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Abstract: In recent years, great progress has been made in the recognition of skeletal behaviors based
on graph convolutional networks (GCNs). In most existing methods, however, the fixed adjacency
matrix and fixed graph structure are used for skeleton data feature extraction in the spatial dimension,
which usually leads to weak spatial modeling ability, unsatisfactory generalization performance, and
an excessive number of model parameters. Most of these methods follow the ST-GCN approach
in the temporal dimension, which inevitably leads to a number of non-key frames, increasing the
cost of feature extraction and causing the model to be slower in terms of feature extraction and
the required computational burden. In this paper, a gated temporally and spatially adaptive graph
convolutional network is proposed. On the one hand, a learnable parameter matrix which can
adaptively learn the key information of the skeleton data in spatial dimension is added to the graph
convolution layer, improving the feature extraction and generalizability of the model and reducing
the number of parameters. On the other hand, a gated unit is added to the temporal feature extraction
module to alleviate interference from non-critical frames and reduce computational complexity. A
channel attention mechanism based on an SE module and a frame attention mechanism are used
to enhance the model’s feature extraction ability. To prevent model degradation and ensure more
stable training, residual links are added to each feature extraction module. The proposed approach
was ultimately able to achieve 0.63% higher accuracy on the X-Sub benchmark with 4.46 M fewer
parameters than GAT, one of the best SOTA methods. Inference speed of our model reaches as fast as
86.23 sequences/(second × GPU). Extensive experimental results further validate the effectiveness
of our proposed approach on three large-scale datasets, namely, NTU RGB+D 60, NTU RGB+D 120,
and Kinetics Skeleton.

Keywords: action recognition; GCN; skeleton; temporal gated unit; SE

1. Introduction

With the rapid development of deep learning in recent years, the topic of skeleton-
based action recognition has become a focus of research. Skeleton-based action recognition
has a wide range of applications in areas such as video retrieval [1], human–computer inter-
action [2], video image understanding [3], and more, and has attracted extensive attention
from both academia and industry. Compared with the traditional RGB method, skeleton-
based methods are more robust to illumination changes, camera viewpoint changes, and
background noise. In addition, skeletal data, including dynamic information on simple
skeletal nodes, are easier to use for training network models. The main task of human action
recognition is to determine the category of a given piece of action information by feature
extraction and classification. Currently, the methods used for action recognition can be
classified into three types: (1) CNN-based methods [4–9], (2) RNN-based methods [10–13],
and (3) GCN-based methods [14–17].

In action recognition based on skeleton data, CNN-based methods are suitable for
extracting spatially correlated features and RNN-based methods are suitable for extracting
temporally correlated features. GCN-based methods are becoming more mainstream for
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action recognition based on skeletal data thanks to their ability to effectively characterize
the spatial features of skeleton data.

With respect to CNN-based methods, Kim and Reiter [4] proposed a new temporal
convolutional neural network (TCN) model for 3D human action recognition which ex-
plicitly provides interpretable spatio-temporal representations for learning and training.
Li et al. [5] constructed three views in the spatial domain, making full use of temporal
and spatial information to extract features; their method allows recognition scores from all
views to be combined by multiple fusion methods. In [6] Yang et al. proposed a lightweight
model called double-feature and double-motion network (DD-Net) based on CNN. While
these CNN models have shown good performances in extracting data features in Euclidean
space, they are not able to effectively extract topological information from non-Euclidean
data such as skeleton data.

With respect to RNN-based methods, Song et al. [10] proposed a framework that uses
an attention mechanism to learn the spatio-temporal features of skeletal data and long
short-term memory (LSTM) networks to learn the relationships between adjacent frames
and adjacent nodes. They employed an alternating joint training approach to train the
network and designed a regularized loss function to prevent model overfitting during
training. In [11], Du et al. proposed an end-to-end hierarchical RNN for skeletal action
recognition by dividing human skeletal data into five parts and then feeding them into five
bidirectional RNN (Bi-RNNs) sub-networks. Zhang et al. [12] designed an adaptive RNN
based on the LSTM structure to automatically adjust the observation viewpoint to suit the
behavior under examination. While the above RNN models have shown good performance
in processing time series of information, they are not able to effectively extract topological
information when dealing with skeleton data.

