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Abstract: Brownian motion is a dynamic behavior with random changes over time (stochastic) that
occurs in many vital functions related to fluid environments, stock behavior, or even renewable energy
generation. In this paper, we present a circuit implementation that reproduces Brownian motion
based on a fully deterministic set of differential equations. The dynamics of the electronic circuit are
characterized using four well-known metrics of Brownian motion, namely: (i) Detrended Fluctuation
Analysis (DFA), (ii) power law in the power spectrum, (iii) normal probability distribution, and
(iv) Mean Square Displacement (MSD); where traditional Brownian motion exhibits linear time
growth of the MSD, a Gaussian distribution, a −2 power law of the frequency spectrum, and
DFA values close to 1.5. The obtained results show that for a certain combination of values in the
deterministic model, the dynamics in the electronic circuit are consistent with the expectations for
a stochastic Brownian behavior. The presented electronic circuit improves the study of Brownian
behavior by eliminating the stochastic component, allowing reproducibility of the results through fully
deterministic equations, and enabling the generation of physical signals (analog electronic signals)
with Brownian-like properties with potential applications in fields such as medicine, economics,
genetics, and communications, to name a few.

Keywords: Brownian motion; deterministic Brownian motion; DFA analysis; statistical analysis;
electronic circuit; electronic implementation

1. Introduction

Brownian Motion (BM) refers to stochastic or random dynamics followed by various
systems, e.g., the erratic motion of dust particles “floating” in a room. The behavior of
stocks in the stock market, where fluctuations in the price of a product are described
by Brownian models [1,2], or even renewable energy generation are characterized by
Brownian behaviors, such as solar and wind energy generation [3,4]. In turn, vital functions
in aqueous environments are subject to thermal fluctuations that cause random collisions,
and these can be described as Brownian behaviors [5].

This type of random behavior, Brownian motion, is named after the Scotsman Robert
Brown, who in 1827 observed pollen particles moving irregularly under a microscope for
no apparent reason. It was not until 1880 that the first formal approximation to what we
now know as Brownian motion was given [6]. From that time on, the random behavior
of particles was studied, highlighting Einstein’s contribution, which provided the first
numerical approximation to describe Brownian motion [7] and introduced the equation
of random behavior describing any kind of non-deterministic process. It was not until
1908 that Paul Langevin provided a macroscopic description of BM using Newton’s sec-
ond law [8]. Despite numerous studies and different approaches to describe Brownian
behavior [9–14], the Langevin model is still the most widely used.
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The system of equations proposed by Paul Langevin in 1908 [8] has a stochastic charac-
ter [15–17], although in recent years, the idea has emerged that Brownian behaviors can be
approximated by deterministic systems, i.e., systems without random components [18–20].
This deterministic view of Brownian motion has permeated the phenomenological study
of chemical reactions, where instead of a random temporal evolution of the system, a
purely deterministic behavior is observed [20–22]. Other examples come from Trefàn et al.
who described a discrete system exhibiting Brownian behavior [23]. In 2014, Huerta et al.
proposed a continuous-time system inspired by the jerk equation [24] that exhibits behavior
with statistical properties typical of Brownian motion; behavior that has been theoretically
confirmed both in integer order and with fractional order derivatives [25–31]. Another
interesting result is the one presented in [32], in which they analyzed chaotic dynamics
using the Langevin equation, which describes the dynamics of the phase difference be-
tween identical coupled chaotic oscillators. The time evolution of this phase difference is
described by Brownian behavior.

As mentioned earlier, numerous vital functions that develop in aqueous environments
are described by Brownian behaviors. In these cases, the diffusion process is a consequence
of the same “bombardment” of collisions between particles. Some examples are: the release
of an orally administered drug in a tablet in the digestive tract [33], the penetration of an
anticancer drug into tumor tissue [34], and the absorption of ions in the cell membrane by
specific proteins [35], to name a few. In examples such as these, controlling diffusion based
on a stochastic model is not possible. In this case, deterministic Brownian-like motion
becomes relevant [36].

