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Abstract: The systolic array provides extremely high efficiency for running matrix multiplication
and is one of the mainstream architectures of today’s deep learning accelerators. In order to develop
efficient accelerators, people usually employ simulators to make design trade-offs. However, current
simulators suffer from coarse-grained modeling methods and ideal assumptions, which limits their
ability to describe structural characteristics of systolic arrays. In addition, they do not support the
exploration of microarchitecture. This paper presents FG-SIM, a fine-grained modeling approach
for evaluating systolic array accelerators by using an event-driven method. FG-SIM can obtain
accurate results and provide the best mapping scheme for different workloads due to its fine-grained
modeling technique and deny of ideal assumption. Experimental results show that FG-SIM plays a
significant role in design trade-offs and outperforms state-of-the-art simulators, with an accuracy of
more than 95%.

Keywords: modeling; systolic array; accelerator

1. Introduction

Deep neural networks (DNNs) have come to play an increasingly significant role
in image recognition, speech recognition, text classification and other fields [1–3]. As
application requirements have continued to increase, complex network models and a
large numbers of parameters have resulted in higher computation time and declining
performance. Deploying hardware accelerators is a common way for people to solve such
problems. These accelerators [4–10] use different dataflows and hardware architectures
to accelerate the computation in different ways. Existing work shows that dataflow in
particular has a substantial impact on data reuse and hardware utilization [7,11,12].

With the goal of finding efficient dataflows and hardware architectures, many previous
works [7,13–18] have attempted to explore the design space with varying degrees of success.
The systolic array has also become one of the mainstream DNN accelerator architectures
due to its unique structural characteristics. However, in order to improve the generality
of the models, these works [16–18] are modeled in an overly abstract way, making it
difficult to fully describe the specific implementation details of the hardware, and the
simulation results obtained are far from the real situation. In addition, these models [15–18]
are established based on certain assumptions, such as a lack of correlation between data,
sufficient data supply during computations, etc. These assumptions are often difficult to
implement in practice, and the resulting problems are difficult to capture in the model. As
a result, the pauses caused by these problems can also lead to inaccurate simulation results.
On the other hand, when the dataflow and hardware structure have been pretedermined,
the hardware will also employ different scheduling operations and data segmentation
during computations, which we refer to as different mappings. Since these different
mappings can have a significant impact on performance, it is also very important to quickly
search for and identify the best mapping for different workloads under given conditions.
Much of the previous work [17,18] has not considered this issue and thus has not been able
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to evaluate different architectures fairly enough. Timeloop [16] considered this problem but
does not support affine functional simulation and therefore cannot support systolic arrays.

To address these challenges, we propose FG-SIM, a fine-grained method for systolic
array-based accelerator evaluation, and implement a systolic array-based accelerator sim-
ulator. This method describes the details of hardware implementation, simulates the
influence of hardware resource constraints, data dependence and other factors on the calcu-
lation process, and further improves the accuracy of the simulation results. In summary,
this work makes the following contributions:

• We propose a fine-grained method for evaluating systolic array accelerators. Through
the use of fine-grained modeling methods, we achieve the description of mapping,
affine, pipeline, data dependence and hardware resource dependence such that the
obtained results are close to the real architecture.

• We construct an event-driven simulator, which is centered on computing and is
suitable for exploring the microarchitecture under the systolic array structure. It can
find the optimal mapping for different workloads. Compared with a cycle-accurate
simulator, it achieves faster simulation and can support larger-scale parameters.

• We use computation time to quantify performance, and the results show that our
method can more accurately describe and predict the relevant performance of the
simulator. Compared to other known works, the accuracy of our method is far higher,
with values above 95%.

2. Motivation

Due to the increasing demand for computing, the application of accelerators has
become more widespread in recent years. This has prompted many accelerator-related
works to be proposed and realized, such as TENET [17] and MAESTRO [15]. These efforts
typically use simulators to evaluate different architectures in order to identify those that
are most efficient. In order to enable the simulator to evaluate a variety of architectures,
the above works focused on improving the generality of the model. However, while the
coarse-grained modeling approach improves generality, it ignores many details of hardware
implementation. At the same time, the excessive pursuit of generality introduces further
conditional assumptions into the modeling that often do not hold in practice; thus, the
results obtained by the model are not accurate.