Finally, with respect to GCN-based methods, Yan et al. [14] proposed spatio-temporal
graph convolutional networks (ST-GCN), an application of graph convolutional neural
networks to feature extraction of skeleton data, and achieved remarkable results. Sub-
sequently, many researchers have proposed improved and optimized methods based on
ST-GCN. Shi et al. [15] proposed an adaptive graph convolutional network (AGCN) struc-
ture with better topology learning capability for different graph convolutional layers and
end-to-end skeleton samples, which proved to be more suitable for the recognition task
and its hierarchy architecture. Li et al. [3] proposed action-structural graph convolutional
networks (AS-GCN) to perform action recognition by learning actional links and extending
structured links. Thakkar et al. [18] proposed a part-based graph convolutional network
(PB-GCN) to learn the relations among the parts of the human skeleton.

Compared with typical deep neural networks, the GCN approach provides a signifi-
cant improvement in recognition accuracy. However, there are significant challenges that
GCN-based methods have to face: (1) the existing GCN models are not sufficient to extract
skeletal space features adaptively; (2) the existing GCN models have relatively large archi-
tectures with many parameters, which can be difficult to be trained quickly and accurately;
(3) in the temporal dimension, most existing GCN models follow the temporal module in
ST-GCN for temporal feature extraction. As the ST-GCN temporal module is aimed at the
feature extraction of the whole sequence, non-critical frames inevitably interfere with the
feature extraction of the critical frames, slowing down the learning speed and increasing
the computational cost of the model.

In this paper, we first provide a detailed derivation and description of our proposed
method, followed by a detailed description of the dataset and experimental configuration
used. Finally, a comparison with several different mainstream models is performed in order
to draw conclusions. In response to the issues mentioned above, the main contributions of
this paper can be summarized as follows:

(1) The focus of this paper is devoted to improving the extraction of spatio-temporal
features of skeletal sequences while considering the different importance levels of
individual skeletal joints and their connections in different behaviors; here, a learnable
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parameter matrix is added to enhance the capability of the model with respect to
spatial feature extraction of skeletal data.

(2) A temporally gated unit is added to the feature extraction process in the temporal di-
mension in order to alleviate the influence of non-critical frames on feature extraction,
filter out redundant temporal information, improve the inference speed of the model,
and reduce computational burden.

(3) Two attention mechanisms, namely, a channel attention mechanism based on an
SE module and a frame attention mechanism, are introduced in order to learn the
correlations between channels and to filter out the information of critical frames,
respectively.

(4) Through extensive comparison and ablation experiments, a six-layer GCN structure
is proposed for spatial feature extraction, reducing the size and complexity of the
model and adding residual connections to avoid model performance degradation.
Extensive experiments on the NTU RGB+D 60 [19], NTU RGB+D 120 [20], and Kinetics
Skeleton [21] datasets show the good performance of our proposed model.

2. Related Work
2.1. GCN-Based Skeleton Action Recognition

With the maturity of depth sensor technologies (e.g., Kinect [22]) and pose estimation
algorithms [23,24], it has become possible to capture skeleton data in real time by locating
key joints. Meanwhile, skeleton data have become more robust to complex backgrounds
and changes in illumination, scene, color, etc. Data-driven action recognition methods
based on skeleton data have attracted widespread attention and are flourishing.

