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Abstract: A method is proposed which aims at reducing the numbers of look-up table (LUT) elements
in logic circuits of Mealy finite state machines (FSMs). The FSMs with twofold state assignment
are discussed. The reduction is achieved due to using two cores of LUTs for generating partial
Boolean functions. One core is based on maximum binary state codes. The second core uses extended
state codes. Such an approach allows reducing the number of LUTs in the block of state codes’
transformation. The proposed approach leads to LUT-based Mealy FSM circuits having three levels
of logic blocks. Each partial function for any core is represented by a single-LUT circuit. A formal
method is proposed for redistribution of states between these cores. An example of synthesis is
shown to explain peculiarities of the proposed method. An example of state redistribution is given.
The results of experiments conducted with standard benchmarks show that the double-core approach
produces LUT-based FSM circuits with better area-temporal characteristics than they are for circuits
produced by other investigated methods (Auto and One-hot of Vivado, JEDI, and twofold state
assignment). Both the LUT counts and maximum operating frequencies are improved. The gain in
LUT counts varies from 5.74% to 36.92%, and the gain in frequency varies from 5.42% to 12.4%. These
improvements are connected with a very small growth of the power consumption (less than 1%). The
advantages of the proposed approach increase as the number of FSM inputs and states increases.

Keywords: Mealy FSM; FPGA; LUT; synthesis; core; twofold state assignment; extended state codes

1. Introduction

Our time is characterized by the widespread penetration of various embedded systems
into all spheres of human activity [1–3]. Various sequential devices are an integral part
of almost every embedded system [4,5]. Very often, the behaviour of a sequential device
is represented using the model of Mealy finite state machine (FSM) [6,7]. Often in the
FSM design process, designers strive to balance the values of the three main characteristics
of a resulting circuit [8,9]. These characteristics are the occupied chip area, maximum
operating frequency, and power consumption. The values of these characteristics are
closely related [10]. As a rule, the occupied chip area has the greatest influence on the
values of other characteristics [11]. The occupied chip area can be reduced using methods
of structural decomposition [11]. One of these methods is a method of twofold state
assignment (TSA) leading to three-level FSM circuits [12]. The TSA is aimed at Mealy FSMs
implemented with field-programmable gate arrays (FPGAs) [13–17].

We chose FPGAs as the basis for the implementation of FSM circuits, since they
are widely used for designing various digital systems [18]. We discuss FSM circuits
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based on configurable logic blocks (CLBs) consisting of look-up table (LUT) elements and
programmable flip-flops. Now, the largest manufacturer of FPGA chips is AMD Xilinx [19].
Due to it, we focus this paper on FPGAs of AMD Xilinx. We propose a method of reducing
the numbers of LUTs (LUT counts) in the FPGA-based circuits of Mealy FSMs.

The main disadvantage of twofold FSMs is the need to convert all maximum binary
state codes (MBCs) into so-called extended state codes (ESCs) [12]. For this purpose, an
additional block is used to transform the maximum binary state codes into the extended
state codes. This block consumes some of the FPGA chip’s internal resources (LUTs
and programmable interconnections). In this paper, we propose a method which allows
reducing the overhead connected with the transformation of state codes.

The main contribution of this paper is a novel design method aimed at reducing the
LUT counts in the circuits of FPGA-based Mealy FSMs with twofold state assignment.
We propose to represent an FSM circuit as a double-core structure. The first core uses
maximum binary state codes for generating partial Boolean functions (PBFs). The PBFs of
the second core are based on the extended state codes. The proposed approach leads to a
LUT-based Mealy FSM where only a part of maximum binary state codes is transformed
into extended state codes. Our current research shows that this approach leads to FSM
circuits having fewer LUTs compared to FSM circuits based on the twofold state assignment.
The experimental results show that FSMs based on our method have practically the same
values of the maximum operating frequencies as they are for equivalent FSMs with TSA.

The further text of the article is organized in the following order. The second section
shows the background LUT-based Mealy FSM design. The third section discusses the
relative works. The main idea of the proposed method is shown in the fourth section. The
fifth section includes an example of FSM synthesis using our approach. An algorithm of
state redistribution is shown in the sixth section. The seventh section is devoted to results
of experiments. The article also includes a short conclusion.

