration

end if
Evaluate the fitness function of the new solution
Replaces the worst solution in HM by the new solution

end while
return to while loop

else
Update

→
X∗,

→
Dα,

→
Dβ and

→
Dδ

it = it+1
end while
return

→
X∗
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6. Results and Discussion

This hybrid heuristic algorithm was developed over two decades of research in the
development of combinatorial search algorithms. During this time, researchers tested the
algorithm not just against the most recent CIT approaches but also against clearly stated
results. As a way to evaluate TWGH to other strategies, TWGH is compared to other
available techniques in the manner of comparing the size of the TWGH-produced test suite
to that of other well-known benchmark configurations. Thus, TWGH results can be directly
compared to published results for techniques in [4,12,13,15,26]. A random selection of
parameter values may have varied test suite sizes on each experiment.

Researchers calculated each segment’s average and ideal test suite size by repeating
the TWGH run 30 times for comparative purposes. The computer had an Intel(R) Core
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(TM) i7-10750H CPU running at 2.60 GHz, 2.59 GHz, and 24 GB of RAM. The operating
system used was Windows 11 Home. TWGH was implemented in PYTHON3. Tables are
used to present the collected data (see Tables 1–6). In addition, Figures 2–6 represent results
for CA (N; t, v7) with 2 ≤ t ≤ 6 and 2 ≤ v ≤ 5.

Table 1. CA (N; t,10,2) with t between 2 and 10.

t Jenny TConfig WHITCH IPOG MIPOG TVG GTHS ABCVS HABC HABCm HGHC Proposed
TWGH

2 10 9 6 10 NA 10 7 NA NA NA 7 6
3 18 20 18 19 NA 17 16 NA NA NA 17 16
4 39 45 58 49 NA 41 37 NA NA NA 38 36
5 87 95 NS 128 NA 84 81 NA NA NA 80 80
6 169 183 NS 352 NA 168 158 NA NA NA 175 155
7 311 NS NS NS NA 302 298 NA NA NA 300 300
8 521 NS NS NS NA 514 498 NA NA NA 505 500
9 788 NS NS NS NA 651 512 NA NA NA NA 510
10 1024 NS NS NS NA NS 1024 NA NA NA NA 1022

Table 2. CA (N; t, 10, 5) with t between 2 and 10.

t Jenny TConfig WHITCH IPOG MIPOG TVG GTHS ABCVS HABC HABCm HGHC Proposed
TWGH

2 45 48 45 50 45 50 43 NA NA NA 43 45
3 225 312 225 313 281 342 276 NA NA NA 236 225
4 1719 1878 1750 1965 1643 1971 1624 NA NA NA 1770 1625
5 9437 NA NS 11,009 8169 NA 8866 NA NA NA 9933 8199
6 NA NA NS 57,290 45,168 NA 51,001 NA NA NA 45,339 45,244
7 NA NS NS NS NA NA 225,924 NA NA NA 299,336 225,578
8 NA NS NS NS NA NA 990,966 NA NA NA 994,339 990,023
9 NA NS NS NS NA NA 2,971,150 NA NA NA NA 2,971,022

10 NA NS NS NS NA NS 9,765,624 NA NA NA NA 9,765,145

Table 3. CA (N; t, 7, 3) with t between 2 and 7.

t Jenny TConfig WHITCH IPOG MIPOG TVG GTHS ABCVS HABC HABCm HGHC Proposed
TWGH

2 16 15 15 17 NA 16 14 15 15 14 14 14
3 51 55 55 57 NA 54 50 49 47 46 50 48
4 169 166 216 185 NA 167 157 157 155 149 150 147
5 458 477 NS 561 NA 463 437 442 438 437 440 435
6 1089 921 NS 1281 NA 1049 916 944 836 729 778 725
7 2187 NA NS NS NA NS 2187 NA NA NA 2202 2184

Table 4. CA (N; 4, k, 5) with k varied from 5 to 12.

k Jenny TConfig WHITCH IPOG MIPOG TVG GTHS ABCVS HABC HABCm HGHC Proposed
TWGH

5 837 773 625 908 625 849 751 NA 759 750 730 625
6 1074 1092 625 1239 625 1128 990 NA 1000 996 956 625
7 1248 1320 1750 1349 1125 1384 1186 NA 1189 1179 1230 1132
8 1424 1532 1750 1792 1384 1595 1358 NA 1386 1354 1395 1351
9 1578 1724 1750 1793 1543 1795 1530 NA 1591 1526 1530 1523

10 1791 1878 1750 1965 1643 1971 1624 NA 1798 1718 1697 1624
11 1839 2038 1750 2091 1722 2122 1860 NA NA NA 1730 1734
12 1964 NA 1750 2285 1837 2268 2022 NA NA NA 1834 1755
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Table 5. CA (N; 4, 10, v) with v varied from 2 to 7.

v Jenny TConfig WHITCH IPOG MIPOG TVG GTHS ABCVS HABS HABSm HGHC Proposed
TWGH

2 39 45 58 49 43 40 39 NA NA NA 43 38
3 221 235 336 241 217 228 211 NA NA NA 218 211
4 703 718 704 707 637 782 691 NA NA NA 664 639
5 1719 1878 1750 1965 1643 1917 1624 NA NA NA 1625 1622
6 3519 NA NA 3935 3657 4159 3475 NA NA NA 3464 3464
7 6462 NA NA 7061 5927 7854 6399 NA NA NA 6125 5929

Table 6. Five system configurations with mixed variables.