Recently, this field has seen the extension of traditional convolution to graph convo-
lution in order to better extract the topological structural information of skeleton data,
and good results have been achieved. There are two main approaches for constructing
GCNs, namely, the frequency domain-based approach [25–27] and the spatial domain-
based approach [28,29]. The former approach uses the eigenvalues and eigenvectors of
the graph Laplacian matrix for spectral analysis based on GCN, while the latter applies
convolution operations directly to the vertices of the graph and its neighbors. Yan et al. [14]
introduced GCN for the skeleton-based action recognition task for the first time, and pro-
posed ST-GCN to model the skeletal data in the temporal and spatial dimensions. Based
on ST-GCN, Shi et al. [15] proposed a two-stream adaptive graph convolutional network
(2s-AGCN) for action recognition using the second-order skeletal information. A similar
dynamic GCN proposed by Ye et al. [30] was able to provide a new global dependency
modeling approach which achieved superior accuracy in skeleton-based action recognition.
In [31], Chen et al. proposed a more comprehensive dual-stream GCN architecture based
on graph convolutions in the vertex and spectral domains via graph Fourier transform
(GFT). However, the two-stream or multi-stream structure in the above methods is slow
to arrive at inferences and leads to increased computational costs and large model sizes,
which represent significant obstacles when applying them to practical tasks. It remains a
challenging problem to maintain or improve their recognition accuracy while reducing the
complexity of the GCN model.

2.2. Temporal Gated Unit and SE Module

The attention-enhanced graph convolutional LSTM (AGC-LSTM) model proposed
in [32] combines graph convolution with LSTM and attention mechanisms, with the gated
unit in the LSTM controlling the transmission of temporal information during propagation.
Inspired by this, a gated unit using LSTM is introduced in the present paper. Unlike [32],
however, the gated unit introduced in this paper is utilized to filter out redundant time
information, avoid disappearing gradients, and reduce computational cost. In addition,
there are different correlations that exist between different channels when dealing with
feature information in the time dimension. This is important in the extraction of feature
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information from different channels in the temporal dimension. Therefore, we introduce
an SE module to learn the correlations between channels and screen the key information.

2.3. Attention Mechanism

Attention modules have played an important role in neural networks and have been
well studied in many different application areas, including action recognition, target de-
tection, and natural language processing. Baradel et al. [33] proposed a novel human
action recognition mechanism based on spatio-temporal attention to human postures.
Song et al. [10] proposed an LSTM-based spatio-temporal attention model that automati-
cally learns the importance levels of different nodes and different frames and weights the
attention differently for each frame and node. In addition, Cheng et al. [34] embedded an
attention module into their drop graph block, significantly improving its accuracy. In [35],
Zhang et al. proposed a graph-aware transformer (GAT) able to make full use of velocity
information to learn discriminative spatio-temporal motion features from skeleton graph
sequences in a data-driven manner.

3. Approach

In this section, we propose a skeleton-based action recognition method using an
improved GCN. We first briefly introduce the application of graph neural networks in
behavior recognition. Then, we elaborate the co-operative functioning of the adaptive
graph convolution module, temporal gated unit, and attention mechanism introduced in
our approach.

3.1. Graph Convolutional Network

As mentioned above, graph convolutional neural networks are of great significance
in processing graph-structured data. Skeleton data can be naturally regarded as graph-
structured data. In action recognition, the bones of the human body are defined as an
undirected graph in which each joint corresponds to a vertex of the graph and each
bone corresponds to an edge of the graph. The skeleton sequence can be represented
as a C × T × N three-dimensional tensor, which means that there are C channels, T
frames, and N nodes. Meanwhile, a three-dimensional undirected spatio-temporal graph
G = (V, E) is constructed on a skeleton sequence with N joints and T frames, where
V =

{
vt

i | i = 1, 2, . . ., N; t = 1, 2, . . ., T
}

denotes the set of all joints and E denotes the
set of connected edges. Set E consists of two parts. The first part is the connection be-
tween neighboring nodes in each frame, denoted as ET =

{
vt

i v
t
j | (i, j) ∈ Q, t = 1, 2, . . ., T

}
,

where Q is the set of naturally connected joint pairs in the human body. The second
part is the connection between the corresponding nodes of adjacent frames, e.g., EF ={

vt
i v

(t+1)
i |i = 1, 2, . . . , N; t = 1, 2, . . ., T − 1

}
.