2. Background of LUT-Based Mealy FSMs

A Mealy FSM is characterized by sets of states A, inputs X, outputs Y, state variables T,
and input memory functions (IMFs) D [6]. These sets are the following: A = {a1, . . . , aM},
X = {x1, . . . , xL}, Y = {y1, . . . , yN}, T = {T1, . . . , TR}, and D = {D1, . . . , DR}. So, a Mealy
FSM has M states, L inputs, N outputs, R state variables and R input memory functions.
The values of the first three parameters are independent of the FSM circuit designer. The
value of R can be chosen by a designer. The minimum value of R is determined as

RMB = dlog2Me. (1)

The Formula (1) determines so-called maximum binary state assignment. The maximum
value of R corresponds to so-called one-hot state assignment: ROH = M [20].

The state variables Tr ∈ T are used for creating state codes K(am). An input memory
function Dr ∈ D can set up the binary value of the r-th bit of the code K(am). To keep
state codes, a special register RG is used. The RG consists on R flip-flops controlled by two
pulses, Start and Clock [21]. The pulse Start loads the code K(a1) of the initial state a1 ∈ A
into RG. The synchronization pulse Clock allows loading a state code into RG. This code
is determined by the values of IMFs. We discuss a case when the RG consists of flip-flops
with informational inputs of D type. This is the most popular type of flip-flops using in the
FPGA-based design [18].

In this article, we discuss a case when the internal resources of an FPGA chip are used
for implementing FSM circuits. These resources include LUTs, flip-flops, programmable
interconnections, synchronization tree, programmable input-outputs [22,23]. The LUTs and
flip-flops are combined into CLBs.

A LUT is a block having SL inputs and a single output [20,24]. A LUT may implement
an arbitrary Boolean function including no more than SL arguments. The value of SL is
rather small [22]. If the number of arguments of a Boolean function exceeds SL, then it is
necessary to combine together some LUTs. It is quite possible that a function is represented
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by a multi-CLB circuit. In this case, it is necessary to diminish the number of LUTs and
their levels in the corresponding circuit [25,26]. In this article we use the symbol LUTer to
show that a corresponding logic blocks includes LUTs, flip-flops and interconnections.

An FSM logic circuit is represented by the following systems of Boolean functions
(SBFs) [9]:

D = D(T, X); (2)

Y = Y(T, X). (3)

The SBF (2) represents the function of transitions, the SBF (3) represents the function of
outputs [6]. The SBFs (2) and (3) represent a structural diagram of P Mealy FSM (Figure 1) [6].

LUTerT
Clock

Reset

Y

LUTerY

X

T

Figure 1. Structural diagram of P Mealy FSM.

In P FSMs, the block LUTerT is a block of IMFs. This block implements the SBF (2) and
loads the next state code into RG. The register RG is distributed among the LUTs included
into CLBs of LUTerT.The flip-flops of RG are controlled by pulses Start and Clock. The
block LUTerY is a block of output logic implementing the SBF (3).

Obviously, the Functions (2) and (3) depend on state variables Tr ∈ T and FSM inputs
xl ∈ X. Let a function f j ∈ D ∪ Y depend on Rj ≤ R state variables and Lj ≤ L inputs. If
the condition

Rj + Lj ≤ SL (4)

holds, then a corresponding logic circuit consists of a single LUT. If the condition (4) holds
for each function f j(j ∈ {1, . . . , R + N}, then the FSM circuit includes exactly R + N LUTs.
Such a circuit is single-level. This is the best possible solution providing minimum values of
the required chip area, power consumption and cycle time (in other words, the maximum
value of operating frequency).

However, FSMs can have up to 10 state variables and 30 inputs [6]. At the same time,
the modern LUTs have SL = 6 inputs. So, it is quite possible that condition (4) will be
violated for at least a single function f j ∈ D ∪Y. In this case, it is necessary to use various
optimization strategies to optimize the characteristics of an FSM circuit. Our current paper
deals with the area reducing problem. Let us analyze some approaches used to solve
this problem.

3. Relative Works

Methods for solving this problem can be found in a huge number of scientific papers
and monographs [10,21,25,27–34]. In the case of LUT-based devices, the occupied chip area
is estimated by the required numbers of LUTs (LUT counts) [10]. To diminish the LUT
count, three groups of methods are used: (1) the functional decomposition (FD); (2) the
optimal state assignment; (3) the structural decomposition (SD). Methods from different
groups can be applied simultaneously [30].