In view of the discussion raised, this paper focuses on the generation of deterministic
Brownian-like motion through the electronic implementation of the model proposed in [24].
The dynamics of the electronic circuit are characterized by applying well-known statistical
metrics for BM: (i) Detrended Fluctuation Analysis (DFA), (ii) Power Law in the power
spectrum, (iii) Normal Distribution, and (iv) Mean Square Displacement (MSD). A total of
126 combinations of values for the system parameters were analyzed, with deterministic
Brownian-like motion detected in 10% of the cases. The presented electronic circuit elimi-
nates the stochastic component in the study of Brownian behavior, enables reproducibility
of results through fully deterministic equations, and provides physical signals (analog
electronic signals) with Brownian-like properties with potential applications in fields such
as medicine, economics, genetics, and communications, to name a few.

The rest of the paper is divided into the following sections: Section 2 describes the
studied oscillator and its analogy to particle modeling. The methodology used and the
electronic circuit studied are also described in the second section. The characterization of
the dynamics of the circuit for a given combination of values using the above metrics is
described in Section 3. The discussion of the obtained results is given in Section 4, and the
last section of the paper is devoted to the conclusions.

2. Materials and Methods
2.1. Model

Paul Langevin postulated that a particle immersed in a liquid feels a frictional force just
because it is inside the medium [8], and according to Stokes’ law [37], a particle of radius r
and mass m located in a medium of viscosity η undergoes a change in its acceleration with
respect to time caused by the viscosity in the fluid, defined as:

ẍ = −γẋ,

where γ =
6πrη

m
.

(1)

If Equation (1) is considered at the mesoscopic level, i.e., if the atomic interaction of
the particles is not taken into account, but the properties of matter are, then a strongly
fluctuating stochastic term describing the interaction of the immersed particle with the
surrounding atoms should be added to this acceleration change, leading to the famous
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Langevin equation, Equation (2), which is still the most commonly used in modeling
Brownian behavior [5].

ẍ = −γẋ + A f (t), (2)

where ẋ = dx/dt and ẍ = d2x/dt2 denote the particle velocity and acceleration, respectively.
The term A f (t) represents the fluctuating force, the main component of Brownian motion,
with the following assumptions:

• A f (t) is independent to x.
• A f (t) fluctuates extremely fast compared to the fluctuations of the particle position.

Based on the model proposed by Langevin, a simple model emerges that approaches
the generation of a Brownian-like motion in a deterministic manner and, from what has
been reported, is theoretically capable of generating a response that contains features
of the classical Brownian motion [24]. The proposed system is based on a multi-scroll
generator system modified according to Stokes’ law for a particle immersed in a liquid, i.e.,
it considers a particle of radius r and mass m immersed in a liquid of viscosity η, which
provides the physical parameters of the system under study. Moreover, the fluctuating
acceleration of the stochastic type is replaced by a jerk-type function, which leads to a
system of three coupled differential equations, as described below:

ẋ = y,
ẏ = −γy + z,
ż = −α1x− α2y− α3z + α4,

(3)

where the nonlinear function is defined as follows:

α4 = C1

[
g
(

x
C2

)]
. (4)

The function g(x) is equivalent to the function for rounding x to the nearest integer [38].
Since this definition is ambiguous for fractional values, the following rule is assumed:

g =

{
Up round, by taking bx + 0.5c,
Down round, by takingdx− 0.5e. (5)

The system described by Equation (3) consists of three state variables, x, y, z, represent-
ing respectively the position, velocity, and acceleration of the particle. Their derivatives
respond to the velocity, acceleration, and jerk of the particle. The variable γ takes into
account the physical parameters of the system under study, i.e., the properties of both the
particle and the medium in which it is immersed. The nonlinear function of this system
represents a generalization of a piecewise linear function [39,40]. Its goal is to generate a cer-
tain number of plateaus on which the system exhibits a behavior similar to the multi-scroll
system, with the particularity that the response as a function of the control parameters α1−3
qualitatively resembles a Brownian motion.

The generalization of the nonlinear function (g(x)) guarantees the generation of
equidistant equilibrium points [41], by means of the space segmentation of the variable x
in uniformly distributed intervals by means of the constant C2, and guaranteeing the ideal
height between each of the break points maintaining the relation C1 = α1C2.