Based on the above definition of a skeleton-based graph structure and the definition
of a graph convolution operation, Yan et al. [14] constructed a multilayer ST-GCN for
extracting the spatial features of the skeletal structure and redefined the formula for graph
convolution, which is shown in Equation (1):

fout
(
vt

i
)
= ∑

vj∈B(vi)

1

Zt
i

(
vt

j

) fin

(
vt

j

)
· w
(

lt
i

(
vt

j

))
(1)

where fin(·) and fout(·) denote the input and output of the feature information, respectively,
t denotes the tth frame of the skeleton sequence, B(·) denotes the set of neighboring nodes
of node vi, w(·) is the weight function, which provides an initial vector of weights for
the input data (where the number of weight vectors is fixed while the label function lt

i (·)
assigns a different weight vector to each different node), and Zt

i (·) is a normalization term
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used to balance the importance of different neighboring nodes. In general, to implement
ST-GCN, Equation (1) is transformed into Equation (2):

fout
(
vj
)
=

N

∑
j=1

W fin
(
vj
)(

D−
1
2 ÃD−

1
2 �M

)
(2)

where the annotations fin(·) and fout(·) have the same meaning as in Equation (1), N
denotes the number of vertices per frame in the skeleton data, Ã = A + IN denotes
the adjacency matrix with self-connection, IN denotes an identity matrix, � denotes the
Hadamard product, and Aij = 1 when vertices vi and vj are adjacent in physical position;
otherwise, Aij = 0, where D = ∑j Ãij + ε is a degree matrix to normalize the adjacency
matrix Ã. To avoid zeros in D, we refer to [14] and set ε to 0.001. Both W and M are learnable
parameter matrices, with W being the weight vector of a 1× 1 convolution operation with
a size of Cin × Cout × 1× 1 where Cin and Cout denote the numbers of input channels and
output feature maps, respectively, and M being used to adjust the importance of each edge.

Combining the above derivations, the whole process of spatio-temporal map convolu-
tion can be summarized in Equation (3):

fout(vi) = Tt

(
σ

(
N

∑
j=1

W fin
(
vj
)(

D−
1
2 ÃD−

1
2 �M

)))
(3)

where Tt(·) is the temporal convolution layer and σ(·) is the activation function.
In the process of spatial feature extraction, we use the method of adaptive graph

convolution by adding a learnable parameter matrix to learn the differing importance of
connected edges between nodes in each skeleton graph during training. To describe the
adaptive graph structure, Equation (2) can be rewritten as

fout(vi) =
N

∑
j=1

W fin
(
vj
)(

Λj + Mj
)

(4)

where Λ = D−
1
2 ÃD−

1
2 denotes the normalized adjacency matrix and M denotes a learnable

parameter matrix. The detailed structure of the adaptive graph convolution is shown in
Figure 1. The size of the input feature information is T × N × Cin. After two paralleled
and concatenated 1× 1 convolutions for feature stitching, the softmax function is used to
generate the learned feature matrix M. Finally, the learned feature matrix M is summed
with the original normalized adjacency matrix Λ. To avoid degradation of the model during
training, we further add a residual link.

Conv2d

1×1

Conv2d

1×1

Concatenate Softmax M

Λ

in
f out

f

in
CNT ´´

out
CNT ´´

+
T

×

Figure 1. Adaptive graph convolution.

3.2. Temporal Gated Unit (TGU) and Temporal Convolutional Network (TCN)

Among the existing GCN-based methods, most use ST-GCN as the baseline for
improvement and optimization or add additional auxiliary feature extraction modules.
However, in addition to modeling the skeleton spatial information in the spatial di-
mension, it is important to model the temporal information in the temporal dimension.
Dauphin et al. [36] first proposed a convolutional network based on gated linear units
(GLU) and applied it to language modeling. While the gated unit mechanism is commonly
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found in recurrent neural networks such as LSTM, the experimental results in [36] show that
gated convolutional networks can help to simplify models and lead to faster convergence.

