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Abstract: Due to influence of COVID-19, telemedicine is becoming more and more important. High-
quality medical videos can provide a physician with a better visual experience and increase the
accuracy of disease diagnosis, but this requires a dramatic increase in bandwidth compared to
that required by regular videos. Existing adaptive video-streaming approaches cannot successfully
provide high-resolution video-streaming services under poor or fluctuating network conditions with
limited bandwidth. In this paper, we propose a super-resolution-empowered adaptive medical video
streaming in telemedicine system (named SR-Telemedicine) to provide high quality of experience
(QoE) videos for the physician while saving the network bandwidth. In SR-Telemedicine, very
low-resolution video chunks are first transmitted from the patient to an edge computing node near
the physician. Then, a video super-resolution (VSR) model is employed at the edge to reconstruct
the low-resolution video chunks into high-resolution ones with an appropriate high-resolution level
(such as 720p or 1080p). Furthermore, the neural network of VSR model is designed to be scalable
and can be determined dynamically. Based on the time-varying computational capability of the edge
computing node and the network condition, a double deep Q-Network (DDQN)-based algorithm is
proposed to jointly select the optimal reconstructed high-resolution level and the scale of the VSR
model. Finally, extensive experiments based on real-world traces are carried out, and the experimental
results illustrate that the proposed SR-Telemedicine system can improve the QoE of medical videos
by 17–79% compared to three baseline algorithms.

Keywords: medical video streaming; telemedicine system; video super resolution; deep reinforce-
ment learning

1. Introduction

With the development of eligible consumer devices, broadband access mobile net-
works, as well as emerging video technologies such as high-definition (HD) and ultrahigh-
definition (UHD) videos and virtual reality (VR), medical videos have been widely applied
in telemedicine or remote healthcare systems. In particular, under the influence of COVID-
19, telemedicine is becoming more and more important. In telemedicine systems, real-time
streaming video of the patients can be transmitted to a central hospital or a physician
expert for diagnosis of diseases (e.g., neurological eye examinations [1], heart disease
diagnosis [2–4], and kidney disease care [5]). However, on the one hand, low video quality
(e.g., caused by low video resolution: 240p, 360p, 480p) will severely degrade the accuracy
of the diagnosis of the disease. On the other hand, HD/UHD videos (e.g., 4k, 8k) will bring
huge data volume and higher overall bit rate, which imposes great transmission pressure
on the networks.

It is challenging to provide HD/UHD medical video services with low network over-
head or under poor or fluctuating network conditions. The traditional dynamic adaptive
streaming scheme (e.g., DASH [6], LEAN [7]) highly depends on network conditions and
can only offer low-resolution videos when the network condition is poor. Video super-
resolution (VSR) [8] is a promising technique for breaking this dependence, because it
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can reconstruct low-resolution videos as high-resolution videos near the end-user side.
However, VSR requires powerful processing capability, whereas most of the existing VSR
models [8] cannot achieve line-speed VSR processing on mobile devices. An alternative
method is to reconstruct the low-resolution videos at an edge node. In this case, the patient
only needs to output the video streaming with lower resolution, and the bandwidth from
the patient to the edge node near the physician will be largely saved. Nonetheless, the time
complexity of the VSR model should dynamically match the available computational capa-
bility of the edge node, which is time-varying because it is shared by diverse applications.
At the same time, the bit rates of the reconstructed high-resolution videos should match
the dynamic network conditions. Otherwise, additional processing delay or transmission
delay will be introduced.

In order to break the strong dependence of video transmission quality on network
bandwidth, many works have investigated the enhancement of HD/UHD video transmis-
sion via VSR. NAS [8] and SRAVS [9] introduce a new DASH-based video-delivery frame-
work that promotes the video quality by employing VSR on the client device. Nonethe-
less, these two approaches require the client to have powerful computational capability
(e.g., consumer GPUs), which is not practical for mobile devices. To address this problem,
VISCA [10] presents an edge-assisted adaptive video-streaming solution, which enhances
the low-quality video chunks by VSR at the edge. Although this approach can provide
high-quality videos even when the network resources are limited, it does not consider the
dynamic state of the available computational capability on the edge node. An additional
super-resolution processing delay will be introduced when the available computational
capability cannot satisfy the requirement of VSR, which will lead to more rebuffering
and degrade the users’ quality of experience (QoE). Therefore, in addition to selecting
an optimal reconstructed high-resolution level, the model of VSR also needs to be well
designed to adapt to the available computational capability of the edge node. In addition,
in the field of telemedicine or healthcare, a super-resolution (SR) technique has already
been applied to promote the quality of medical images or videos [11–19], and many efforts
also have been devoted to designing adaptive medical video-streaming strategies [7,20–24],
but there is still a lack of research on how to employ VSR to enhance the medical video
transmission.