On the other hand, common DNN accelerators only expose the range of available and
configurable settings in the hardware. The behavior of the accelerator is closely related
to these configurations; different configurations correspond to different mapping meth-
ods and computation processes, and the final computation times also differ significantly.
Timeloop [16] shows the energy efficiency distribution of convolution computations for
various mappings on a 1024-MAC architecture similar to NVDLA [19], and the results also
support this conclusion. The reason for this phenomenon is that different mapping schemes
represent different partitioning and scheduling schemes. Efficient mapping can maximize
reuse and reduce computation time. Figure 1 illustrates the time required to multiply two
256 × 256 matrices with different mapping methods under the architecture of Figure 2. The
size of the systolic array is 16 × 16, the size of each buffer on the chip is 512 KB, and the
bandwidth is 512 bits.

In addition, for the DNN network, the performance of different layers may vary sub-
stantially due to their dimensions and flattening. Therefore, evaluating any individual
neural network layer alone cannot represent the performance of the entire network. Since
the optimal mapping for each layer of the network may also be different, it is also necessary
to find the corresponding optimal mapping according to the characteristics of different
neural network layers if we are to evaluate the overall performance of the network as
objectively as possible. Table 1 shows four evaluations of accelerator modeling methods.
Timeloop fully considers the important impact of different mapping schemes on perfor-
mance. Unfortunately, due to the limitations of the description method, Timeloop cannot
support complex data streams with skewed data access. TENET, as a relatively advanced
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modeling method (at present), is better able to compensate for the deficiencies of the above
two schemes; however, its modeling does not support pipelines. SCALE-Sim is a simulator
for accelerators with systolic array structures, which focuses more on discussing the impact
of systolic array shape and size on computational efficiency. It is not sensitive to different
datastreams when estimating computation time, and the constructed mapping space is
not comprehensive. In addition, the above work relies on ideal assumptions for model-
ing, ignoring the adverse effects of data dependence and hardware resource dependence
on computation.
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Figure 1. Performance comparison of different mapping schemes.
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Figure 2. Schematic depicting FG-SIM, with inputs and outputs.

Table 1. Comparison of Four Modeling Methods of Accelerator.

Timeloop [16] TENET [17] FG-SIM SCALE-SIM [18]

Affine loop transformation ×
√ √ √

Pipeline × ×
√

×

Data dependence × ×
√

×

Hardware dependence × ×
√

×

Data assignment analysis ×
√ √ √

Precise reuse analysis ×
√ √ √

Mapping space exploration
√

×
√ √
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Considering the above issues, we aim to adopt a fine-grained approach to constructing
the accelerator model and build a simulator that is closely integrated with the hardware
accelerator on this basis. Through the use of more fine-grained description, it can simulate
many details in the hardware implementation and obtain more accurate simulation results.
At the same time, we hope to be able to implement a mapper based on the same princi-
ples. By quickly finding an effective mapping, we can make fuller use of the hardware
performance.

3. Related Work

In recent years, a large number of excellent works [7,20–24] have been published on
the subject of DNN accelerators. In order to maximize the versatility of the work, they need
to describe the organization of the different designs. However, this also results in their
inability to provide a relatively complete and detailed cost model of the architecture [25,26];
alternatively, it may be difficult to accurately infer the reuse of space or time in the compu-
tation process due to the simple hardware template.

MAESTRO [15] is a data-centric analysis cost model that is used to estimate the various
cost-benefit trade-offs of data streams. It introduces a set of data-centric directives that
are used for analysis to obtain various forms of reuse and exploit them using hardware
capabilities. However, it supports only a limited variety of data streams and cannot
support hardware data streams following affine transformation (e.g., data streams of 2D
systolic arrays).

TENET [17] is a relation-centric simulator that employs the polyhedron model library
ISL. Compared with the polynomial model, its computation accuracy is higher. However,
the assumptions made by the model are too ideal; it assumes that all correlations are
ignored, that data computation and transmission are completely streamlined and that the
numbers of cycles are the same. Thus, TENET computations also produce errors in reality.

Timeloop [16] is a computation-centric infrastructure designed to evaluate and ex-
plore the architecture design space of deep neural network accelerators. It describes the
design space using a concise and unified loop representation with mapping directives.
However, it is unable to perform affine functional simulation and cannot support systolic
array structure.