The operation region where the system described by Equation (1) responds to the
configuration of eigenvalues defined as an Unstable Dissipative System type 1 (UDS I), a
kind of system required to generate as many scrolls as equilibrium points induced to the
system, can be defined by means of mathematical analysis as described in [42]:

Proposition 1. Consider the family of affine linear systems given by Equation (3), being AAA the
systems’ Jacobian matrix with the parameters α1, α2, α3 ∈ R+. If α1 > 0, 0 < α2 <

α1

α3
, and

α3 > 0, then the system Equation (3) is based on UDS I.
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Proof. Suppose that α1, α2 > 0. Since α3 = Trace(A) = ∑3
i=1 λi < 0, where A denotes the

system Jacobian, being λi, i = 1, 2, 3, each of the eigenvalues of A, the system described
by Equation (3) is dissipative. Additionally, with α1 = det(A), the system has saddle
equilibrium points, which are determined by the characteristic polynomial of the linear

operator, λ3 + α3λ2 + α2λ + α1, which for α2 <
α1

α3
, according to the Hurwitz polynomial

criterion, implies instability. Since α1, α2, and α3 are positive real constants, and according
to Descartes’ rule of signs, the characteristic polynomial has no positive characteristic
values, so it has only one negative eigenvalue due to which the equilibrium point is a
saddle. Then, the eigenspectra are given by one negative real eigenvalue and a pair of
complex conjugate eigenvalues with a positive real part.

2.2. Electronic Implementation

In recent decades, the study of natural phenomena has intensified through the use
of models based on both analog and discrete devices, such as the study of chemical
reactions [43], biological systems [44], and neuronal models [45]. The implementation
of systems by op-amps is able to remove the limitations of computational calculation and
thus produce an analog system that represents the mathematical model under study.

The electronic implementation of the system described by Equations (3) and (4) is
based on the properties of the analog computation achieved by using operational am-
plifiers (op-amps) [46]. The electronic diagram shown in Figure 1a corresponds to the
implementation of the linear system, while the nonlinear function α4 is embedded in a
DSP (Digital Signal Processor) [47]. The electronic circuit solves the system of differential
equations, the state variable x is fed into the DSP so that it performs the commutations
considering the first state of the system and returns the function α4 through one of its DA
(Digital-Analogic) channels, which is fed back into the third state variable of the electronic
circuit and completes the system.

Since we work with time series generated by the electronic circuit, we perform the
storage of the time series through a DAQ (Data Acquisition) system [48]. Given the nonlin-
ear nature of the oscillator, changes in the initial conditions of the analog implementation
are accounted via a relay circuit. The initial conditions are randomly changed in the three
state variables, enabling and disabling the polarization of the electronic circuit, taking into
account the charging and discharging times of the used capacitors. Figure 1b outlines the
experimental implementation, which includes the electronic circuit, the DSP to generate the
switching function, the DAQ system for data acquisition, and the computer that controls
the DAQ, the DSP, and the change in initial conditions.

Considering that the system of the deterministic Brownian-like motion generator
has four parameters (γ, α1, α2, α3), the possible combinations for the system that can be
described by UDS I are almost infinite. Therefore, setting γ = 0.1, a parameter related
to a real fluid and particle dimensions, values close to those published in [24] are taken;
α1 = 1.5, α2 = 1.3, α3 = 0.1. As described in the article proposing the studied system, the
constant C2 = 0.6 determines the size of the segmentations between the switching surfaces,
while C1 = α1C2. The electronic components from Figure 1a are described in Table 1, while
the ratios describing the system parameters are as follows:

R11

R10
= α1;

R13

R12
= α2;

R15

R14
= α3;

R5

R4
= γ. (6)
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(a)

(b)

Figure 1. (a) Circuit diagram of the generator for Brownian-like motion described by Equation (3).
(b) Experimental setup for data acquisition from electronic implementation.

Table 1. Values used in the electronic implementation of the deterministic Brownian-like motion
generator.

Component Value Component Value

R1, R9, R21 1 MΩ R4 100 KΩ

R10, R12, R14 10 KΩ R5, R11 [1–100] KΩ

R2, R3, R6, R7 1 KΩ C1, C2, C3 100 pF

R5, R11, R13, R15 [1–100] KΩ R8, R16, R17, R18, R19, R20 1 KΩ

2.3. Statistical Metrics

The metrics used to characterize the dynamics of the electronic circuit are described
below. It is important to emphasize that a Brownian-like motion is desired in the system
variable x, which is associated with the position of the particle.