In this paper, we propose a super-resolution-empowered adaptive medical video
streaming in telemedicine (named SR-Telemedicine) system to improve the physician’s
QoE while saving the network bandwidth. The SR-Telemedicine system can reconstruct
the low-resolution video chunks into high-resolution ones with several different high-
resolution levels (such as 720p, 1080p, 4k) at the edge node near the physician. At the same
time, in order to match the time-varying computational capability of the edge node and the
network condition, the VSR neural network model is designed to be scalable. The scalability
of the model size is implemented by introducing the early exit mechanism [25] (i.e., the
number of ResBlocks used for inference is optional). Finally, to jointly select the optimal
reconstructed high-resolution level and VSR model scale, a deep reinforcement learning
(DRL) variant algorithm—the double deep Q-Network (DDQN) [26]—is employed with
the aim of maximizing QoE. Our main contributions are summarized as follows.

• We design the SR-Telemedicine scheme to improve physician’s QoE while saving the
network bandwidth. In SR-Telemedicine, VSR is used to reconstruct the low-resolution
video chunks into high-resolution ones with an appropriate high-resolution level at
the edge node.

• To decrease the VSR processing delay, the scale of the VSR neural network is designed
to be scalable and can be determined dynamically according to the computational
capability of the edge node and the network condition.

• To successfully catch the dynamic states of the SR-Telemedicine system and the net-
work, a DRL-based adaptation algorithm is proposed to jointly optimize the recon-
structed high-resolution level and the scale of VSR neural network.
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• Extensive experiments based on real-world network traces are conducted, and the
results illustrate that our proposed SR-Telemedicine system can improve QoE by
17–79% compared to three baseline algorithms.

The remainder of the paper is structured as follows. Related literature is reviewed in
Section 2. Section 3 presents the system models and problem formulation. In Section 4, the
DRL-based joint optimization algorithm is proposed to improve the QoE of our proposed
SR-Telemedicine system. The evaluation results are detailed within Section 5. Some
remaining issues are discussed in Section 6. Finally, Section 7 concludes the paper.

2. Related Work

In this section, the relevant literature about adaptive video streaming for healthcare
and SR for healthcare are reviewed.

2.1. Adaptive Video Streaming for Healthcare

Dynamic adaptive streaming over HTTP (DASH) [6] has emerged as a key technology
by which to enhance bandwidth utilization for video delivery. In the DASH system, videos
are encoded into multiple chunks along with several bit rate levels, and chunks across
bit rates are aligned to support seamless quality transitions. The adaptive bit rate (ABR)
algorithm is an essential part of the DASH system, which integrates the client side in order
to dynamically select the most appropriate bit rate for the current state. The solution for the
ABR algorithm can be roughly divided into four categories: (1) rate-based algorithms (e.g.,
RB [27]) select the highest possible bit rate based on the estimated available throughput;
(2) buffer-based algorithms (e.g., BOLA [28]), make bit rate decisions according to the
buffer occupancy level of video players; (3) rate and buffer joint algorithms (e.g., MPC-
based algorithm [29]), select the most appropriate bit rate by solving a QoE minimization
problem; and (4) learning-based algorithms (e.g., Pensieve [30]) train a neural network
model that selects bit rates for future video chunks based on observations collected by client
players. The rate-based and buffer-based algorithms are simple and heuristic, but find it
difficult to respond to the time-varying changes of the network in a timely manner. The rate
and buffer joint algorithms can perform better than approaches that use fixed thresholds.
However, the MPC’s performance relies on an accurate model of the system dynamics—in
particular, a forecast of future network throughput. The learning-based algorithms can
learn a control policy for bit rate adaptation purely through experience without using any
pre-programmed control rules or explicit assumptions about the operating environment.
However, the native DRL algorithm (e.g., DQN) directly calculates the target Q value
through the greedy algorithm. Although the Q value can quickly be closer to the possible
optimization target in this way, the target Q value will be overestimated, and the deviation
will be large.

With the advent of the Internet of Things (IoT) and 5G/6G communication tech-
nologies, medical video streaming is widely applied from remote patients to centralized
hospitals for better diagnosis and treatment. Lavanya et al. [7] propose a new hybrid
predictive model, long effective adaptive networks (LEAN), an efficient medical video
transmission, which works on the principle of integrating the time-predictive long short-
term memory (LSTM) with boosting machine learning algorithms. Usman et al. [20] present
a complete framework for a 5G-enabled connected ambulance that focuses on two-way
data communication including audio-visual multimedia flow between ambulances and
hospitals. Rajavel et al. [21] propose an IoT-based smart healthcare video surveillance
system by using edge computing to reduce the network bandwidth and response time
and significantly maximize the fall behavior prediction accuracy. In order to achieve real-
time adaptation to time-varying constraints for medical video communications, Antoniou
et al. [22] propose an adaptive video-encoding framework based on multi-objective opti-
mization that jointly maximizes the encoded video’s quality and encoding rate (in frames
per second) while minimizing bit rate demands. Ghimire et al. [23] propose a system that
consists of an enhanced video quality and distortion minimization (EVQDM) algorithm to
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achieve guaranteed quality, minimum distortion, and the minimum delay in telemedicine
real-time video transmission. This system guarantees the video quality by using the adap-
tive video-encoding technique and minimizes the distortion by considering the truncating
distortion in the enhanced distortion-minimization algorithm. Delhaye et al. [24] address
the challenges of video compression for telemedicine applications in a very low bandwidth
environment, such as air-to-ground transmission channels. Their method compresses
the region of interest (ROI) with higher quality by using, for a specific available bit rate,
different quantizers for blocs inside and outside the ROI.