In the case of decomposition, Functions (2) and (3) are represented by systems of
partial functions [29,35]. Each partial Boolean function has no more than SL arguments.
Due to it, each PBF is represented by a single-LUT circuit. Both FD and SD lead to multi-
level FSM circuits. However, these circuits differ in the nature of interconnections [11]. In
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the case of FD, the resulting circuit has an irregular interconnect structure in which the
same variables xl ∈ X and Tr ∈ T appear at different logical levels of the circuit. In the case
of SD, an FSM circuit includes from two to four large logic blocks [30]. These blocks have
unique systems of inputs and outputs. Due to it, the SD-based FSM circuits have regular
systems of interconnections. As shown in the article [11], SD-based circuits have better
characteristics compared to equivalent FD-based circuits. In this article, we discuss a way
for improvement some SD-based method.

In the case of LUT-based FSMs, a state assignment is optimal if it allows excluding the
maximum possible number of literals from the sum-of-products of Functions (2) and (3) [36].
For the possibility of a single-level implementation of an FSM circuit, it is necessary to exclude
such amount of literals that condition (4) is satisfied for each function f j ∈ D ∪Y. However, this
result is possible only for sufficiently simple FSMs [34]. Therefore, in most cases, state encoding
methods have an auxiliary nature. If condition (4) is not satisfied after the state assignment, then
it is necessary to use other optimization methods.

Very often, the methods of SD are based on finding a partition of the state set A by
classes of compatible states. One of such methods is a method of twofold state assignment
(TSA) [12,37]. The method is based on construction a partition πA = {A1, . . . , AI} of the
set A. Each class Ai ∈ πA determines sets Xi, Yi, Di. The set Xi ⊆ X includes Li FSM
inputs causing transitions from states am ∈ Ai. The set Yi ⊆ Y consists of FSM outputs
produced during the transitions from states am ∈ Ai. The set Di ⊆ D includes input
memory functions determining MBCs of transition states.

There are Mi states in each class Ai ∈ πA. Inside each class, these states are encoded
by partial maximum binary codes C(am) having Ri bits:

Ri = dlog2(Mi + 1)e. (5)

To encode states am ∈ Ai, the variables vr ∈ Vi are used. The sets V1, . . . , V I form a set V
having RA elements:

RA = R1 + . . . + RI . (6)

A state am ∈ A is compatible with states as ∈ Ai, if the including this state into Ai

does not violate the following condition:

Ri + Li ≤ SL(i ∈ {1, . . . , I}). (7)

To optimize the FSM logic circuit, it is necessary to minimize the value of I. This approach
leads to the so-called PT Mealy FSM (Figure 2).

LUTer1 LUTerI. . .

LUTerTY
Start
Clock

LUTerV

T

Y

V

1
X

 1V I
X

 1Y  1D

 I
V

 IY  ID

Figure 2. Structural diagram of PT Mealy FSM.
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In PT Mealy FSMs, each state am ∈ A has two codes. These codes are: (1) the maximum
binary state code K(am) and (2) the partial state code C(am) determining a particular state
as an element of a particular class. A block LUTeri corresponds to the class Ai ∈ πA. This
block generates the following systems of PBFs:

Di = Di(Vi, Xi); (8)

Yi = Yi(Vi, Xi). (9)

The LUTerTY creates resulting values of functions f j ∈ D ∪Y. Each element of LUTerTY
implements the following SBFs:

Dr =
I∨

i=1

Di
r(r ∈ {1, . . . , R}). (10)

yn =
I∨

i=1

yi
n(n ∈ {1, . . . , N}). (11)

The block LUTerTY contains the flip-flops of RG. The pulses Start and Clock enter this
block to control the operation of RG.

As follows from (8) and (9), the partial functions depend on state variables vr ∈ Vi.
These state variables are produced by the transformation of the state variables Tr ∈ T. To
transform the codes K(am), the block LUTerV generates the following SBF:

V = V(T). (12)

As follows from [37], the circuits of PT FSMs require fewer LUTs than the circuits of
equivalent P Mealy FSMs. If the condition

I ≤ SL (13)

holds, then the circuits of PT FSMs have exactly three levels of LUTs. As a rule [37],
they have higher values of maximum operating frequencies than they are for circuits of
equivalent P Mealy FSMs.