SCALE-Sim [18] is a configurable systolic array-based cycle accurate DNN accelerator
simulator. It exposes various micro-architecture features to designers and achieves compre-
hensive design space exploration on this basis. However, it assumes that no dependencies
exist between the data and that the data supply is adequate during the computation process.
This assumption does not truly reflect the computation situation, meaning that the results
obtained are insufficiently accurate.

4. FG-SIM Overview

Figure 2 shows the schematic representation of FG-SIM along with an example of its
inputs and outputs. The accelerator mainly consists of a systolic array and several on-chip
buffers. A systolic array is a regular array of multiply-accumulate units that achieves
efficient computation by leveraging data reuse within the array.

The computing-centric simulator we built can create a mapping space for a given
workload, and can also obtain optimal accelerator computing performance under any
mapping. The core concept of our modeling is to use a fine-grained way to tile. Utilizing
the fact that the computation and data movement patterns in DNN computations are
largely deterministic, we can use the size of the on-chip buffer as a restriction to divide the
data into tiles. This modeling method is beneficial to clearly describe the data interaction
process between off-chip storage and on-chip buffers. For the calculation process within
each tile, we again use the tile concept. Specifically, we use the size of the systolic array as a
constraint and divide each tile into multiple sub-tiles. This method of secondary division
can describe the calculation process in a more fine-grained manner, enabling us to discover
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the adverse effects of data dependence, pipeline bubbles and other issues on performance,
and thereby greatly improve the model accuracy.

Figure 3 illustrates the basic workflow of the simulator. After our simulator receives
the input, it divides the data into tiles according to the mapping scheme. This corresponds
to the process of fetching data from off-chip memory to on-chip buffers in Figure 2. For
each tile, the simulator will perform calculations based on the size and shape of the tile
to obtain the computation time corresponding to the tile. This corresponds to the process
in Figure 2, where the data from the on-chip buffer are involved in the computation. On
this basis, the model analyzes the tiles in terms of both data dependence and hardware
resource dependence, and finally obtains the final overall computation time. In more detail,
our simulator requires the following input:

• The shape and parameterization of the workload (for example, the relevant data of
the input, output and weight tensor in the convolutional layer, or the parameters of
the matrix in the GEMM).

• The hardware organization of the architecture (on-chip storage scale, bandwidth).
• The mapping method.

INPUT

Workload &

Mapping scheme

Divide data 

into tiles and 

compute

Dependency 

analysis

OUTPUT

Computation 

time

Figure 3. The basic workflow of FG-SIM.

In addition, we also built a mapper based on the simulator. Based on the scale of
the input data and the amount of available hardware resources, the mapper constructs a
mapping space for the workload. According to the size of the data, we can employ traversal
or heuristic methods to quickly identify the optimal mapping that will give the greatest
boost to the hardware performance.

5. FG-SIM Simulator

Our simulator is an event-driven simulator written in C++. It simulates the process of
moving data from off-chip storage to on-chip buffers, performing computations, obtaining
results and then storing them back in off-chip storage. It generates a series of operations
based on the hardware data flow and determines the dependencies between the operations.
In addition, it also performs high-level optimizations, such as software pipelining.

In more detail, when the user specifies the workload and mapping method, the simu-
lator will automatically divide the data into tiles according to the mapping method. Due
to the deterministic nature of the computation process, once the workload and mapping
method are determined, we can easily calculate the size of each tile and its corresponding
serial number using algebra. This step plays a significant role in subsequent computations
and dependency simulations. After the adverse effects of memory access conflicts, com-
putation delays and other factors have been fully considered, the simulator will output
the computation time and data movement time corresponding to each tile. Finally, after
considering data dependency and hardware resource constraints, we can obtain the final
simulation computation time.

5.1. Simulation of Affine Function

In order to efficiently utilize the computing performance of the systolic array, it is
necessary to ensure the horizontal and vertical transmission of data in the systolic array
during the computation process. Given that the time required to compute the processing
element (PE) and the time required to transmit the data may not be the same, researchers
often employ an affine means of description. Many previous works did not support this
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function, meaning that the structure of 2D systolic arrays could not be properly simulated.
Although the most advanced TENET supports the affine function, it also assumes that the
time required for PE computation and data transfer is the same, and cannot describe the
situation in which these two times are different. In addition, TENET is unable to adequately
describe the pipeline optimization in the computation process; in some cases, the estimated
performance obtained differs substantially from the real situation.