Most of the existing approaches highly depend on network bandwidth conditions and
can only offer low-resolution videos when the network condition is poor. In this paper, we
introduce the VSR technique into medical video transmission, which requires that only
very low-resolution videos need to be transmitted from the patient to an edge node near
the physician.

2.2. Super-Resolution for Healthcare

The SR technique is able to reconstruct low-resolution images as high-resolution im-
ages or video frames, and modern SR techniques using deep learning methods significantly
improve the reconstruction quality. NAS [8] and SRAVS [9] integrate SR into adaptive video
streaming at the client side to provide high-quality videos while minimizing the impact of
dynamic network conditions on users’ QoE. NAS is proposed to improve the video quality
by modified MDSR for devices with strong capabilities. Considering the limited computing
capacity of users’ devices, SRAVS adapts SRCNN, a simple, lightweight SR model with
only three convolutional layers. Beyond the aforementioned systems, an edge platform can
provide more powerful computing capacity to reduce SR elapsed time while supporting a
consistent, high-quality server for multiple clients. VISCA [10] produces an edge-assisted,
adaptive video-streaming solution that integrates SR with edge caching to improve QoE.
However, it is not aware of the available computing capacity at the edge.

The SR technique also has been applied to enhance the medical images or videos.
Zhang et al. [11] present a fast medical image super-resolution (FMISR) method whereby
the three hidden layers complete feature extraction in the same way as the SR convolution
neural network. In [12,13], an efficient medical video SR method based on deep back-
projection networks is investigated. Shi et al. [14] use local residual block and global residual
network to extend SRCNN to solve a 2D magnetic resonance imaging (MRI) SR problem.
Farias et al. [15] propose a generative adversarial network (GAN)-based lesion-focused
framework for computed tomography (CT) image SR. For the lesion (i.e., cancer) patch-
focused training, spatial pyramid pooling (SPP) is incorporated into GAN-constrained
by the identical, residual, and cycle learning ensemble (GAN-CIRCLE). Qiu et al. [16]
propose the multiple improved residual network (MIRN) SR reconstruction method. MIRN
designs the residual blocks connected by multi-level skips to build multiple improved
residual block (MIRB) modules. Zhao et al. [17] propose an information distillation and
multi-scale attention network (IDMAN) for medical CT image SR reconstruction. Jebadurai
et al. [18] propose a hybrid architecture for IoT healthcare to process the retinal images
captured by using smartphone fundoscopy. The proposed SR algorithm for retinal images
uses multi-kernel support vector regression (SVR) to improve the quality of the captured
images. Deeba et al. [19] propose a wavelet-based mini-grid network medical image
super-resolution (WMSR) method, which is similar to the three-layer hidden-layer-based
SRCNN method.

The above approaches with SR only use a fixed VSR model to reconstruct video blocks
from low resolution to a certain high resolution. In this paper, we will jointly optimize the
reconstructed high-resolution level and the model scale of VSR to match the time-varying
computational capability of the edge node and the network condition.
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2.3. Edge Computing for Healthcare

VSR can reconstruct low-resolution videos to high-level resolution videos but it re-
quires powerful processing capability. Most of the existing VSR models cannot achieve a
line-speed VSR processing on the mobile devices. An alternative method is to reconstruct
the low-resolution videos at an edge node. In recent years, edge computing has been widely
used to drive healthcare advances due to the following advantages. (1) Edge computing
provides a robust infrastructure to keep continuous processing without disruption, even
during network outages. (2) Processing data at the edge provides near-instantaneous
feedback. (3) Keeping data within the device and inference at the edge means that pa-
tient health information stays secure. (4) AI processing at the edge reduces the need
to send high-bandwidth data. (5) Domain experts are able to create a highly adaptive
and outcome-focused VSR solution by controlling the data processing AI parameters at
the edge.

Many efforts have been devoted to investigating edge computing-assisted
telemedicine [21,31–34]. Dong et al. [31] designed an edge computing-based healthcare
system to schedule transmission and computation resources for cost-efficient monitoring in
the Internet of medical things (IoMT). Wang et al. [32] proposed a multi-layer 5G mobile
edge computing (MEC)-centered telemedicine design that dynamically integrates wearable
devices with an OpenEMR electronic health records system. Prabhu et al. [33] presented
a healthcare framework that incorporates a promising edge–IoT ecosystem—the EdgeX
Foundry—for the telehealth use case of blood pressure monitoring. Oueida et al. [34]
proposed a resource preservation net (RPN) framework by using Petri net, integrated with
custom cloud and edge computing suitable for emergency department (ED) systems. RPN
is applicable to a real-life scenario in which key performance indicators, such as patient
length of stay (LoS), resource utilization rate, and average patient waiting time are modeled
and optimized. In order to make a robust video surveillance system, Rajavel et al. [21]
proposed a cloud-based object tracking and behavior identification system (COTBIS) that
can incorporate the edge computing capability framework at the gateway level.