We will call the FSM core a block generating partial functions depending on state
variables. In PT FSMs, there is the CoreV consisting of blocks LUTer1-LUTerI. All other
functions are generated by a function assembly block (FAB). In PT FSMs, the FAB consists
of blocks LUTerTY and LUTerV. Using this terminology, we can represent the structural
diagram of PT FSM in its generalized form (Figure 3).

Function Assembly

Block

Start
Clock

Y

CoreV

X
V

. . .
 1

D
 1

Y
 ID IY

Figure 3. Generalized diagram of PT Mealy FSM.
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As follows from Figure 3, all PBFs depend on both inputs xl ∈ X and state variables
vr ∈ V. So, the transformation K(am) into C(am) is executed for all states am ∈ A. However,
if condition (4) is satisfied for some state am ∈ A, then there is no need for the code
transformation noted above. If we reduce the number of states whose codes are transformed,
then it is possible to reduce both the number of classes (I) and the value of the parameter
RA. This is an approach proposed in our current paper.

4. Main Idea of the Proposed Method

The transitions from a state am ∈ A depend on FSM inputs from a set X(am) ⊆ X.
This set includes L(am) ≤ L elements. Let the following condition hold:

L(am) + RMB ≤ SL. (14)

If the condition (14) takes place, then each PBF generated during the transitions from
am ∈ A is represented by a single-LUT circuit. So, there is no need in the partial codes for
such states am ∈ A. So, the partial codes C(am) should be generated only for states for
which the condition (14) is violated. This conclusion is the basis for a method proposed in
this article.

We propose to divide the set A by sets AMB and APC. If the condition (14) holds for a
state am ∈ A, then this state is included into the set AMB. Otherwise, this state is included
into the set APC. The states am ∈ AMB form a core denoted as a CoreT, whereas the states
am ∈ APC form a core denoted as a CoreV. The transformation of state codes is executed
only for the states am ∈ APC.

The CoreT determines the sets XT ⊆ X, YT ∪ Y0 ⊆ Y, and D0 ⊆ D. The first set
includes FSM inputs determining the transitions from the states am ∈ AMB. The second set
consists of FSM outputs produced during the transitions from these states. The outputs
from the set YT are produced only during transitions from the states of the CoreT. The
outputs from the set Y0 are shared between both cores. The third set includes IMFs
generated during the transitions from the states am ∈ AMB. The following SBFs determine
the CoreT:

D0 = D0(T, XT); (15)

Y0 = Y0(T, XT); (16)

YT = YT(T, XT). (17)

The CoreV determines the sets XV ⊆ X and YV ⊆ Y. The first set includes FSM inputs
determining the transitions from the states am ∈ APC. The second set consists of FSM
outputs produced during the transitions from these states. The following SBFs determine
the CoreT:

Dk
V = Dk

V(V
k, Xk

V); (18)

Yk
V = Yk

V(V
k, Xk

V). (19)

The CoreV is based on the partition πV = {A1, . . . , AK} of the set APC. This partition
is constructed in the same way as the partition πA. Each class of the partition πV determines
the sets Xk

V , Yk
V , Vk and Dk

V . These sets are similar to the corresponding sets of partial
functions considered for the partition πA. The circuit of CoreV is determined by SBFs
similar to SBFs (8) and (9). These SBFs are the following:

D = D(T, XV); (20)

YV = YV(T, XV). (21)

To generate the outputs yn ∈ YV and state variables, it is necessary to use FAB. We
propose to combine together the blocks FAB, CoreV, and CoreT. The proposed connection
of blocks leads to a double-core FSM P2C. Its generalized structural diagram is shown
in Figure 4.
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Function Assembly

Block

Start
Clock

YV

CoreVCoreT

XV VTXT

T V

YT

 0Y

 0D

. . .
 1

D 1
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Figure 4. Generalized diagram of P2C Mealy FSM.

In Mealy FSM P2C, the block CoreT implements SBFs (15) and (17). The block CoreV
generates functions from SBFs (18) and (19). The block FAB includes two blocks, LUTerTY
and LUTerV. The block LUTerTY transforms functions (15) and (16), (18) and (19) into
resulting values of functions (20) and (21). The block LUTerV implements SBF (12).