Our simulator supports the affine function of 2D systolic arrays. In order to describe
the model in a more fine-grained manner, we introduce the computation delay to describe
the PE computation time. When modeling, we assume that it takes one cycle for data to be
transmitted between PEs, while the number of cycles required for data to be calculated is the
computation delay. When data are transferred into the systolic array to aid in performing
the computation, the data of the same row are transferred in sequence at specific intervals in
a cycle, and the data of adjacent rows are transferred to the systolic array in sequence at an
interval dictated by the computation delay. On this basis, we also realize the optimization
of the pipeline, which further improves the accuracy of the simulation.

For example, Figure 4 describes the situation when the computation delay is two
cycles. We use (x, y) to represent the serial number of each data point. x represents the
number of rows in which the data is located, while y represents the order of the data in
this row. When the computation begins, the data corresponding to the point (1, 1) are first
transmitted laterally into the systolic array and participates in the computation. In the next
cycle, the data of (1, 2) are transferred to the systolic array. When the total time reaches the
third cycle, the data corresponding to (1, 1) have already been calculated and can be passed
on as the result. Therefore, the data of (2, 1) also begin to be passed laterally into the systolic
array, and participate in the new computation together with the computation result of the
(1, 1) data. This method ensures that the horizontal transmission and vertical multiplexing
of data are carried out simultaneously. By analogy, the data of each row can be transmitted
to the systolic array only after waiting for two cycles after the data of the previous row
are transferred to the systolic array. In this way, we can realize the corresponding affine
function simulation.

...

Unroll

...

Weights

Input Feature Map

Im2col

...

...

...

(1,1)(1,2)(1,3)(1,4)(1,5)

(2,1)(2,2)(2,3)(2,4)(2,5)

(16,1)(16,2)(16,3)(16,4)(16,5)...

...

...

16 cols

...

 
 

Pre fill inputs

...

 
 

...

 
 

...

 
 

Figure 4. Example of simulating affine function. The example uses input stationary dataflow. If the
workload is convolution, it is converted to GEMM by im2col.

5.2. Simulation of Tile Computation

Many previous works add idealized preconditions when modeling. For example,
TENET assumes both that the accelerator has sufficient data during computation and that
there is no dependence between the data. In the real computation process, however, these
assumptions are not always true, meaning that the obtained simulation results are not
accurate. To describe the hardware implementation in more detail, we comprehensively
consider the adverse effects of data dependence, hardware resource constraints and other
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factors on the computation in the simulation within the tile, and subsequently model the
accelerator in a fine-grained manner.

More specifically, for a given tile, we perform secondary mapping based on the shape
of the tile and the scale of the systolic array. Figure 5 illustrates this process. For the two
matrices of m× k scale and k× n scale, we use the (m, x, x) mapping scheme to decompose
them into multiple sub-tiles. Here, x represents the number of processing units on one
side of the 2D systolic array. Since the computation process and sequence of the sub-tiles
are fixed once the dataflow has been determined, we can easily find the time overhead of
each sub-tile. It should be noted here that we calculated the time cost corresponding to
each sub-tile, and then accumulated and summed it according to the constraints. When
dealing with similar problems, Timeloop uses the computation of the first, second and final
iterations of each loop; for irregular tile methods, however, this solution is not feasible.
This is because there will be a large number of irregular sub-tiles at the edge of the tile,
the shapes of which are often different from the first sub-tile, and their influence on the
computation is also different.

k

m

K

M

x

k

n

K

N

x

x

 

 

Figure 5. Mapping inside the tile.

Figure 6 presents an example of the internal simulation process of the tile. Let us take
the process of input stationary dataflow as an example. For a given m× k matrix and k × n
matrix, we map them to a systolic array of x × x scale for computation. We then partition
the matrix according to the mapping method of (m, x, x), use col to indicate the number of
columns in the sub-tile, and use row to indicate the number of rows in the sub-tile. On this
basis, we first assume that the pipeline can operate normally and provide the corresponding
computation time for each sub-tile. It should be noted here that the sub-tiles in the final
row may be irregularly shaped, so we use conditional judgments here. We define s as the
remainder of k divided by x. When s is 0, it indicates that k is divisible by x. At this point,
the size of the last row of sub-tiles is the same as that of the previous row; otherwise, the
size of the last row of sub-tiles is different, and the corresponding computation time will
also change. Finally, we judge and simulate the possible bubbles in the pipeline. Since
we adopted a double-buffer method in hardware implementation, we also simulate this
when considering pipeline stalls. When we determine that bubbles will exist in the pipeline
based on the present conditions, the computation time of the corresponding tile will also
be extended.