Most of the existing approaches only leverage edge computing to analyze the patients’
health data and assist doctors in diagnosis. In this paper, we mainly employ edge comput-
ing to conduct VSR, and the enhanced patients’ video streaming can make the physician
more clearly observe small lesions and increase the accuracy of the diagnosis.

3. System Model and Problem Formulation

In this section, we first introduce the reference architecture of VSR-enabled telemedicine
systems. Then, the system model is described. Finally, we present the problem formulation.

3.1. System Model

The reference architecture of VSR-enabled telemedicine systems is illustrated in
Figure 1, which mainly consists of three parts: patient video monitoring, VSR-enabled edge
computing, and physician video playing.

The patient video-monitoring part can monitor the real-time status of the patient
via video cameras. The captured video chunks can be encoded into different levels of
resolutions, denoted as K = {1, 2, ..., K}. Let qi ∈ K represent the transmitted resolution of
the i-th chunks, and b(i, qi) denote the actual size of this chunk. Each chunk has the same
time duration, denoted by T. Then, video chunks will be streamed and transmitted to the
edge computing node near the physician via Internet. The VSR-enabled edge computing
node is comprised of three modules: VSR processing buffer, VSR processor, streaming
proxy, and DRL agent. The VSR processing buffer is employed to cache the video chunks
transmitted from the patient, the VSR processor is used to promote the resolution of
the video chunks (e.g., from 480p to 1080p), the DRL agent will collect the states of the
telemedicine system and determine the optimal resolutions of the source video chunks (on
the patient’s side) and the promoted video chunks (at the edge node near the physician),
and the streaming proxy is used to restream the promoted high-definition video chunks
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and transmit them to the physician’s side. Finally, the physician video-playing part will
play the streaming video to the physician for disease diagnosis.
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Figure 1. The reference architecture of VSR-enabled telemedicine systems—SR-Telemedicine, which
mainly consists of three parts: patient video monitoring, VSR-enabled edge computing, and physician
video playing.

3.1.1. Multi-Scale Neural Network for Video Super-Resolution

The low-resolution video chunks transmitted from the patient will be cached into the
VSR processing buffer BV at the edge node. By following the principle of first-in-first-out
(FIFO), the VSR processor will sequentially reconstruct the cached chunks and output the
high-resolution chunks. For each low-resolution video chunk i in the VSR processing buffer,
a DRL agent will make a reconstruction decision (qi, q′i) for the VSR processor. Then, the
VSR processor will promote the resolution of the video chunk i from the low resolution
qi into the high resolution q′i (q′i ≥ qi). Let D = {(qi, q′i)|∀qi, q′i ∈ K, q′i ≥ qi} denote the all
possible reconstruction pairs.

For a certain amount of computing power, the VSR processing time will partially
depend on the scales of the VSR model. A more complex VSR model will cause a longer
processing time and increase the end-to-end delay, but can gain a better quality of the
reconstructed video chunks. Inspired by NAS [8], VSR pre-configures a network model for
each possible (qi, q′i) ∈ D. At the same time, in order to achieve a good tradeoff between
the processing time and the video quality, we propose a multi-scale mechanism for each
VSR model which consists of total |L| ResBlocks [25]. The scalability of the VSR model can
be implemented by regulating the output path of the early exit mechanism [25] (i.e., the
number of ResBlocks used for inference). For example, the scale can be set as low, medium,
high, and ultrahigh with different number of ResBlocks in the neural network as shown in
Figure 2. However, it is worth noting that even a small number of ResBlocks are used to
reconstruct low-resolution videos, and QoE can still be improved compared to watching
the original low-resolution videos.
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Figure 2. Multi-scale video SR models. The scalability of the SVSR model size can be achieved by the
output path of the early exit mechanism [25] (i.e., the number of ResNet blocks used for inference).

3.1.2. Available Edge Computing Capability

In general, VSR is a computation-intensive task. Due to sharing with diverse applica-
tions, the available computational capability at the edge node is time-varying, and thus
the VSR reconstruction time is also not fixed. In order to select an optimal VSR model to
reconstruct the resolution of video chunk i from qi to q

′
i, we need to estimate the available

computational capability at the edge node. In this paper, we will use the historical VSR
reconstruction time to estimate the VSR capability of the edge node.