There are K classes in the partition πV . The following condition holds:

K ≤ I. (22)

Then, replacing the subscript i by subscript k turns the Formula (5) into a formula deter-
mining the number of state variables in the codes C(am) for states am ∈ Ak. Having these
values allows obtaining the total number of variables vr ∈ V:

RV = R1 + R2 + . . . + RK. (23)

Obviously, the following condition takes place:

RV ≤ RA. (24)

Due to the validity of condition (22), the following is true: (1) the circuit of CoreV
for FSM P2C must include fewer LUTs than this circuit for the equivalent FSM PT and (2)
the circuit of FSM P2C must include no more levels of logic than it is for the circuit for the
equivalent FSM PT . Both PT and P2C FSMs incorporate the block LUTerV executing the
transformation of state codes. Obviously, the fewer LUTs has included in the circuit of this
block, the less power it consumes. As follows from the validity of condition (24), the circuit
of LUTerV for FSM P2C must include fewer LUTs than this circuit for the equivalent FSM
PT . Therefore, the block LUTerV of P2C FSM has less static power consumption than this
block of equivalent FSM PT . Since some PBFs are generated by the block CoreT, then in
some cycles of FSM operation the elements LUTs of the block LUTerV do not change their
states. So, in these cycles, the block LUTerV has the dynamic power consumption close to
zero. This analysis suggests that the block LUTerV of P2C FSM has less power consumption
than that block of an equivalent FSM PT .

So, we assume that the circuits of Mealy FSMs P2C will have fewer LUTs and almost
the same or even faster performance compared to circuits of equivalent FSMs PT . We can
also argue that P2C FSMs require less energy for the code transformation than equivalent
FSMs PT . However, only the experimental studies can show the real energy budgets of
equivalent PT and P2C FSMs.
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Using the above information, we propose a method for synthesis of LUT-based P2C
Mealy FSMs. As the initial form of FSM representation we use state transition graphs
(STGs) [9]. Next, we transform this STG in an equivalent state transition table (STT) [9]. To
implement an FSM circuit, we use LUTs having SL inputs. The proposed method includes
the following steps:

1. Transforming the initial STG into STT of P Mealy FSM.
2. Preliminary constructing sets AMB and APC.
3. Preliminary constructing the partition πV of the set APC.
4. Redistribution of states between sets AMB, APC and πV .
5. Encoding of FSM states by maximum binary codes K(am).
6. Creating table of the block CoreT and SBFs (15)–(17).
7. Encoding states am ∈ Ak by partial state codes C(am).
8. Creating tables of blocks from CoreV and SBFs (18) and (19).
9. Creating table of LUTerTY and SBFs (20) and (21).
10. Creating table of LUTerV and SBF (12).
11. Implementing P2C Mealy FSM circuit using internal resources of a chip.

We use a symbol P2C(S) to show that the model of P2C FSM is used to implement the
logic circuit of some FSM S. In the next section, we discuss an example of synthesis of P2C
Mealy FSM, where we explain how each step is executed.

5. Example of Synthesis

We discuss a case of P2C(S1) FSM synthesis using LUTs with SL = 5. The FSM S1 is
represented by an STG shown in Figure 5.

a 1

a 2

x1/y 1y 5               

a 3

x1/y 4

x2x5/y 5y 8         

a 5

x2/y 1y 2   

a 6

x2x5/y 6        

x1/y 4    

x1/y 5y 8       

a 4

-/y 1y 4

x5x6/y 1y 6

x5/y 2

a 7

x5x6/y 8

x3/y 1y 3          

x3/y 7

x2/y 2y 6

a 8

 
    x2/y 5

x3x7/y 1y 7

x3/y 3

a 9

x3x7/y 5y 8

x5x7/y 1

x5/y 3y 7            

   x5x7/y 7y 8

Figure 5. State transition graph of Mealy FSM S1.

Each node of an STG corresponds to the FSM state. Each arc of an STG corresponds to
an interstate transition [9]. There are H arcs in an STG. The h-th arc is marked by a pair
<input signal Xh, collection of outputs Yh>. An input signal Xh is a conjunction of FSM
inputs xl ∈ X determining the h-th interstate transition. A collection of outputs Yh ⊆ Y
includes FSM outputs yn ∈ Y generating during the h-th interstate transition.

So, the FSM S1 is characterised by the following sets: A = {a1, . . . , a9}, X = {x1, . . . , x7}
and Y = {y1, . . . , y8}. This gives the following values: M = 9, L = 7, and N = 8. As
follows from Figure 5, there is H = 21.