In this paper, we use a temporal gated unit for feature extraction of the temporal
information of the skeleton sequence; the gated convolutional network is shown in Figure 2.
These two temporal convolutional networks (TCNs) have the same kernel size Kt × 1 and
channel size C. By using TCNs and Sigmoid functions, the gated unit is able to control the
transfer of time signature information between the different layers based on the contextual
information of the time dimension. The output characteristic of the gated convolution
depends on the TCN multiplied by the gated unit. In this way, useful information related
to recognition can be retained and redundant temporal information can be filtered out. The
gated convolution operation used in this method can be formulated as follows:

fgate_out = Sigmoid
(

fgate_in ·W + ω
)
�
(

fgate_in ·V + ψ
)

(5)

where fgate_in ∈ RKt×m (m = T × N) and fgate_out ∈ RKt×n (n = T′ × N) denote the input
and output feature information of the time gated unit, respectively, m and n denote the size
of the input and output feature information, respectively, W ∈ R(Kt×m×n), V ∈ R(Kt×m×n),
ω ∈ Rn, and ψ ∈ Rn denote the learnable parameters, the Sigmoid function is the activation
function used to generate the gated control, and � denotes the Hadamard product.

Figure 2. Temporal gated unit.

3.3. SE Block

This subsection focuses on the optimization of the SE module. The original SE mod-
ule [37] is actually a channel attention mechanism indicating that features in different
channels have different importance levels. In our method, we optimize the components of
the SE module for use in the feature extraction module in the time dimension. The main role
of the SE module is to learn the correlations between channels, providing different levels of
attention to different channels while incurring only a slight increase in computational cost.

In this paper, the size of the input feature information of the SE module is T × N × C,
where T is the number of frames of the skeleton sequence, N denotes the number of skeleton
nodes in each frame, and C is the number of channels of the input feature information.
First, an adaptive pooling layer is used to compress the input feature information to a
size of 1 × 1 × C. Then, each channel is assigned a weight for output by multiplying
the excitation layer with the original image. It is worth mentioning that we add residual
links in this module in order to avoid gradient disappearance. In the first fully connected
(FC) layer of the excitation layer, the number of channels is scaled, with 1

r (r ≥ 1) being
a scaling parameter intended to reduce the number of channels and thereby decrease
the computational effort. In addition, we use the Tanh activation function, as the ReLU
activation function used in the original SE module directly replicates feature information
greater than or equal to 0 and suppresses feature information less than 0, which affects the
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extraction of useful feature information by the module. The optimized SE module is shown
in Figure 3. From the overall viewpoint, the number of parameters in the model is only
slightly increased compared to the overall model; the increase in the number of parameters
can be expressed as

4 param = 2× C× C× 1
r

(6)
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Figure 3. SE block.

3.4. Attention Block

In addition to channels, different frames may have different importance levels during
the whole process of action recognition; for example, in the action of “falling”, the action
is similar in most frames, and changes significantly in only a few frames. It can be seen
that the frames with larger changes are the key to recognizing the action. Inspired by
this, we introduce an attention mechanism to enhance the weights of frames carrying key
information in order to further improve the recognition accuracy of the model. In this
paper, an attention mechanism based on a temporal feature extraction module is adopted.
Based on the attention mechanism in [32,33], we design an adaptive weight matrix for the
different frames according to the different importance levels of each frame in the whole
action sequence, as shown in Figure 4. The feature information first passes through an
average pooling layer to reduce the number of parameters in the attention module, then
through a fully connected network to enhance the model’s learning of key frames, and
finally through the softmax activation function to determine the action in the key frames.
To prevent the gradient from vanishing, we add a residual link in the attention module.

FCN SoftmaxAvg_Pooling
inatt

f
_ outatt

f
_

Figure 4. Attention block.