For the last δ chunks, the reconstructed resolution pairs can be denoted as

q =< (qi−1, q
′
i−1), (qi−2, q

′
i−2), · · · , (qi−δ, q

′
i−δ) > . (1)

Let h(qi, q
′
i) denote the reconstruction time of chunk i. The reconstruction time of the last δ

chunks can be represented as a vector:

h =< h(qi−1, q
′
i−1), h(qi−2, q

′
i−2), · · · , h(qi−δ, q

′
i−δ) > . (2)

Then, we can use h to implicitly measure the current available computational capability of
the edge node.

3.1.3. VSR Processing Model

Assume that the maximum length of the VSR processing buffer BV is Bmax
V , and tSR

i
denote the time of starting to reconstruct the i-th chunk. tSR

i should satisfy

tVSR
i , max{tVSR

i−1 + h(qi−1, q′i−1), tV
i }, (3)

where h(qi−1, q′i−1) denotes the time for reconstructing the resolution of the (i− 1)-th chunk
from qi−1 to q′i−1, and tV

i indicates the time when the edge node finishes receiving the i-th
video chunk. The evolution of VSR processing buffer can be expressed as

BV(t) = max{j|tV
j ≤ t} −max{j|tVSR

j + h(qj, q′j) ≤ t}. (4)

3.1.4. Video Playback Model

Let Bmax
P denote the max length of the playback buffer BP. The i-th chunk will be

transmitted from the edge node, and after that (1) the (i− 1)-th chunk has already been
transmitted into the playback buffer, and (2) the i-th chunk has already been reconstructed
at the edge node. Therefore, tD

i , the time when the physician side starts to download the
i-th chunk, should satisfy

tD
i , max{tD

i−1 + di−1, tVSR
i + di, tplay

i−Bmax
P
}, (5)



Electronics 2022, 11, 2944 8 of 17

where di−1 indicates the download time of the (i− 1)-th chunk from the edge node to the
physician, and tplay

j (here j = i− Bmax
P ) denotes the time when the physician side begins to

play the j-th chunk.
On the physician’s side, the video chunks will be decoded and rendered. The i-th

chunk can be played only when it has already been downloaded in the playback buffer and
the (i− 1)-th chunk had already been played completely. Thus, the playing time tplay

i of
the i-th chunk can be calculated as

tplay
i = max{tplay

i−1 + T, tD
i + di}. (6)

Then, the evolution of playback buffer can be expressed as

BP(t) = max{j | tD
j + dj ≤ t} −max{j | tplay

j ≤ t}. (7)

In particular, when the playback buffer is exhausted, the rebuffering process will
happen, which results in an extreme degradation of the user’s QoE. The rebuffering time
when playing video chunk i can be depicted as τi:

τi = tplay
i − (tplay

i−1 + T). (8)

3.1.5. Transmission Model

In our proposed SR-Telemedicine system, there exist two transmission stages: (1) from
the patient to the edge node, and (2) from the edge node to the physician. For the first
state, we suppose that the patient side begins to transmit the i-th video chunk at the time
tS
i whereas the edge node finishes receiving the i-th video chunk at time tV

i , and then the
transmission rate for the i-th video chunk can be expressed as c1

i = b(i, qi)/(tV
i − tS

i ). For
the last δ video chunks, we have

c1 =< c1
i−1, c1

i−2, ..., c1
i−δ > . (9)

Similarly, for the second stage, we assume that the edge node begins to transmit the
i-th video chunk at the time tD

i whereas the physician finishes receiving the i-th video
chunk at time tP

i . Then the transmission rate for the i-th video chunk can be expressed as
c2

i = b(i, q′i)/(t
D
i − tP

i ). For the last δ video chunks, we have

c2 =< c2
i−1, c2

i−2, ..., c2
i−δ > . (10)

3.2. Problem Formulation

In order to improve the users’ QoE, the DRL agent needs to jointly determine the
reconstructed high-resolution level (qi, q′i) ∈ D for each chunk i, and the number of
ResBlocks li ∈ L utilized in the VSR neural network model. The objective is to maximize
the users’ QoE, which consists of three aspects: video bit rate, rebuffering time, and video-
quality jitter.

3.2.1. Video Bit Rate

In this paper, the average video bit rate is employed to evaluate the video quality,
which is also used in Pensieve [30],

Qquality =
1

Nchunk

Nchunk

∑
i=1

R′i, (11)

where R′i represents the bit rate of the reconstructed video chunk i, and Nchunk is the total
number of video chunks during the system runtime.
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3.2.2. Rebuffering Time

Rebuffering time occurs when the playback buffer becomes empty. The video playing
will be interrupted until a new chunk has been cached. The average rebuffering time can
be calculated as

Qrebu f =
1

Nchunk

Nchunk

∑
i=1

τi. (12)

It is worth noting that if rebuffering does not occur when playing video chunk i, the
rebuffering time is 0.