2.3.1. Detrendred Fluctuation Analysis

Detrended Fluctuation Analysis (DFA) is a scaling method used to estimate long-
range temporal correlations in the form of a power law. The main advantage of DFA over
many other methods is that it allows the detection of long-range correlations of the signal
embedded in apparently non-stationary time series, and also avoids the spurious detection
of apparent long-range correlations that are an artifact of non-stationarity. The fluctuation
function F(v; s) obeys the power law scaling relation described in Equation (7). The method
was first proposed in 1994 by C.K. Peng [49], and better described in [24,25], who used this
type of analysis to identify trends in DNA strands without knowing their shape or origin.

F(v; s) ∼ sδv , (7)
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where s are the segments from the time series with length ν. The typical classes of correla-
tions associated with the exponent δv are the following:

• When δv = 0.5, the time series is said to be uncorrelated, white noise.
• When 0 < δv < 0.5, the time series is anti-correlated.
• If 0.5 < δv < 1, there are extensive positive correlations in the series under study.
• If δv = 1, the signal corresponds to a 1/f -type process, pink noise.
• If δv ∼ 1.5, the signal shows a Brownian-like behavior, brown noise.

2.3.2. Power Law in the Power Spectrum

Another important feature of Brownian motion is its Lorentzian shape of the power
spectrum with a−2 power law of the high-frequency slope, which obeys the scaling relation

I(ω) ∼ ωβ, (8)

where I(ω) is the spectral intensity at frequency ω. According to the observations on a
colloidal particle in a liquid [50], Brownian motion has an exponent of β ∼ −2.

After calculating the Fourier transform of the time series, it is plotted on a log-log
scale to later calculate its slope using least squares. The slope value obtained is the one
associated with the power law.

2.3.3. Mean Square Displacement

Let there be a particle with Brownian behavior, where any change in its position can
be either forward or backward, which cannot be predicted and has the same probability of
occurrence. If you want to know the distance traveled by the particle and take a known
point as the starting point, it would be sufficient to add the distances traveled at each instant.
However, since a forward motion increases the distance and a backward motion decreases
it, and since both events have the same probability of occurrence, the distance obtained at
the end would be zero. For this reason, Einstein defined the distance traveled by a particle
with random behavior as the square of the distance traveled at each instant, generating a
sum of positive elements that allow quantifying the distance traveled by the particle under
study [7,51]. The formula describing this measure, the Mean Square Displacement (MSD),
can be represented as in Equation (9), where x(t) is each of the directional changes of the
particle and x(0) is the starting point taken as reference. Brownian motion is characterized
by the fact that the Mean Square Displacement grows linearly with time.

MSD = ∆x2 =
〈
(x(t)− x(0))2〉. (9)

2.3.4. Normal Probability Distribution

The normal distribution was first recognized by Abraham Moivre. Later, Carl Gauss
deepened his study and established the equation of the normal curve, also known as
the Gaussian curve [52,53]. The distribution of a normal variable is determined by two
parameters, its mean (usually represented as µ), and the standard deviation (σ). This
gives the density of a normal curve as Equation (10), which can be used to generate the
characteristics of the Gaussian bell curve. It is known that Brownian motion is characterized
by Gaussian probability distributions of particle position.

f (x) =
1√
2πσ

e
(
− (x− µ)2

2σ2

)
; −∞ < x < +∞ . (10)

3. Results

The results obtained by applying the four statistical metrics we use to character-
ize deterministic Brownian-like motion are shown below. The time series shown in
Figure 2 were obtained by randomly changing the initial conditions for the values γ = 0.1,
α1 = 1.5, α2 = 1.3, α3 = 0.1, C1 = 0.9, C2 = 0.6 used in the electronic oscillator described
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by Equation (3) and shown in Figure 1a. As can be seen, the behavior is different for each
initial condition, as expected for Brownian motion.
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(a) (b)

Figure 2. (a) Time series generated by the electronic circuit shown in Figure 1 for parameters
γ = 0.1, α1 = 1.5, α2 = 1.3, α3 = 0.1, C1 = 0.9, C2 = 0.6. (b) Zoom-in on the time series shown
in (a).

Let us first consider the DFA analysis applied to the time series, which gives us values
in the range of 1.38 < δν < 1.6, expected values for stochastic Brownian behavior. Figure 3a
shows the fluctuation function resulting from the analysis of the purple time series shown
in Figure 2. It has an exponent of δν = 1.4801, which is consistent with what is expected for
a Brownian-like behavior. A similar result can be obtained for a different initial condition
with the same parameters, which confirms the DFA evaluation.