Configurations Jenny TConfig WHITCH IPOG MIPOG TVG GTHS HGHC Proposed
TWGH

MCA (N; 4, 34 45) 457 499 704 463 NA 487 436 445 438
MCA (N; 4, 51 38 22) 303 302 1683 324 NA 313 286 300 285

MCA (N; 4, 82 72 62 52) 4580 4317 4085 4776 NA 5124 4395 4090 4085
MCA (N; 4, 65 54 32) 3033 NA NA 3273 NA 2881 2520 2656 2520

MCA (N; 4, 101 91 81 71

61 51 41 31 21)
6138 5495 5922 5492 NA 6698 5915 5955 5485

 
Figure 2.  Test set size for CA (N; t, v7) with t=2 and 2 ≤ v ≤ 5. 
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Figure 5. Test set size for CA (N; t, v7) with t = 5 and 2 ≤ v ≤ 5.
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Figure 6. Test set size for CA (N; t, v7) with t = 6 and 2 ≤ v ≤ 5.

The darker cells epitomize the unsurpassed feasible configuration of interests, as
denoted by the shaded sections of the cells inside. Noncompliant combinations are denoted
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by cells labeled “NS” (not supported). No results were made public for any cells with the
designation of NA, which stands for “not available.”.

Table 1 demonstrates that the TWGH recommendation for the ideal test suite size
applies to the majority of t values, except t = 7. The better test size is produced by GTHS
whenever t equals 7 or 8. No recorded findings have been found for MIPOG, ABCVS,
HABC, or HABCm. As shown in Table 2, TWGH appears to produce the optimum sample
size for the test suite in most cases. MIPOG and GTHS contribute to the generation of the
second-best size for the test suite. However, even though they are not the best possible
outcomes, TWGH’s results in these scenarios are still competitive. Since none of the other
approaches, such as ABCVS, HABC, or HABCm, have reported or supported it, this is the
conclusion that must be drawn. The results of Table 3 demonstrate that TWGH provides
the smallest possible test suite consistently. Only HABCm has surpassed TWGH in the
scenario where t equals three. This is the case at time t equal to 2; this indicates that GTHS,
HABCm, HGHC, and TWGH all produce the same number of tests, which is the optimal
number. MIPOG has not produced any verified results. According to the findings, Table 4
demonstrates that TWGH is superior to all other methods for the values of k = 5,6,8,9, and
10. As for the rest of the scenarios, MIPOG and WHITCH have the upper hand (i.e., k = 7
and 12, respectively). In Table 5, it would appear that TWGH, MIPOG, and WHITCH are
performing the best overall. When k is equal to 10, only then does GTHS achieve the same
sample size as TWGH. TWGH produces the optimal sample size whenever v values are
set to 2, 3, 5, or 6. According to MIPOG, an ideal test suite would include these many
components, except v = 4 or 7. The TWGH test suite is the smallest of all the other test
suites. On the other hand, the test size produced by GTHS and HGHC is the same as that
produced by TWGH when v equals 2 and 6, respectively. According to Table 6, TWGH
generates the shortest test suite size in all four possible configurations, which are as follows:
MCA (N; 4, 51 38 22), MCA (N; 4, 82 72 62 52), MCA (N; 4, 65 54 32), and MCA (N; 4, 101

91 81 71 61 51 41 31 21). GTHS helps keep the number of tests in the MCA (N; 4, 34 45) test
suite to a minimum. MIPOG, ABCVS, HABC, and HABCm yielded no recorded results for
the MCA’s ideal test suite size.

7. Statistical Evaluation

Statistical analysis can also be used to evaluate the effectiveness of the proposed
plan and identify its relevance. The Wilcoxon signed-rank test is applied, with a level of
confidence equal to 95 percent (that is, a value of 0.05), to analyze the TWGH strategy
about other existing techniques (from Tables 3, 4 and 6). The Wilcoxon signed-rank test
will be used to see if the proposed strategy differs statistically from the other options
under consideration. Because it compares the two sets side by side, this test is great for
determining the discrepancy between them and using the Bonferroni–Holm technique
to adjust value when multiple comparisons are involved. It uses asymptotic significance
(two-tailed) to scale the data. Therefore, Holm is recalculated based on the following factors
in Equation (3) [27]:

∝ Holm =
∝

M− i + 1
(3)