3.2.3. Video Quality Jitter

The frequent jitter of video quality between two adjacent chunks may cause physio-
logical symptoms for users such as dizziness and headaches. The jitter can be defined as
the average changes in bit rate between two consecutive reconstructed chunks:

Qjitter =
1

Nchunk − 1

Nchunk

∑
i=2
|R′i − R′i−1|. (13)

To sum up, we express the total QoE as

QoE = β1Qquality − β2Qrebu f − β3Qjitter, (14)

where β1, β2 and β3 are non-negative weight factors. Therefore, the problem of maximizing
user’s QoE can be formulated as

max
(qi ,q′i)∈D,li∈L

QoE

s.t. (3) − (8). (15)

4. The Proposed DRL-Based Adaptation Algorithm

In this section, to derive the optimal policy for our proposed SR-Telemedicine system,
we employ a variant of a DRL–DDQN algorithm to solve the above optimization problem.

4.1. The Elements of DRL

In this paper, a time-slotted system is assumed, and the time slot is indexed by t. The
duration of each time slot is set to T, which is identical to the length of the video chunk.
Here we define the state space, action space, and reward function for the DDQN algorithm
as follows.

4.1.1. State Space

The states of our proposed SR-telemedicine system at the time t, denoted by st, can be
expressed as

st = {BV(t), BP(t), q(t), h(t), c1(t), c2(t)}, (16)

where the BV(t), BP(t), q(t), h(t), c1(t), and c2(t) are defined in Formulae (4), (7), (1), (2)
(9) and (10), respectively. All the possible values of s construct the state space S .

4.1.2. Action Space

At the beginning of each time slot t, the agent jointly determines the reconstructed
high-resolution level q′(t) ∈ K, and the model size of VSR (i.e., the number of ResBlocks
l(t) ∈ L) for all video chunks i which are processed during the time slot t. Therefore, the
action vector is

at = {q′(t), l(t)}, ∀q′(t) ∈ K, l(t) ∈ L. (17)

All the possible values of a construct the state space A.



Electronics 2022, 11, 2944 10 of 17

4.1.3. Reward Function

The objective of our proposed algorithm is to improve QoE; thus, the reward function
can be designed according to Formula (14),

rt = β1R′(t)− β2τ(t)− β3|R′(t)− R′(t− 1)|, (18)

where R′ denotes the average bit rate of the reconstructed video chunks during the time
slot t, τ indicates the average rebuffering time that occurs during during the time slot t,
|R′(t)− R′(t− 1)| is the average jitter in bit rate between the time slot t and t− 1, and β1,
β2 and β3 are non-negative weight factors.

4.2. The Preliminary of DQN

First, the basic background knowledge related to the deep Q-Network [35] is intro-
duced. In the DQN algorithm, the input of Q network is the state s observed by the DRL
agent. The output is the estimated value of action value Q(s, a) of the state when all avail-
able actions a ∈ A are executed in the same state. Two networks with the same structure,
namely, critic network Q and target network Q−, were used in the DQN algorithm. Critic
network Q was used to select actions and update parameters, whereas target network Q−

was used to calculate the target Q value. The parameters of critic network Q were updated
through iterations, whereas the parameters of target network θ− are slowly updated with
the parameters of DQN θ. A parameter τ can be applied to control the update rate, i.e.,
θ− ← τθ + (1− τ)θ−.

In the t-th iteration, the parameters θ can be updated via the gradient of the least
squares loss function

Lt(θ) = [yt −Q(st, at; θ)]2, (19)

where yt is the target value that can be estimated by

yt = r(st, at) + γ max
a′

Q−(st+1, a′; θ−), (20)

where θ− indicates the weight parameters of the target network. In practice, DQN applies
experience replay and target network for its training [35–37]. The state transition samples,
which are collected when the DRL agent interacts with the environment, are stored in the
experience replay buffer. The DQN is updated with a mini-batch sampled from this replay
buffer. The utilization of experience replay is able to avoid oscillations or divergence and
smooth out the training.

4.3. The Training of DDQN Algorithm

In the DQN algorithm, the target value can be directly calculated through the greedy
algorithm. Although the Q value can quickly be closer to the possible optimization target
in this way, the target Q value will be overestimated and the deviation will be large.

In the DDQN algorithm [26], overestimation can be eliminated by decoupling the
action selection and calculation of the target Q value. When updating the parameters of the
target Q network, the critic network Q will be employed first to choose an optimal action
amax(st+1), which can be expressed as

amax(st+1, θ) = arg max
a

Q(st+1, a; θ). (21)

Then, the target value of DDQN that can be estimated by

yddqn
t = r(st, at) + γQ(st+1, amax(st+1, θ); θ−). (22)

The pseudocode of training the DDQN algorithm is shown in Algorithm 1.
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Algorithm 1 The Training of the DDQN Algorithm in SR-telemedicine
Input: Initialize the weights θ of the Q-network Q(s, k, xk; θ) with random values.
Initialize the weights θ− of the target network Q′ with θ.
Initialize replay bufferR, and minibatch size B.