Electronics 2022, 11, 3089 9 of 26

Step 1. This step is executed in the trivial way [6]. Each arc of the STG corresponds to
a single line of a corresponding STT. So, this table has the columns am, as, Xh, Yh, h. The
state am corresponds to a vertex from which the h-th arc comes out (this is a current state);
the state as corresponds to a vertex into which this arc enters (this is a state of transition).
The column Xh includes the input signal written above the h-th arc. The column Yh includes
the collection of outputs written above the h-th arc. Using this approach transforms the
STG (Figure 5) into the equivalent STT (Table 1).

Table 1. State transition table of Mealy FSM S1.

am as Xh Yh h

a1 a2 x1 y1y5 1
a3 x1 y4 2

a2 a5 x2 y1y2 3
a6 x2x5 y6 4
a3 x2 x5 y5y8 5

a3 a6 x1 y5y8 6
a1 x1 y4 7

a4 a1 1 y1y4 8

a5 a5 x5 y2 9
a2 x5x6 y1y6 10
a7 x5 x6 y8 11

a6 a4 x3 y1y3 12
a5 x3 y7 13

a7 a4 x2 y2y6 14
a8 x2 y5 15

a8 a7 x3 y3 16
a4 x3x7 y1y7 17
a9 x3 x7 y5y8 18

a9 a4 x5 y3y7 19
a1 x5x7 y1 20
a8 x5 x7 y7y8 21

Step 2. To divide the set A by sets AMB and APC, it is necessary to find values of L(am)
for states am ∈ A. The following values can be found from Table 1: L(a4) = 0; L(am) = 1
for states a1, a3, a6, a7; L(am) = 2 for states a2, a5, a8, a9. There is SL = 5. As follows
from (14), there are the sets AMB = {a1, a3, a4, a6, a7} and APC = {a2, a5, a8, a9}. As we
show in the next section, some elements of the set AMB can be transferred to the set APC.
Thus, these sets do not yet have a final form. Now, we can find sets XT and XV . The set XT
includes inputs determining transitions from states am ∈ AMB, the set XV includes inputs
determining transitions from states am ∈ APC. In the discussed case, there are the following
sets: XT = {x1, x2, x3} and XV = {x2, x3, x5, x6, x7}.

Step 3. Using approach [12] gives the partition πV = {A1, A2} of the set APC. The
classes of this partition are the following: A1 = {a2, a5} and A2 = {a8, a9}. This gives the
following values of Mk: M1 = M2 = 2. Using (5) gives R1 = R2 = 2 and RV = 4. Since the
set APC can be changed, the partition πV is also preliminary.

Step 4. We discuss this step in Section 6. Now, we only show the outcome of this step.
It is the following: AMB = {a1, a3, a4} and APC = {a2, a5, a6, a7, a8, a9}. Now, the classes of
πV = {A1, A2} are the following: A1 = {a2, a5, a7} and A2 = {a6, a8, a9}. This gives the
following values of Mk : M1 = M2 = 3. Using (5) gives R1 = R2 = 2 and RV = 4. So, there
is no change in the total number of state variables vr ∈ V before and after refining the sets
AMB and APC. So, there is the set V = {v1, . . . , v4}. However, now there are fewer states in
the set AMB. This means that the number of LUTs in the circuit of CoreT should be reduced
compared to this number corresponding to the set AMB obtained during the Step 2.
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Step 5. There is M = 9. Using (1) gives RMB = 4. So, there are the following sets:
T = {T1, . . . , T4} and D = {D1, . . . , D4}. To minimize the sum-of-products (SOPs) of
functions (12), it is necessary to place the states from the same class into minimum
possible amount of generalized cubes of RMB-dimensional Boolean space [9]. Let us
encode the states in a way shown in Figure 6.

T1T2

T3T4
00 01 11 10

00

01

11

10

a1 a2 a6∗

a3 a5 a8∗

a4 a7 a9∗

∗ ∗ ∗∗

Figure 6. Outcome of state assignment for Mealy FSM S1.

As follows from Figure 6, the states am ∈ AMB are placed into the cube 00xx. This
allows optimizing SOPs of functions (15)–(17). The states am ∈ A1 are placed in the cube
x100, the states am ∈ A2 are placed in the cube 1x00. This gives the opportunity to optimize
SOPs of functions (12).