This example illustrates our idea of simulating the internal computation process of
the tile. For the output stationary dataflow and weight stationary dataflow, we can also
conduct simulations in a similar way. In addition, this approach is highly parametric; we
can modify the parameters to support the simulation of systolic arrays of different scales
and computation delays.
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//  ===  The Simulation Process Inside The Tile  ===

//  Count the number of sub-tiles

col = ceil(n / x);

row = ceil(k / x);

s = k % x;

//  Tile computation time when considering pipeline

for i = [1,col * row]:

   if (i == 1):

       time[i] = m + x * latency;

   else if (i == col * (row - 1) + 1):

      if (s != 0):

         time[i] = m + s * latency + x – s;

      else

         time[i] = m;

  else

    time[i] = m; 

//  determine whether hardware resources are limited 

for i = [3,,col * row]:

   if (i % 2 == 1):

      if (m < x * latency):

         time[i] = x * latency;

for i = [1,col * row]:

  totaltime += time[i];
    

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

Figure 6. The simulation process inside the tile.

5.3. Dependency Simulation

When we build the model, we also need to simulate the dependencies. Speaking
generally, we consider the issue from two aspects: data dependence and hardware resource
dependence.

When considering data dependency, it is necessary to consider the dependence of data
between tiles. In our model, each tile is stored independently in an on-chip buffer, and the
transmission order of the tiles depends on the dataflow. Therefore, once the dataflow is
determined, we can accurately calculate the transmission order of different tiles. Under
the premise of supporting the use of dual-buffer optimization in the hardware, we can
also accurately determine the tiles that do not need to be repeatedly moved during the
computation process, which further improves the accuracy of the simulation. On the
other hand, when simulating computations within a single tile, we also consider data
dependence. Figure 7 illustrates an example of data dependency within a tile. In the
computation process, the a2 and b2 tiles need to take the computation results of the a1 and
b1 tiles as input. At this point, the data-dependence relationship will cause the pipeline
to be incontinuous, which substantially reduces the computational efficiency. It should
be noted here that this kind of data dependence cannot be avoided through the use of
dual buffers with the hardware; the resulting systolic array pause will have a significant
negative impact on computing efficiency.

a2a3 a1

a1 starta2 starta3 startComputation complete

b1

b2k

n

x

b3

a1 a2m

kx

a3

Time

Figure 7. Example of data dependency within the tile.

On the subject of hardware resource dependency, we consider two aspects. We first
need to consider the bandwidth resources that are occupied when the tile is transferred
from the off-chip to the on-chip buffer. When the bandwidth resources are insufficient, the
data transmission speed is slow. At this time, it may be the case that the original data of
the on-chip buffer have been calculated but the new data have not yet been transmitted;
this will lead to a significant reduction in computational efficiency. Moreover, due to the
limited registers in the processing element of the systolic array, there may also be pauses in
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the computation process within the tile, which is essentially a manifestation of hardware
resource dependence.

6. FG-SIM Inputs and Mapper
6.1. Workload Specification

FG-SIM supports two workloads: one format is similar to the form of a single convo-
lutional layer, and the other takes the form of matrix-and-matrix multiplication. Due to
the different structural characteristics of different DNN network layers, the corresponding
optimal mapping also differs. By simulating and exploring each layer of the network
separately, we can obtain the optimal mapping of the DNN network as a whole, and accord-
ingly achieve the highest computational efficiency. Figure 8 illustrates the description and
expansion of the convolutional layer. These layers can be described as a 7D nested loop.
Here, W0 and H0 represent the output tensor’s height and width, WK and HK represent
the weight tensor’s height and width, W1 and H1 represent the input tensor’s height and
width, C1 represents the number of input channels, C0 represents the number of output
channels, and B represents the number of inputs or batch size. As can be seen from Figure 8,
for a given loop unrolling method, a specific computation process is determined. When
we wish to divide data into tiles through mapping, we can calculate the order and scale of
different tiles according to the index of the loop, thereby providing support for subsequent
fine-grained modeling and dependency analysis. For the operation of the matrix-and-
matrix multiplication, the simulator can also construct a mapping space according to its
operation rules and search for the optimal solution.