1: for Episode = 1 to Tend do
2: Initialization: Initialize the first state s
3: Update the basic exploration factor ε based on the number of episodes
4: for the each initialized first state s do
5: With probability 1− ε, select action a = arg max

a
Q(s, a; θ),

6: or randomly select an action a
7: Take action a, observe reward rt and the next state s′

8: Store the transition {s, a, r, s′} intoR
9: Sample a random minibatch of B transitions

10: {sj, aj, rj, sj+1}1≤j≤|B|
11: Set yddqn

j = r(sj, aj) + γQ(sj+1, arg max
a

Q(sj+1, a; θ); θ−)

12: Use the mean square loss function ( 19) to update the network weight θ via the
stochastic gradient method

13: Update the parameters for the network Q−(θ−) every C steps
14: θ− ← τθ + (1− τ)θ−

15: Until s ends in the “Terminated” state
16: end for
17: Until reaching the maximum number of iteration episodes Tend
18: end for

5. Evaluation

In this section, extensive experiments based on real-world traces are carried out to
evaluate the performance of our proposed SR-Telemedicine system, and the experimental
results are illustrated and analyzed.

5.1. Dataset

To drive our experiments, 27 videos (resolution: 1080p) are collected from Youtube
with the length ranging from 40 s to 180 s. The chunk size, frame rate, and bit rates are
set to 4 s, 24 fps and {400 kbps, 800 kbps, 1200 kbps, 2400 kbps, and 4800 kbps} (the
corresponding resolutions are {240p, 360p, 480p, 720p, 1080p}), respectively. To evaluate the
performance of our proposed SR-Telemedicine system under limited network bandwidth,
we here assume that the resolution of the video sent from the patient is fixed to 240p; thus,
D = {(240p, 720p), (240p, 1080p)}.

To simulate the two-stage transmission in SR-Telemedicine, a real-world bandwidth
dataset consisting of 508 throughput traces from Norway’s 3G network and 421 traces from
U.S. broadband are utilized, which is compiled by the authors of Pensieve [30].

5.2. Setup

Because D = {(240p, 720p), (240p, 1080p)}, the 240p video chunks transmitted from
the patient to the physician can be reconstructed to 720p and 1080p. We will train one neural
network model for each pair in D with 4 levels of scales (different number of ResBlocks),
respectively. The 4 levels of scales can be denoted as {low: {ResNet blocks: 2}, medium:
{ResNet blocks: 4}, high: {ResNet blocks: 6}, and ultrahigh: {ResNet blocks: 8}}. Some
other parameters are set as follows: the max length of the VSR processing buffer Bmax

V and
playback buffer Bmax

P are both set as 60 s (the same as in Pensieve [30]), and the number of
historical video chunks δ is set as 8. For the DDQN algorithm, the discount factor γ = 0.95,
ε ranges from 1 to 0.001, and the initial learning rate is set as 0.0003.
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5.3. Baseline Algorithms

To verify the performance improvement of our proposed approach, we compare it
with the following three baseline algorithms.

• Buffer-Based (BB) [38]: This approach selects the proper bit rate to keep the length of
buffer larger than 5 s, and chooses the highest available bit rate when the buffer length
exceeds 15 s.

• robustMPC [29]: This approach optimally combines buffer occupancy and throughput
prediction, and employs model predictive control (MPC) to maximize the user’s QoE.

• Pensieve [30]: This approach uses DRL to maximize QoE without VSR, which trains a
neural network model that selects bit rates for future video chunks based on observa-
tions collected by client video players.

5.4. Convergence Analysis

We compare the training process of our proposed SR-Telemedicine with that of Pen-
sieve. As illustrated in Figure 3, it can be seen that both algorithms can be trained to
converge, but SR-Telemedicine outperforms Pensieve in average QoE; this implies that
SR-Telemedicine can achieve better QoE under the same network condition.
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5.5. Performance Comparison

After training the proposed and learning-based baseline algorithms, we conducted
experiments to compare our proposed SR-Telemedicine with baseline algorithms in terms
of average QoE, average bit rate, average rebuffering time, and average jitter.

First, from Figure 4a, we can see that SR-Telemedicine can improve the average QoE
by 17–79% compared with the three baseline algorithms. Specifically,

• BB vs. robustMPC: robustMPC can improve the average QoE by 20% compared to
BB. This is because robustMPC can make an accurate prediction on the bandwidth of
the network and achieve a better match between the video resolution and the network
dynamic condition.



Electronics 2022, 11, 2944 13 of 17

• robustMPC vs. Pensieve: Pensieve improves the average QoE over robustMPC by
30%. The reason is that the DRL-based algorithm can better capture the network
dynamics and select a more appropriate resolution with a better QoE.

• Pensieve vs. SR-Telemedicine: SR-Telemedicine outperforms Pensieve, and can
increase the average QoE by 17%. This is because VSR can improve users’ QoE by
reconstructing the low-resolution video chunk into high-resolution chunks, even over
a network with limited bandwidth.
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Figure 4. The comparison results between our proposed SR-telemedicine and baseline algorithms.
(a) The average QoE. SR-Telemedicine can improve the average QoE by 17v79%. (b) The average
bit rate. SR-Telemedicine can largely increase the average video bit rate due to VSR processing on
the edge node. (c) The average rebuffering time. SR-Telemedicine is worse than Pensieve because
the reconstruction of the low-resolution video chunks at the edge node would increase the amount
of transmitted data and thus increase the probability of rebuffering. (d) The average jitter. SR-
Telemedicine can always promote the low resolution to a higher resolution, and thus video quality
switching can be effectively avoided.