-6 -4 -2 0 2 4 6 8
log

10
(ν)

0

1

2

3

4

5

6

7

8

9

lo
g 10

F
(ν

)

Fluctuation function F(ν)
   Linear fit

δ
ν
=1.4801

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

log
10

 Frequency ω 

-12

-10

-8

-6

-4

-2

0

2

lo
g

1
0
 ω

 P
o

w
e

r 
S

p
e

c
tr

u
m

Power Spectrum

Linear fit

β=-2.0604

(a) (b)

Figure 3. (a) DFA for the time series obtained from the electronic circuit. (b) Power law analysis of
the frequency spectrum.

Once the time series is validated with DFA, its power spectrum is calculated by the
Fourier transform and its power law is determined. Figure 3b shows the power spectrum
of the same time series to which DFA was applied, yielding a power law β = −2.012. As
described in Section 2, Brownian-like behaviors are characterized by power laws in the
frequency spectrum close to −2.

After validating the dynamics of the system using DFA and the power law in the
frequency spectrum, we analyze whether the probability distribution of the time series
resembles a normal distribution. Figure 4a shows the histogram of the analyzed time series
and the approximation to a normal distribution with mean and standard deviation that the
time series has. This result is confirmed by a Normal-plot, Figure 4b. This type of graph is
used to analyze whether the analyzed data correspond to what is expected from a normal
distribution. The results show that the analyzed time series are normally distributed with
certain tolerances.

Finally, the behavior of the mean square displacement of the time series is analyzed.
Figure 5a shows the behavior of the MSD of a Brownian time series according to Einstein’s
findings. Similarly, and using Equation (9) to calculate the MSD, Figure 5b shows the
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behavior of ∆x2 for the same purple time series depicted in Figure 2, consistent with a
linear increase over time.
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Figure 4. (a) (Doted line) The probability density resulting from the variable x generated by the
electronic circuit is represented by the normalized histogram, compared with the approximation
resulting from the evaluation of the time series by the Gaussian function (solid line). (b) Normal plot
of the analyzed time series (blue line) against the estimated approximation (red line).

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
t ×104

0

100

200

300

400

500

600

700

800
M

S
D

(a) (b)

Figure 5. (a) Mean Square Displacement (MSD) of a Brownian particle. (b) MSD for the time series
generated by the electronic circuit.

4. Discussion

The results described in the previous section are restricted to the range of values
where C1 = α1C2. However, when the parameter C1 is considered variable, the system
shows multiscroll dynamics with a variable number of scrolls, similar to that published
in [46,54]. Considering this, the oscillator described by Equation (3) is able to exhibit
many more behaviors than deterministic Brownian-like motion, such as white noise, pink
noise, periodic behavior, and even coexistence of attractors. It is worth noting that both
the scroll generation with the highest number and the regions where the system exhibits
Brownian-like motion are described by C1 = α1C2.

Remark 1. It is worth noting that the metrics used were exclusive, i.e., they were applied in the
order described below and the combination of values was excluded if the tests were not passed:

1. DFA;
2. Power law in the frequency spectrum;
3. Normal probability distribution;
4. Mean Square Displacement.

As mentioned in the previous sections, in this work, the behavior of the electronic
circuit shown in Figure 1 was analyzed for 126 combinations of values of the parameters
αi. These combinations of values are described in Table A1 in Appendix A, and lie within
the ranges described by (11). Examination and characterization of all of these value
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combinations, where the value γ was held constant, have shown that the combinations
shown in Table 2 satisfy the metrics established for Brownian behavior.

α1 = [0.7, 1.5],
α2 = [0.7, 1.7],
α3 = [0.1, 1.5].

(11)

Remark 2. Note that the random choice of αi values within the ranges described by (11) does not
guarantee the oscillation of the electronic circuit. This must always satisfy Proposition 1.

Table 2. Combinations of examined values that have Brownian-like motion based on the analysis
performed. For each combination of values, its eigenvalues and the sum of these values are shown to
confirm the dissipative conditions of the system. Consider the eigenvalues λi, the real component σi,
and the corresponding imaginary component ρi.