Outputs

W0

H0

C0Weights

C0

C1

WK

HKH1

Inputs

W1

C1

.
.
. B

1 for wk=[0:WK):
2  for hk=[0:HK):
3   for w0=[0:W0):
4    for h0=[0:H0):
5     for c1=[0:C1):
6      for c0=[0:C0):
7       for b=[0:B):
8        Output=[w0][h0][c0][b] +=
9         Weight[wk][hk][c0][c1] * Input[w0+wk][h0+hk][c1][b];

Figure 8. Convolutional layer 7D loop nest.

6.2. Mappings

Mapping describes the way in which data are partitioned into multiple tiles in the
memory hierarchy. We discuss mapping here because the memory cannot store all data
involved in the computation at the same time, while different mapping methods also
have a huge impact on computing efficiency. Our simulator supports two workloads. For
the convolution computation, we can convert it to a matrix-and-matrix multiplication
operation via im2col. Therefore, in the following mapping-related discussion, we take
matrix-and-matrix multiplication as an example.

When discussing the mapping scheme, we consider two aspects: the size of the tiles
and the method of tile reuse. More specifically, different tile sizes have different impacts
on computation time and data migration time. Only by considering the requirements
of computation and data migration can we ensure that the computation time and data
migration time overlap as much as possible, allowing us to finally find the most efficient
mapping. On the other hand, there is more than one tile multiplexing method; each of
these methods is limited by hardware storage resources and performs differently under
different resource conditions.

Figure 9 shows two different approaches to mapping. The two matrices in the figure
are of size M × K and K × N. We use tiles of size m1 × k1, k1 × n1, m2 × k2 and k2 × n2
to slice the matrices and (m1, k1, n1) and (m2, k2, n2) to denote the corresponding mapping
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methods. Different segmentation methods will lead to irregular segmentation at the edge
of the matrix, as reflected in the figure. In the process of exploring the optimal mapping,
we seek to complete the computation as efficiently as possible. On the one hand, a larger
tile method will cause the tile scoring computation time to exceed the data movement time,
which helps to hide the data movement time in the computation time and further improves
efficiency. On the other hand, a larger tile method often leads to irregular tile division of the
matrix at the edge, which in turn causes the data movement time of these tiles to be higher
than the computation time; a smaller tile method can largely avoid this specific problem.
Therefore, the process of finding the optimal mapping essentially works to balance this
contradiction as much as possible.
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Figure 9. Examples of different mapping schemes.

Figure 10 illustrates two different tile multiplexing methods. The above method is a
common tile method for matrix-and-matrix multiplication. The advantage of this method
is that it can quickly calculate part of the final result and reduce the storage pressure of the
intermediate result in the on-chip buffer. The disadvantage of this method is that it needs
to repeatedly read the data of the original matrix; thus, we refer to this approach as result
multiplexing. The method below is called process reuse. The advantage of this method
is that there is no need to repeatedly access the original data involved in the operation;
moreover, each tile of the original data only needs to enter the on-chip buffer once. The
disadvantage of this method is that the intermediate result produced by the computation is
the same size as the final result. Accordingly, if the on-chip buffer size is insufficient, the
intermediate results will be repeatedly transmitted between off-chip and on-chip, which
will reduce the overall computation efficiency.
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Figure 10. Examples of different tile multiplexing methods.

6.3. Map Space Construction and Search

When constructing the mapping space, due to the constraints imposed by the archi-
tecture and hardware resources, our mapping space is a subset of the complete mapping
space. For example, our mapping method is limited by the on-chip buffer size, as the tile
size cannot exceed it.
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For a given workload, we comprehensively consider these constraints and then con-
struct the corresponding mapping space. For example, for a matrix-and-matrix multiplica-
tion of M × K and K × N, we define (m, k, n) as a point in the mapping space. By changing
the values of m, k, n, we can obtain a series of points that constitute the original mapping
space. On this basis, we trim the mapping space through constraints such as hardware
resource constraints, while the remaining mappings that meet the requirements constitute
the real mapping space.