3.5. Overall Network Structure

In this section, we focus on the overall network framework and how each module
works in terms of the overall network structure. We use a six-layer network structure,
that is, six feature extraction modules cascaded to form an overall network framework;
the feature extraction modules are shown in Figure 5. In the cascade of feature extraction
modules, the spatial features of the skeleton sequence are always extracted first, followed
by feature extraction in the temporal dimension.

The overall network framework in cascade is shown in Figure 6. The number of
channels is 96, 128, and 256 in the input layer, layers 1–3, and layers 4–6, respectively. In the
end, we add a classification module which contains a global pooling layer, a fully connected
layer, and the softmax activation function that outputs the predicted categories. In addition,
a dropout layer with a probability of 0.25 is added between the global pooling layer and
the fully connected layer.



Electronics 2022, 11, 2973 8 of 14

SARGCNSARGCNAGCN TCN

Feature extraction module

TCN AttentionTTTTTCCCCCNNNNNTCNTCN

SESE TGUSSSSSSSSEEEEEEEEEESESE SE

Figure 5. Feature extraction module.
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4. Experiments

In this section, we evaluate our model on two large skeleton-based action recognition
datasets to compare it with state-of-the-art methods. We performed multiple sets of ablation
experiments to evaluate the effectiveness of the additional modules used in our approach.

4.1. Datasets

NTU RGB+D 60 [19] is the most commonly used 3D skeleton sequence dataset for
human behavior recognition, containing a total of 56,680 action clips from 60 action cate-
gories. These short films were shot by 40 volunteers in a constrained lab environment using
three cameras. The provided annotations provide the 3D coordinate positions (X, Y, Z) of
the joint points detected by a Kinect depth sensor, with each subject’s skeleton sequence
containing 25 joints. In each clip, there can be up to two subjects. The two benchmarks
recommended by the provider of the dataset are as follows. The cross-subject (X-Sub)
contains a training set of 40,320 clips and a test set of 16,560 clips. Under this division, part
of the volunteers appear only in the training set and part of them appear only in the test
set. The cross-view (X-View) was captured by three cameras, with 37,920 videos captured
by camera 2 and camera 3 as training set and 18,969 videos captured by camera 1 as the
test set. In [20], the authors point out that 302 bad samples exist in this database, and
these bad samples were removed from our experiments during training and testing. The
experimental results in this paper focus on the comparison of the Top-1 testing accuracy.

NTU RGB+D 120 [20] is an expansion of the previous NTU RGB+D 60 dataset. It
contains a total of 114,480 videos completed by 106 people in 155 perspectives. Similarly,
there are two benchmarks. The cross-subject (X-sub120) was constructed by dividing the
subjects into two groups (63,026 videos and 50,922 videos, respectively) for the training and
test sets. The cross-setup (X-set120) divided the 32 IDs of the subjects into two groups of
16 each for shooting the training and testing sets, respectively. Similarly, according to [20]
there were 532 bad samples, which we eliminated during training and testing.

The Kinetics [21] dataset contains 300,000 videos and 400 human action classes, with
at least 400 video clips for each action. Each clip lasts for about 10 s and is taken from a
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different YouTube video; this dataset only provides raw videos without skeleton annotation.
Yan et al. [14] used the open source toolbox openpose to label people in each video frame as
a skeleton graph structure with 18 nodes, creating the Kinetics large-scale skeleton action
recognition dataset. Following the evaluation method of Yan et al. [14], the training data
were set as 240,000 skeleton clips and the test data consisted of 20,000 videos. We trained
our model on the training set and report the top-1 and top-5 accuracies on the test set.

4.2. Experiment Settings

All our experiments were conducted using the Pytorch framework and an NVIDIA
GTX 1080Ti GPU. The optimization strategy used stochastic gradient descent (SGD) with
the Nesterov momentum set to 0.9 and the parameters adjusted with a weight decay of
0.0001. The size of the convolution kernel was 9× 2 and 1× 1 in the spatial and temporal
dimensions, respectively. The number of frames of each skeleton sequence was set to 300,
with all 0 s filled at the end frame for each video sample with less than 300 frames. The
batch size for training and testing was set to 16. A cosine learning strategy was used to
adjust the learning rate during training, and the end epoch was set to 70. The channel
scaling parameter r was set to 4.