Furthermore, from Figure 4b, it can be observed that SR-Telemedicine can largely
increase the average video bit rate compared to the baseline algorithms. This is due to
VSR processing on the edge node. The proposed SR-Telemedicine system can provide
video chunks with higher quality under the same network condition as that of the baseline
algorithms. Even when the network condition is poor, SR-Telemedicine can still obtain low-
resolution videos from the patient, which can be then reconstructed into high-resolution
videos at the edge node by a VSR processor before sending it to the physician. However,
the three baseline algorithms can only choose to deliver low-quality videos to the physician
under poor network conditions.

In Figure 4c, we can see that Pensieve can obtain a better rebuffering time than the
other algorithms because of the advantages of the DRL technique. Our proposed SR-
Telemedicine is also worse than Pensieve; this is because SR-Telemedicine increases the
amount of data transmitted from the edge node to the physician due to the reconstruction
of the low-resolution video chunks, thus increasing the probability of rebuffering. Although
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robustMPC performs best in rebuffering time, low-resolution videos are always delivered
to the physician’s side and would result in a poor visual experience. In Figure 4d, it can
be seen that SR-Telemedicine can achieve the best performance with regard to the video-
quality jitter. SR-Telemedicine can always promote the low resolution to a higher resolution,
and thus video quality switching can be effectively avoided.

In addition, we conducted experiments to analyze the cumulative distribution function
(CDF) of QoE for all employed algorithms in this paper. From Figure 5, we can see that our
proposed SR-Telemedicine outperforms the baseline algorithms in the average QoE and can
achieve a better QoE with a higher probability. At the same time, the maximum QoE that
SR-Telemedicine can achieve is also better than other baseline algorithms. This performance
gain mostly comes from the VSR processing on the edge node near the physician.
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Figure 5. Cumulative distribution function (CDF) of QoE. It can be seen that our proposed SR-
Telemedicine outperforms the baseline algorithms in the average QoE and can achieve a better QoE
with a higher probability.

5.6. Scalability Analysis for SR-Telemedicine

In order to verify the validity and feasibility of the multi-scale VSR model, we recorded
the reconstructed resolution level and the corresponding selected VSR model as illustrated
in Figure 6. When SR-Telemedicine reconstructs the resolution of the video chunks from
240p to 720p or 1080p, it actually chooses different model scales to adapt to the time-varying
computing resources. In this case, we may maintain a continuous and stable resolution
level to reduce the video-quality jitter between adjacent video chunks even though the
computational capability changed.
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Figure 6. The model level and the number of ResNet block for different chunks. It can be found
that our proposed algorithm actually chooses different model scales adapt to the time-varying
computing resources.

6. Discussion

In this paper, patient medical videos are reconstructed adaptively via VSR at the
edge node near the physician side. This paradigm can break the dependence of video
transmission on the network condition, save network bandwidth and enhance the medical
video quality received by the physician. However, VSR may introduce “fake” information
to the physician when the VSR model or its generalization ability is not good enough. To
mitigate this issue, (1) a more powerful VSR model could be trained to improve the quality
of the enhanced videos, and (2) some new VSR algorithms could be utilized to improve
the VSR performance. For example, Khani et al. [39] proposed SRVC, which encodes video
into two bit streams: (i) a content stream, produced by compressing downsampled low-
resolution video with the existing codec, and (ii) a model stream, which encodes periodic
updates to a lightweight SR neural network customized for short segments of the video.
SRVC decodes the video by passing the decompressed low-resolution video frames through
the (time-varying) SR model to reconstruct high-resolution video frames. At the same
time, to avoid the risk caused by the fake information, some real-time and quality-sensitive
telemedicine applications, such as telesurgery, are not suitable for applying VSR at the
current stage.

7. Conclusions

In this paper, we investigated the problem of providing high QoE medical video service
in telemedicine systems. A super-resolution-empowered adaptive medical video streaming
in telemedicine system (named SR-Telemedicine) is designed to achieve this purpose.
SR-Telemedicine can reconstruct the low-resolution video chunks into high-resolution
ones with several different high-resolution levels at the edge node near the physician. In
addition, the neural network of the VSR model employed in the SR-Telemedicine system
is designed to be scalable. The scale of the VSR model can be dynamically determined
according to the computational capability of the edge node and the network conditions
by applying the early exit mechanism. To jointly select the optimal reconstructed high-
resolution level and the scale of the VSR model, a DDQN-based algorithm is proposed with
the aim of maximizing QoE. Extensive experiments based on real-world traces verified that
the proposed SR-Telemedicine system can improve the QoE of medical video streaming by
17–79% compared to three baseline algorithms.
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