The total number of paired comparisons is M, and the number of tests is i. When
evaluating TWGH, its three ranks—TWGH >, TWGH, and TWGH =—are used. The results
of other strategies are higher, smaller, or the same as those of the proposed plan based
on the first p-value that was recorded (asymp. Sig. (2-tailed)) in the sequence of scaling.
If the value surpasses Holm, there is a significant difference between the two sets, as
shown by the asymp. sig. (2-tailed) statistic. This study does not address the Z value
(i.e., not considered). The hypothesis is rejected if the asymp. sig. (2-tailed) value is less
than Holm. If one null hypothesis cannot be ruled out, the other hypotheses are also
preserved. N/A results are regarded as incomplete and ignored samples since there is no
test configuration for which a result has been provided. Tables 7–9 show the statistical
results of the Wilcoxon test for Tables 3–6, which may be seen below. Table 7 shows that
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TWGH performed BETTER than IPOG, TVG, or WHITCH, while HABCm did better. On
the contrary, as shown in Table 8, TWGH is superior to all other methods except MIPOG
and WHITCH. While TWGH outperformed all other states in Table 9, it fell short of GTHS.
Since the results of the other methodologies are unavailable or do not support a certain
setup, they are labeled “missing”.

Table 7. Analysis of data from Table 3 using the Wilcoxon signed-rank sum test.

Pairs

Ranks Test Statistics

Conclusion
TWGH < TWGH > TWGH = Z Asymp.

Sig. (2- tailed) α Holm

TWGH-GTHS 15 11 11 2.02260 0.0591 0.0025 Retain the null hypothesis
TWGH-HGHC 6 3 0 2.0226 0.0101 0.0125 Retain the null hypothesis
TWGH-IPOG 3 0 0 2.2014 0.0361 0.0171 Reject the null hypothesis
TWGH-Jenny 7 4 4 2.2014 0.0546 0.0173 Reject the null hypothesis

TWGH-HABCm 6 3 3 1.5724 0.0141 0.0014 Retain the null hypothesis
TWGH-TVG 4 0 1 2.2014 0.0363 0.2301 Reject the null hypothesis

TWGH-WHITCH 7 4 4 2.2014 0.0546 0.0163 Reject the null hypothesis

Table 8. Analysis of data from Table 4 using the Wilcoxon signed-rank sum test.

Pairs

Ranks Test Statistics

Conclusion
TWGH < TWGH > TWGH = Z Asymp.

Sig. (2- tailed) α Holm

TWGH-GTHS 3 2 2 1.0954 0.0363 0.0641 Retain the null hypothesis
TWGH-HGHC 11 7 7 1.0226 0.0591 0.0573 Reject the null hypothesis
TWGH-IPOG 5 3 3 2.0226 0.0691 0.0472 Reject the null hypothesis
TWGH-Jenny 5 1 1 2.0432 0.0786 0.0435 Reject the null hypothesis
TWGH-TVG 6 3 0 2.678 0.0978 0.0349 Reject the null hypothesis

TWGH-WHITCH 4 2 1 2.9226 0.0991 0.0322 Reject the null hypothesis

Table 9. Analysis of data from Table 6 using the Wilcoxon signed-rank sum test.

Pairs

Ranks Test Statistics

Conclusion
TWGH < TWGH > TWGH = Z Asymp.

Sig. (2- tailed) α Holm

TWGH-GTHS 13 11 11 2.3664 0.0220 0.0213 Reject the null hypothesis
TWGH-HGHC 3 1 1 2.3805 0.0209 0.017 Reject the null hypothesis
TWGH-IPOG 15 11 11 2.5205 0.0143 0.0127 Reject the null hypothesis
TWGH-Jenny 6 0 2 2.5205 0.0183 0.0142 Reject the null hypothesis

TWGH-MIPOG 7 3 3 1.5724 0.1422 0.0085 Retain the null hypothesis
TWGH-TVG 5 0 2 2.5205 0.0143 0.0107 Reject the null hypothesis

TWGH-WHITCH 3 1 1 1.9917 0.0592 0.00125 Retain the null hypothesis

8. Conclusions

Based on the results of comparative investigations, the suggested strategy beats current
techniques in terms of CA/MCA generation quality and the number of generations required
to get there. When comparing the size of CA and MCA, the newly developed strategy
performs far better than the conventional approaches in the vast majority of instances.
Hybrid approaches are essential for achieving the greatest results, and utilizing a cutting-
edge hybrid whale–gray wolf–harmony metaheuristic approach, encompassing orders of
coverage arrays 2 ≤ v ≤ 7,2 ≤ k ≤ 12 and strengths 2 ≤ t ≤ 12 were produced. This is a
highly competitive technology for the manufacturing of such covering arrays, as seen by
this success. It was presented as an example of how uniform cover arrays of degree 4 can
be used to evaluate compost composition.
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To assess the effect on the ultimate array size of each decision, TWGH experiments
were meticulously planned and carried out. It is possible to conclude that (1) the config-
uration of a covering array significantly impacts its performance based on data, and in
some cases, the optimal configuration is even better than proven approaches such as IPOG,
MIPOG, and Jenny compared to the established methods; (2) consequently, the suggested
TWGH algorithm may be more efficient for producing test data because it assures enough
coverage, optimality, and minimal complexity. In the future, we will study whether the
metaheuristic technique can generate CAs and MCAs with higher strength and consider
the seed scenarios and constraints in manufacturing a covering array.
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