4.3. Results

We compare our proposed method with other mainstream methods in Tables 1 and 2,
which show the experimental results on the NTU-RGB+D 60 dataset and on the NTU-
RGB+D 120 dataset, respectively. We conducted each group of experiments three times and
the standard error was no more than 0.15.

Table 1. Accuracy comparisons with mainstream methods on NTU-RGB+D 60 dataset. Inference
speed (sequences/(second × GPU)).

Method Inference Speed Param. X-Sub X-View

ST-LSTM [38] - - 69.20% 77.70%
Clips+CNN+MTN [7] - - 79.60% 84.80%
3scale ResNet152 [9] - - 85.00% 92.30%

ST-GCN [14] 42.91 3.10 M 81.50% 88.30%
RA-GCN [39] 18.72 6.21 M 85.90% 93.50%
2s-AGCN [15] 22.31 9.94 M 88.50% 95.10%
PL-GCN [40] - 20.70 M 89.20% 90.50%

ST-TR [41] - - 89.90% 96.10%
SAGN [42] - 1.83 M 89.20% 94.20%

DD-GCN [31] - - 88.90% 95.80%
GAT [35] - 5.86 M 89.00% 95.20%

Proposed Method 86.23 1.40 M 89.63% 94.91%

In Table 1, it can be seen that the best performance of our method is 89.63% for the x-sub
benchmark and 94.91% for the x-view benchmark; in addition, the number of parameters
of our model is the most optimal among the compared models. Here, we compare several
typical methods with each other. First, with ST-GCN [14], the most dominant backbone
model based on skeletal action recognition, our accuracy is 8.13% higher than that of
ST-GCN on the X-Sub benchmark, the model parameters are less than half that required
by ST-GCN, and the model inference is nearly twice as fast. Second, with 2s-AGCN [15],
another typical model for skeletal behavior recognition, our accuracy is 1.13% higher on
the X-Sub benchmark and the number of parameters in our model is one-seventh that of
2s-AGCN. Third, compared with another novel semantic-based DD-GCN [31] method on
the X-sub benchmark, our model’s accuracy is better by 0.73%. Finally, compared with the
latest GAT [35] model, our model has improved accuracy by 0.63% and reduces the number
of model parameters by 4.46 M compared to GAT on the X-Sub benchmark. Compared with
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these typical models, our model displays a more optimal structure without any reduction
in accuracy.

In Table 2, it can be seen that our model achieves 84.59% and 85.64% accuracy, respec-
tively, on the X-Sub120 and X-Set120 benchmarks. However, this accuracy is slightly lower
compared to the latest model, DD-GCN [32]. The main reason for this is that a two-stream
GCN structure containing vertex-domain graph convolution and graph-based spectral
graph convolution is used in DD-GCN model, which has the trade-offs of an increased
number of parameters and reduced inference speed.

Table 2. Comparison of accuracy with mainstream methods on the NTU-RGB+D 120 dataset. Infer-
ence speed (sequences/(second × GPU)).

Method Inference Speed Param. X-Sub120 X-Set120

ST-LSTM [38] - - 55.00% 57.90%
ST-GCN [14] 42.91 3.10 M 70.70% 73.20%
RA-GCN [39] 18.72 6.21 M 82.50% 84.20%
2s-AGCN [15] 22.31 9.94 M 82.50% 84.20%

ST-TR [41] - - 81.90% 84.10%
SAGN [42] - 1.83 M 82.10% 83.80%

DD-GCN [31] - - 84.90% 86.00%
GAT [35] - 5.86 M 84.00% 86.10%

Proposed Method 86.23 1.40 M 84.59% 85.64%

Table 3 compares the experimental accuracy of our model with several mainstream
GCN models on the Kinetics skeleton dataset. Our model is slightly inferior to the other
models in recognizing behavior in large-scale open scenes. Compared with GAT [35], our
model has a 1.94% difference in Top-1 accuracy and a 1.41% difference in Top-5 accuracy.
However, it is intuitively apparent from Tables 1 and 2 that our model exhibits good
performance in terms of its inference speed and model parameters.