Comb. α1 α2 α3 −σ1 σ2 ρ2 Comb. α1 α2 α3 −σ1 σ2 ρ2

C1 0.7 0.7 0.1 0.67 0.23 0.98i C7 1.5 0.9 0.3 0.99 0.29 1.19i

C2 0.9 0.7 0.5 0.89 0.14 0.99i C8 1.5 1.1 0.1 0.87 0.33 1.26i

C3 1.1 1.1 0.7 0.88 0.04 1.11i C9 1.5 1.3 0.1 0.82 0.31 1.31i

C4 1.3 0.7 0.7 1.13 0.16 1.05i C10 1.5 1.3 0.3 0.86 0.26 1.29i

C5 1.5 0.7 0.7 1.20 0.20 1.10i C11 1.5 1.7 0.3 0.75 0.17 1.40i

C6 1.5 0.7 1.3 1.5 0.05 0.99i C12 1.5 1.7 0.7 0.83 0.01 1.34i

5. Conclusions

In the present work, the implementation and characterization of an oscillator defined
by a system of deterministic differential equations was carried out. The dynamics of the
oscillator has been studied in search of random-like dynamics similar to that of a Brownian
behavior by examining the responses based on four studies whose values are defined for
the desired dynamics: (i) the application of Detrended Fluctuation Analysis, (ii) the search
for scaling laws in the power spectrum, (iii) the existence of Normal type components in
the response of the system, and (iv) the behavior of the mean square displacement.

The results obtained with the circuit implementation show satisfactory agreement
with the numerical model [24]. By characterizing the global dynamics of the system,
combinations of values for the parameters αi were found for which the dynamics of the
oscillator corresponds to what would be expected for a system with Brownian dynamics.
This result not only confirms what has been proposed theoretically [24,25], but also extends
the possible combinations of values at which the system can exhibit Brownian-like motion.

Remark 3. It is worth emphasizing that the main contribution of this work is summarized in the
following points:

• It is the first electronic implementation that generates Brownian motion in a deterministic
way, based on a set of differential equations based on the Langevin equation, i.e., the model
takes into account the information of the particles and the surrounding medium.

• The elimination of the stochastic component enables the reproducibility of the results.
• The validation of Brownian-like motion in electronic circuits opens the possibility of using this

circuit as seed for applications in the field of medicine, ecology, to name a few.

So far, the idea of generating deterministic Brownian-like motions has been explored
only theoretically, without investigating its physical implementation. Our work fills this gap
by electronically confirming the generation of said behavior by eliminating the stochastic
component, thus enabling reproducibility of the results. Once we have implemented an
electronic circuit capable of generating Brownian-like motion in a deterministic manner, it
can be used as a noise source due to the properties that define Brownian motion and thus has
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potential applications in fields such as medicine, economics, genetics, and communications,
to name a few. Comparing the results based on classical Brownian motion described by
the Langevin equation with those described by the electronic circuit is part of the research
group’s future work.
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Appendix A. Explored Values Combinations

As mentioned in the previous sections, the results presented in this paper are based on
the analysis of 126 combinations of values of the parameters αi. Each of them satisfies the
conditions for the description of the system by a UDS I. Next, the combinations of values,
as well as their decomposition into eigenvalues and the sum of these values to confirm the
dissipative conditions of the system, are shown. For each eigenvalue λi, the real component
σi and the corresponding imaginary component ρi are shown.

Table A1. Explored values in the electronic implementation of the deterministic Brownian-like
motion generator.