Step 6. The table of CoreT is constructed using the lines 1–2 and 6–8 of Table 1. Three
more columns are added in this table: K(am), K(as) and D0

h. The first and second additional
columns include the codes of current and next states, respectively. The column D0

h includes
IMFs equal to 1 to load the code K(as) into the RG. We changed the names for columns Xh
and Yh compared to Table 1. Now we use the notation X0

h and Y0
h . The CoreT is represented

by Table 2.

Table 2. Table of CoreT for Mealy FSM S1.

am K(am) as K(as) X0
h Y0

h D0
h h

a1 0000 a2 0100 x1 y1y5 D2 1
a3 0001 x1 y4 D4 2

a3 0001 a6 1000 x1 y5y8 D1 3
a1 0000 x1 y4 – 4

a4 0010 a1 0000 1 y1y4 – 5

Using Table 2 gives the following SBFs:

D0
1 = F0

3 = T1 T2T4x1; D0
2 = F0

1 = T1 T2 T3 T4x1;
D0

4 = F0
2 = T1 T2 T3 T4x1; y0

1 = T1 T2 T3 T4x1 ∨ T1 T2T3 T4;
y0

4 = [F0
2 ∨ F0

4 ] ∨ F0
5 = T1 T2 T3 x1 ∨ T1 T2T3;

y0
5 = [F0

1 ∨ F0
3 ] = T1 T2 T3x1; y0

8 = T1 T2T4x1.

(25)

This system is used to create the circuit of CoreT. Let us point out that the function y4
is generated only by some LUT of CoreT. This gives YT = {y4}. Furthermore, the following
sets can be derived from Table 2: X0 = {x1}, Y0 = {y1, y5, y8} and D0 = {D1, D2, D4}.

Step 7. To encode the states am ∈ A1, the variables v1, v2 ∈ V are used. To encode the
states am ∈ A2, the variables v3, v4 ∈ V are used. We use the code 00xx to show that a
particular state does not belong to the class A1. The code xx00 shows that a particular state
does not belong to the class A2. The outcome of state assignment is shown in Figure 7.



Electronics 2022, 11, 3089 11 of 26

v1v2

v3v4 00 01 11 10

00

01

11

10

∗ a2 a5a7

a6 ∗ ∗∗

a8 ∗ ∗∗

a9 ∗ ∗∗

Figure 7. Partial state codes for Mealy FSM S1.

The following partial codes can be found from the Karnaugh map (Figure 7): C(a2) =
C(a6) = 01, C(a5) = C(a8) = 10, and C(a7) = C(a9) = 11. These codes are used in LUTs
of CoreV.

Step 8. There are two blocks of LUTs in the CoreV. The block LUTer1 implements SBFs
for the class A1; the block LUTer2 implements SBFs for the class A2. The table of LUTer1
is constructed using the lines 3–5, 9–11 and 14–15 of Table 1. This is Table 3. The table of
LUTer2 is constructed using the lines 12–13 and 16–21 of Table 1. This is Table 4.

Table 3. Table of LUTer1.

am C(am) as K(as) X1
h Y1

h D1
h h

a2 01 a5 0101 x2 y1y2 D2D4 1
a6 1000 x2x5 y6 D1 2
a3 0001 x2 x5 y5y8 D4 3

a5 10 a5 0101 x5 y2 D2D4 4
a2 0100 x5x6 y1y6 D2 5
a7 0110 x5 x6 y8 D2D3 6

a7 11 a4 0010 x2 y2y6 D3 7
a8 1001 x2 y5 D1D4 8

Table 4. Table of LUTer2.

am C(am) as K(as) X2
h Y2

h D2
h h

a6 01 a4 0010 x3 y1y3 D3 1
a5 0101 x3 y7 D2D4 2

a8 10 a7 0110 x3 y3 D2D3 3
a4 0010 x3x7 y1y7 D3 4
a9 1010 x3 x7 y5y8 D1D3 5

a9 11 a4 0010 x5 y3y7 D2 6
a1 0000 x5x7 y1 – 7
a8 1001 x5 x7 y7y8 D1D4 8

Both tables use partial state codes C(am) for current states and the MBCs K(as) for
states of transition. The following sets can be found from Table 3: X1 = {x2, x5, x6},
Y1 = {y1, y2, y5, y6, y8} and D1 = D. The following sets can be found from Table 4:
X2 = {x3, x5, x7}, Y2 = {y1, y3, y5, y7, y8} and D2 = D.