When we use random sampling-based heuristics to search, we randomly select m, k, n
in the mapping space. By inputting M, K, N and (m, k, n) as parameters to the simulator, we
can obtain the corresponding computation time. The result obtained by random fetching
each time will be compared with the previously obtained optimal mapping scheme: if the
effect of the new mapping scheme is better, the scheme and the corresponding optimal
computation time will be updated. Finally, when the number of random fetches reaches a
certain threshold, we stop exploring and arrive at the final result.

For small-scale workloads, such as the convolutional layer of a common DNN network,
we typically use the traversal method to find the optimal mapping. For large-scale matrix-
and-matrix multiplication, we use a random sampling-based heuristic to search. More
sophisticated search methods will be presented in future work.

7. FG-SIM Validation
7.1. Experimental Setup

Due to the large number of free parameters and the diversity of workloads, many
issues need to be considered when the aim is to ensure that a systolic array accelerator
achieves optimal hardware performance. In order to take full advantage of the fine-grained
modeling, we conducted investigations from the three perspectives of mapping methods,
hardware resources and data reuse methods, then combined the above factors to identify
the best computing solution.

In the next series of experiments, unless otherwise stated, we use a 16 × 16 scale
systolic array in our experiments, with a single on-chip buffer size of 512 KB, and a single
data size of 8 bytes. It should be emphasized here that we allocate separate on-chip buffers
for the input, weights, and intermediate results and adopt the optimization of dual buffers.

We use (m, k, n, p) to define the computation scheme. Here, m, k, n represent the
size of the tile, while the corresponding (m, k, n) represents the mapping scheme that was
introduced above. In addition, we define p as the tile multiplexing method. When p is 0,
this indicates that the result reuse is used, and when p is 1, this means process reuse.

7.2. Use Case 1: GEMM

FG-SIM supports general matrix multiplication. We conducted a GEMM test on two
500 × 500-scale matrices. Figure 11 plots the computation time, data movement time
and total time corresponding to different computation schemes under the same hardware
conditions. As can be seen from the figure, when we adopt a smaller tile method, the overall
computation time will increase. There are many reasons why this occurs. When the on-chip
buffer is sufficient, the smaller tile method will result in frequent data transmission between
off-chip storage and the on-chip buffer, which increases the overall data transmission time.
In addition, the data in the systolic array must be cleared and re-entered when switching the
on-chip buffers. Therefore, a smaller tile method will result in frequent switching of on-chip
buffers, which further increases the computational time cost. Finally, the smaller tile method
will also cause bubbles in the pipeline, which further reduces the computation efficiency.
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Figure 11. The time cost of GEMM under different computation schemes.

7.3. Use Case 2: Convolution

FG-SIM supports general convolution computations. We test the first layer of convolu-
tion of the Alexnet network and search for the optimal computation scheme for different
stride conditions. Figure 12 plots the computation time, data movement time and total
time of the optimal computation scheme corresponding to different strides. In addition,
we modify the size of the convolution kernel based on common convolutional networks.
Table 2 lists the best computation scheme for different convolution kernels and different
strides. By modifying the input image, the stride and the size of the convolution kernel,
we are able to simulate any convolution computation. As can be seen from the table, for
convolutional networks, different convolutional layers have different characteristics, while
the corresponding optimal computation schemes are also different. Therefore, in cases
where hardware resources are fixed, exploring the best computation scheme for different
convolutional layers also helps to improve the overall computation efficiency.
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Figure 12. The time cost of convolution under different strides.
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Table 2. The optimal computation scheme of convolution under different convolution kernels and
different strides.

