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When thinking of radiation-tolerant electronics, many readers will think of space.
Indeed, with the rise of New Space and Space 2.0 and the corresponding vast growth
in space satellites and space vehicles, the need for radiation-tolerant electronics has in-
creased beyond the typical NASA and ESA space missions. New custom radiation-tolerant
electronics are needed and more validation and qualification strategies are required for
off-the-shelf components. Even beyond space, the need for radiation-tolerant electron-
ics has increased tremendously, for example, applications in aerospace; in high-energy
physics such as the Large Hadron Collider experiments at CERN; in upcoming nuclear
fusion reactors such as ITER (International Thermonuclear Experimental Reactor) and
other fusion reactor technologies; to improve safety in current nuclear energy facilities;
or for nuclear waste processing, storage, or transport. Additionally, even beyond these
high-energy applications, radiation-tolerant electronics are needed in critical applications
such as self-driving cars, where the mean time between failures should be extremely high,
and even large data centres or advanced medical devices, where errors—even from a single
cosmic particle—can simply not be tolerated.

These abundant applications, together with the evolution of chip technology towards
smaller devices that can be upset by progressively less energy, have fuelled research on
the fundamentals and modelling radiation effects in electronics, on the design of radiation-
tolerant electronics in state-of-the-art technologies, and on new and more efficient ways to
evaluate and test the reliability of electronic components in radiation environments.

After the success of the first Special Issue on radiation-tolerant electronics, the current
Special Issue features thirteen articles highlighting recent breakthroughs in radiation-
tolerant integrated circuit design, fault tolerance in FPGAs, radiation effects in semiconduc-
tor materials and advanced IC technologies, and modelling of radiation effects.

Many of the contributions within this Special Issue deal with the design of radiation-
tolerant integrated circuits, either at block level or with comprehensive circuits in state-
of-the-art IC technologies. Article [1] discusses the SEU (single-event upset) tolerance
of three layout-hardened 28 nm DICE (dual interlocked storage cell) D flip-flops im-
plemented in advanced 28 nm planar CMOS technology. In [2], the authors present a
cell-level radiation-hardening-by-design (RHBD) method based on commercial processes,
showcasing new radiation-hardened D-type flip-flops (DFF) with highly improved SEU
tolerance compared to standard DICE flip-flops even with TMR. Article [3] presents a
fully polarity-aware double-node-upset (DNU)-resilient latch. The circuit boasts multiple
thresholds, an increased number of SEU-insensitive nodes, low power dissipation, and
has the strongest radiation-hardening capability among other DNU-resilient latches. In [4],
the authors present a comprehensive assessment of TID effects on the performance of
a parallel-coupled and super-harmonic-coupled voltage-controlled oscillator (VCO) op-
erating between 2.5 GHz and 2.9 GHz. The circuits are implemented in 65 nm CMOS
technology and feature different radiation-hardening techniques. Paper [5] presents the
first fully integrated radiation-tolerant all-digital phase-locked loop (ADPLL) and clock and
data recovery (CDR) circuit for wireline communication applications. Several radiation-
hardening techniques are proposed to achieve state-of-the-art immunity to SEEs up to
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62.5 MeV cm2 mg−1 as well as a 1.5 Grad TID tolerance. A final circuit design paper is
presented in [6]. This article presents a novel physical implementation methodology for
high-speed, triple-modular redundant (TMR), digital-integrated circuits for harsh-radiation-
environment applications. An improved distributed approach is presented to constrain
redundant branches of TMR digital logic cells using repetitive, interleaved micro-floorplans.

The above paper [6] also fittingly bridges towards two other articles focusing on
fault immunity and fault injection on the FPGA (field-programmable gate array) level.
In [7], Banteywalu et al. present a high-reliability spatial and time redundancy (TR) hybrid
technique, applied to the design of a radiation-tolerant digital controller for a dual-switch
forward half-duty limited DC-DC converter. The technique has the potential of double-
fault masking with a <2% increase in resource overhead cost compared to TMR, while
offering a more than an order of magnitude increase in reliability improvement factor
(RIF). Article [8] describes the design and implementation of a virtual device to perform
simulation-based fault injection campaigns in existing FPGA (field-programmable gate
array)-based hardware devices. Multiple instances of the virtual device can be launched in
parallel in order to speed up the fault injection campaigns.

Two articles in this issue describe recent results on the challenging problem of system-
level radiation effects’ characterization. In [9], Rajkowski et al. compare the system-level
evaluation of a point-of-load (PoL) converter under total ionizing dose (TID) with an
individual radiation assessment of the different component. It is shown that, due to
internal compensation in the system, the complete system can be fully functional at a TID
level more than two times higher than the qualification level obtained using a standard-
based component-level approach. In continuation of this research, article [10] discusses the
opportunities and limitations of radiation qualification by means of system-level testing.
To this end, TID and SEE tests are performed and analysed on a system-in-package (SIP)
PoL converter. Limitations for the SEE qualification proved substantially stronger than for
the TID qualification.

Two articles in this issue deal more with the fundamental effects of radiation in
semiconductor materials and advanced IC technologies. In [11], the authors present a
transistor-array-based test method for characterizing the heavy-ion-induced sensitive area
in semiconductor materials as well as the impact of transistor layout and well contacts
for both NMOS and PMOS devices in 65 nm CMOS technology. Article [12] presents a
comparison of TID effects in 22 nm and 28 nm FDSOI (fully depleted silicon-on-insulator)
technologies. The test structures include ring oscillators designed with inverters, NAND2,
and NOR2 gates, as well as SRAM memory cells and flip-flop chains. Overall, the 22 nm
FDSOI shows better resilience.

The final article [13] in this issue deals with modelling aspects of radiation effects
in complex digital ICs. Different methods are compared for the quantitative evaluation
of the SEU cross section under different test programs. A laser test is used to generate
training and validation data under these different test programs. The results show that
the quantitative evaluation method based on generalized linear models can achieve the
highest accuracy.
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