Table 3. Comparisons of validation accuracy with state-of-the-art methods on the Kinetics skele-
ton dataset.

Method Top-1 Top-5

ST-GCN [14] 30.70% 52.80%
2s-AGCN [15] 36.10% 58.70%

ST-TR [40] 36.11% 58.70%
DD-GCN [30] 36.10% 59.50%

GAT [35] 35.90% 58.90%
Proposed Method 33.96% 57.49%

4.4. Ablation Study

In this subsection, we verify the validity of each of the modules introduced into our
model. Here, we perform experiments using the X-Sub benchmark as an example; the
results are shown in Table 4, where A, B, and C denote the SE block, TGU block, and
Attention block, respectively. The experimental results show that each module affects the
recognition accuracy of the model to a certain extent. The recognition accuracy of the model
reaches its optimum level when the three modules are combined. At the same time, we
chose the category “drop” in our test to calculate the three performance parameters of
precision, recall, and F-1 measure separately for comparison.
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Table 4. The ablation experiment results for “drop” behavior.

Method Param. Accuracy Precisiondrop Recalldrop F-1drop

Without A and B 1.24 M 89.33% 0.9090 0.9375 0.9230
Without A and C 1.01 M 88.69% 0.9129 0.9258 0.9193
Without B and C 0.88 M 88.58% 0.8923 0.9145 0.9143

A, B and C 1.40 M 89.63% 0.9579 0.9479 0.9529

To verify the effectiveness of introducing the adaptive parameter matrix and the
attention module, we depict a number of randomly selected samples on their attentional
heat maps in Figure 7; darker colors indicate a greater contribution to the recognition of the
action in the frame. Using the X-Sub benchmark as an example, we show the plot of the
accuracy curve on each category of the actions in Figure 8.
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Figure 7. Keyframes and node heatmaps for several types of actions.

Figure 8. Results of accuracy comparison between each category on the NTU-RGB+D 60 X-Sub
dataset; the horizontal and vertical axes denote the category and the accuracy, respectively.

5. Conclusions

In this paper, we propose an adaptive graph convolutional network while adding an
optimized temporal gated unit and SE module to enhance the model’s spatio-temporal
feature extraction ability in the skeleton sequence. After extensive experiments, we finally
achieve an optimal six-layer network structure model which balances the model’s com-
plexity and recognition accuracy. Of course, compared with the latest action recognition
models based on skeleton data, our model has a small gap in terms of recognition accuracy.
However, in terms of combined model complexity and recognition accuracy, our approach
achieves the best results. In our future work, we intend to continue investigating ways
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of constructing more effective skeleton graph structures to characterize small changes
in actions (e.g., reading, writing, etc.), and to extend our investigation to more complex
environments such as open scenes.
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Abbreviations
The following abbreviations are used in this manuscript:

GCN Graph convolutional network
ST-GCN Spatio-temporal graph convolutional network
TCN Temporal convolutional neural network
DD-Net Double-feature and double-motion network
LSTM Long short-term memory
Bi-RNNs Bidirectional RNN
AGCN Adaptive graph convolutional network
AS-GCN Action-structural graph convolutional network
PB-GCN Part-based graph convolutional network
SE Squeeze-and-excitation
2s-AGCN Two-stream adaptive graph convolutional network
GFT Graph Fourier transform
AGC-LSTM Attention-enhanced graph convolutional LSTM
GAT Graph-aware transformer
TGU Temporal gated unit
TCN Temporal convolutional network
GLU Gated linear units
FC Fully connected
FCN Fully connected network
SGD Stochastic gradient descent
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