Stride

Kernel Size 1 2 4

3 × 3 (64, 16, 992, 0) (64, 16, 912, 0) (64, 16, 800, 0)

5 × 5 (64, 40, 992, 0) (64, 40, 544, 0) (64, 40, 256, 0)

7 × 7 (64, 80, 800, 0) (64, 80, 352, 0) (64, 80, 192, 0)

11 × 11 (64, 128, 480, 0) (64, 192, 224, 0) (64, 192, 128, 1)

7.4. Use Case 3: PE Utilization

FG-SIM estimates the PE utilization accurately, which is another key factor that affects
the latency. We compare the PE utilization calculated by our work and TENET using the
dataflow proposed by Scale-sim for AlexNet. We use the reported PE utilization in Scale-
sim as the golden result. Figure 13 shows the PE utilization obtained by three simulators
simulating each convolutional layer of the AlexNet network under the condition of an 8× 8
systolic array when using weight-stationary dataflow. It should be pointed out that FG-SIM
uses the results of the optimal mapping scheme. Overall, FG-SIM improves the estimation
accuracy of PE utilization from 92.4% to 99.5%. This improvement is partly attributed to
the fine-grained modeling method of FG-SIM, which can more accurately characterize the
scenarios where PE flexibly uses data in different registers during computation. When
calculating the average PE utilization, TENET is only sensitive to some parameters. Its
approach is more similar to running individual simulations of a single-layer loop and
computing the average. This simulation method ignores the fact that the systolic array is
still being computed during the unrolling of the multilayer loop, so its estimate will be
lower. When using weight-stationary data flow, TENET is only sensitive to the size of the
output matrix. For the C1 and C2 convolutional layers with large output matrices, the
estimated results are more accurate at this time, while for C3, C4 and C5 with small output
matrices, the estimated accuracy of PE utilization is greatly reduced, and the results are
the same.
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Figure 13. PE utilization comparison with TENET and Scale-sim on AlexNet, C1–C5 means CONV1,
CONV2, . . . , CONV5.

7.5. Use Case 4: Buffer Size

The previous experiments were all carried out under the same hardware resources.
When we change the size of the on-chip buffer, the optimal computation scheme will also be
both affected and changed. We choose the third convolutional layer of the Alexnet network
for testing. As the on-chip buffer gradually increases in size, the total time spent on the
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computation of the convolutional layer continues to decrease. This reflects the impact of
hardware resources on computing efficiency.

In addition, we also note that as the size of the on-chip buffer gradually increases,
its effect on computing performance is gradually reduced, which is a manifestation of
marginal effects. Figure 14 plots the optimal computation time and the corresponding
buffer utilization under different buffer sizes. When the buffer is small, the buffer utilization
is higher. At this point, increasing the buffer size will significantly improve the computing
performance. As the buffer gradually increases, the utilization of the buffer size gradually
decreases, and the improvement in computing performance becomes smaller and smaller.
We contend that this evaluation method can provide hardware designers with the support
required to adjust the hardware structure and allocate the related resources.
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Figure 14. Optimal computation time and buffer utilization of convolution under different buffer sizes.

7.6. Validation Results

We tested common convolutional networks on TENET, FG-SIM and a hardware
emulation platform. Since TENET only gives the computation result for the best mapping,
in order to ensure that the results are objective, we also use the best mapping for comparison.
We take the test time of the hardware emulator as the benchmark and divide the simulation
time of TENET and FG-SIM by the benchmark time to obtain the accuracy. Figure 15
presents the test results of five common convolutional networks.
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Figure 15. Comparison of TENET, FG-SIM and emulator under five convolutional networks.

As can be seen from Figure 15, the result of FG-SIM is very close to the time of the
hardware simulation platform; in fact, its accuracy exceeds 95%. By contrast, the accuracy of



Electronics 2022, 11, 2928 15 of 16

TENET fluctuates greatly. This phenomenon occurs because the characteristics of different
CNN convolutional layers are different. Because the W0 and H0 of the convolutional layer
are small, it is difficult for Yolo [27], Resnet18 [28] and Alexnet [29] to ensure sufficient
data supply during the tile computation process. This will cause many pauses in the
computation of the systolic array, which reduces the overall computational efficiency.
When TENET built the model, it was assumed that no correlation existed between the data
points and that the data supply was sufficient. Therefore, when there is a problem with this
assumption, the accuracy of TENET will be greatly reduced.

8. Conclusions

In this paper, we introduced FG-SIM, a fine-grained modeling method for evaluating
systolic array accelerators. It disproves the ideal assumptions made in modeling and
describes the specifics of the hardware implementation. Overall, FG-SIM is a good tool
for exploring the microarchitecture under a systolic array structure. It can provide more
accurate simulation results and provide specific guidance on the complex trade-offs of
hardware design.
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