α1 α2 α3 −σ1 σ2 ρ2
3

∑
i=1

λi
α1 α2 α3 −σ1 σ2 ρ2

3

∑
i=1

λi

0.7 0.7 0.1 0.67 0.23 0.98i −0.2 0.9 0.7 0.1 0.47 0.03 1.21i −0.4

0.7 0.7 0.3 0.72 0.16 0.96i −0.4 0.9 0.7 0.3 0.82 0.21 1.01i −0.4

0.7 0.7 0.5 0.78 0.09 0.94i −0.6 0.9 0.7 0.5 0.89 0.14 0.99i −0.6

0.7 0.7 0.6 0.81 0.05 0.92i −0.7 0.9 0.7 0.7 0.96 0.08 0.96i −0.8

0.7 0.7 0.7 0.85 0.02 0.90i −0.8 0.9 0.7 0.8 1.0 0.1 0.94i −0.8

0.7 0.9 0.1 0.60 0.20 1.05i −0.2 0.9 0.7 0.9 1.05 0.02 0.92i −1

0.7 0.9 0.2 0.62 0.16 1.04i −0.3 0.9 0.9 0.1 0.70 0.25 1.09i −0.2

0.7 0.9 0.4 0.66 0.08 1.02i −0.5 0.9 0.9 0.3 0.75 0.17 1.07i −0.4

0.7 0.9 0.5 0.69 0.04 1.00i −0.6 0.9 0.9 0.5 0.80 0.10 1.05i −0.6

0.7 1.0 0.1 0.57 0.18 1.09i −0.2 0.9 0.9 0.7 0.87 0.03 1.01i −0.8

0.7 1.0 0.3 0.60 0.10 1.06i −0.4 0.9 1.1 0.1 0.64 0.22 1.16i −0.2

0.7 1.0 0.5 0.64 0.02 1.03i −0.6 0.9 1.1 0.3 0.68 0.14 1.14i −0.4

0.7 1.1 0.2 0.55 0.12 1.11i −0.3 0.9 1.1 0.5 0.72 0.06 1.11i −0.6
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Table A1. Cont.

α1 α2 α3 −σ1 σ2 ρ2
3

∑
i=1

λi
α1 α2 α3 −σ1 σ2 ρ2

3

∑
i=1

λi

0.7 1.1 0.3 0.57 0.08 1.10i −0.4 0.9 1.3 0.1 0.58 0.19 1.22i −0.2

0.7 1.1 0.5 0.60 .003 1.07i −0.6 0.9 1.3 0.3 0.61 0.10 1.20i −0.4

0.7 1.2 0.1 0.51 0.15 1.15i −0.2 0.9 1.3 0.5 0.65 0.02 1.17i −0.6

0.7 1.2 0.2 0.52 0.11 1.15i −0.3 0.9 1.5 0.1 0.53 0.16 1.28i −0.2

0.7 1.2 0.4 0.55 0.02 1.12i −0.5 0.9 1.5 0.2 0.54 0.12 1.27i −0.3

0.7 1.3 0.1 0.48 0.14 1.19i −0.2 0.9 1.5 0.3 0.55 0.07 1.26i −0.4

0.7 1.3 0.2 0.49 0.09 1.18i −0.3 0.9 1.5 0.4 0.56 0.03 1.25i −0.5

0.7 1.3 0.4 0.51 .009 1.16i −0.5 0.9 1.7 0.1 0.48 0.14 1.35i −0.2

0.7 1.4 0.1 0.51 .009 1.16i −0.5 0.9 1.7 0.2 0.49 0.09 1.34i −0.3

0.7 1.4 0.3 0.47 0.03 1.21i −0.4 0.9 1.7 0.3 0.50 0.05 1.33i −0.4

0.9 1.7 0.4 0.51 .007 1.32i −0.5 1.1 1.7 0.3 0.59 0.09 1.35i −0.4

1.1 0.7 0.2 0.88 0.29 1.07i −0.3 1.1 1.7 0.5 0.62 0.01 1.32i −0.6

1.1 0.7 0.4 0.94 0.22 1.05i −0.5 1.3 0.7 0.1 0.93 0.36 1.12i −0.2

1.1 0.7 0.6 1.01 0.15 1.08i −0.7 1.3 0.7 0.5 1.05 0.22 1.08i −0.6

1.1 0.7 0.8 1.1 0.1 0.99i −0.9 1.3 0.7 0.7 1.13 0.16 1.05i −0.8

1.1 0.7 1.0 1.19 0.04 0.95i −1.1 1.3 0.7 1.0 1.27 0.08 1.00i −1.1

1.1 0.9 0.2 0.81 0.25 1.13i −0.3 1.3 0.7 1.3 1.44 0.02 0.94i −1.4

1.1 0.9 0.4 0.87 0.18 1.10i −0.5 1.3 0.9 0.3 0.92 0.26 1.15i −0.4

1.1 0.9 0.6 0.93 0.11 1.07i −0.7 1.3 0.9 0.5 0.98 0.19 1.13i −0.6

1.1 0.9 0.8 1.0 0.05 1.04i −0.9 1.3 0.9 0.7 1.05 0.12 1.1i −0.8

1.1 0.9 1.0 1.1 0.0 1.0i −1.1 1.3 0.9 0.9 1.13 0.06 1.06i −1.0

1.1 1.1 0.1 0.73 0.26 1.19i −0.2 1.3 1.1 0.7 0.97 0.08 1.15i −0.8

1.1 1.1 0.3 0.77 0.18 1.17i −0.4 1.3 1.1 0.9 1.04 0.02 1.11i −1.0

1.1 1.1 0.5 0.82 0.11 1.14i −0.6 1.3 1.3 0.1 0.75 0.27 1.28i −0.2

1.1 1.1 0.7 0.88 0.04 1.11i −0.8 1.3 1.3 0.3 0.79 0.19 1.26i −0.4

1.1 1.3 0.1 0.67 0.23 1.25i −0.2 1.3 1.3 0.5 0.83 0.11 1.23i −0.6

1.1 1.3 0.3 0.7 0.15 1.23i −0.4 1.3 1.3 0.7 0.89 0.04 1.20i −0.8

1.1 1.3 0.5 0.75 0.07 1.2i −0.6 1.3 1.5 0.1 0.69 0.24 1.34i −0.2

1.1 1.3 0.7 0.80 .001 1.17i −0.8 1.3 1.5 0.3 0.73 0.16 1.32i −0.4

1.1 1.5 0.1 0.62 0.21 1.31i −0.2 1.3 1.5 0.5 0.77 0.08 1.29i −0.6

1.1 1.5 0.3 0.64 0.12 1.29i −0.4 1.3 1.5 0.7 0.81 0.009 1.25i −0.8
1.1 1.5 0.5 0.68 0.04 1.26i −0.6 1.3 1.7 0.1 0.64 0.22 1.39i −0.2

1.1 1.7 0.1 0.57 0.18 1.37i −0.2 1.3 1.7 0.3 0.67 0.13 1.37i −0.4

1.3 1.7 0.5 0.71 0.05 1.35i −0.6 1.5 1.1 0.3 0.92 0.26 1.24i −0.4
1.5 0.7 0.1 0.99 0.39 1.16i −0.2 1.5 1.1 0.5 0.98 0.19 1.22i −0.6

1.5 0.7 0.3 1.05 0.32 1.14i −0.4 1.5 1.1 0.7 1.04 0.12 1.18i −0.8

1.5 0.7 0.5 1.12 0.26 1.12i −0.6 1.5 1.1 0.9 1.12 0.06 1.15i −1.0

1.5 0.7 0.7 1.2 0.2 1.1i −0.8 1.5 1.1 1.1 1.21 .008 1.10i −1.2
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Table A1. Cont.

α1 α2 α3 −σ1 σ2 ρ2
3

∑
i=1

λi
α1 α2 α3 −σ1 σ2 ρ2

3

∑
i=1

λi

1.5 0.7 0.9 1.28 0.14 1.06i −1.0 1.5 1.3 0.1 0.82 0.31 1.31i −0.2

1.5 0.7 1.1 1.39 0.09 1.03i −1.2 1.5 1.3 0.3 0.86 0.23 1.29i −0.4

1.5 0.7 1.3 1.5 0.05 0.99i −1.4 1.5 1.3 0.5 0.91 0.15 1.27i −0.6

1.5 0.7 1.5 1.63 0.01 0.95i −1.6 1.5 1.3 0.7 0.97 0.08 1.23i −0.8

1.5 0.9 0.1 0.93 0.36 1.21i −0.2 1.5 1.5 0.1 0.76 0.28 1.36i −0.2

1.5 0.9 0.3 0.99 0.29 1.19i −0.4 1.5 1.5 0.3 0.80 0.20 1.34i −0.4

1.5 0.9 0.5 1.05 0.22 1.17i −0.6 1.5 1.5 0.5 0.85 0.12 1.32i −0.6

1.5 0.9 0.7 1.12 0.16 1.14i −0.8 1.5 1.5 0.7 0.90 0.05 1.28i −0.8

1.5 0.9 0.9 1.2 0.1 1.1i −1.0 1.5 1.7 0.1 0.71 0.25 1.42i −0.2

1.5 0.9 1.1 1.3 0.05 1.07i −1.2 1.5 1.7 0.3 0.75 0.17 1.40i −0.4

1.5 0.9 1.3 1.41 .009 1.02i −1.4 1.5 1.7 0.5 0.78 0.09 1.37i −0.6

1.5 1.1 0.1 0.87 0.33 1.26i −0.2 1.5 1.7 0.7 0.83 0.01 1.34i −0.8
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