The SBFs (18) and (19) are constructed in the same way as this is for SBFs (15)–(17). For
example, the following SOPs can be obtained for functions D1

1 (Table 3) and D2
1 (Table 4):

D1
1 = F1

2 ∨ F1
8 = v1v2x2x5 ∨ v1v2x2;

D2
1 = F2

5 ∨ F2
8 = v3v4 x3 x7 ∨ v3v4x5 x7.

(26)
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Step 9. There are the following columns in table of LUTerTY: f j (a function generated
by LUTerTY), CoreT, CoreV. If a function f j ∈ D ∈ Y is generated by a LUT of CoreT,
then there is 1 in the intersection of the line with this function and the column of the
corresponding core. Otherwise, this intersection is marked by 0. There are K sub-columns
in the column CoreV. If a function f j ∈ D ∪Y is generated by LUTerk of CoreV, then there
is 1 in the intersection of the line with this function and the sub-column k. In the discussed
case, the block LUTerTY is represented by Table 5.

Table 5. Table of LUTerTY.

fj CoreT CoreV
1 2

D1 1 1 1
D2 1 1 1
D3 0 1 1
D4 1 1 1
y1 1 1 1
y2 0 1 0
y3 0 0 1
y4 1 0 0
y5 1 1 1
y6 0 1 0
y7 0 0 1
y8 1 1 1

To fill the column CoreT, the data from Table 2 are used. To fill the sub-column 1, we
use Table 3. Table 4 is a base for filling the sub-column 2. We hope there is a transparent
connection between Tables 2–5.

Using Table 5, we can construct the following SBFs:

D1 = D0
1 ∨ D1

1 ∨ D2
1; D2 = D0

2 ∨ D1
2 ∨ D2

2;
D3 = D1

3 ∨ D2
3; D4 = D0

4 ∨ D1
4 ∨ D2

4;
y1 = y0

1 ∨ y1
1 ∨ y2

1 y2 = y1
2; y3 = y2

3;
y4 = y0

4; y5 = y0
5 ∨ y1

5 ∨ y2
5; y6 = y1

6;
y7 = y2

7; y8 = y0
8 ∨ y1

8 ∨ y2
8.

(27)

Each function f j ∈ D ∪ Y is represented by a disjunction of its partial components.
The principle of constructing each function of (27) is clear from the comparison of these
functions with contents of Table 5.

Step 10. To create the table of LUTerV, we should use the full codes K(am) and partial
state codes C(am). So, there are the following columns in this table: am, K(am), C(am), Vm.
Inside this table, we use only states am ∈ APC. In the discussed case, there are six lines in
the table of LUTerV (Table 6).

Table 6. Table of LUTerV.

am K(am) C(am) Vm
a2 0100 0100 v2
a5 0101 1000 v1
a6 1000 0001 v4
a7 0110 1100 v1v2
a8 1001 0010 v3
a9 1010 0011 v3v4

To fill the column K(am), we use the state codes from Figure 6. The column C(am) is
filled using the partial state codes from Figure 7.

To optimize the SBF (12), we represent its functions by the Karnaugh map (Figure 8).
In this map, we treat the codes of states am ∈ AMB as the “don’t care” input assignment.
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T1T2

T3T4 00 01 11 10

00

01

11

10

∗ v2 v4∗

∗ v1 v3∗

∗ v1v2 v3v4∗

∗ ∗ ∗∗

Figure 8. Karnaugh map for SBF V(T).

Using the Karnaugh map (Figure 8) gives the following SBF:

v1 = T1T4 ∨ T1T3;
v2 = T1 T4;
v3 = T1T4 ∨ T1T3;
v4 = T1T4.

(28)

In the worst case, each function vr ∈ V is represented by a SOP having RMB literals.
So, the maximum number of literals is calculated as the product of RV by RMB. In the
discussed case, this number is equal to 16. If we analyze the SBF (28), we find that it
includes 10 literals. So, using our approach allows reducing the number of literals by a
factor of 1.6. Each literal corresponds to an interconnection between outputs of RG and
inputs of LUTs creating the circuit of LUTerV. It is known that minimizing the number of
interconnections allows reducing the value of power consumption [26,38].

Step 11. To implement the circuit of P2C Mealy FSM, it is necessary to use, for example,
the CAD tool Vivado by Xilinx [39]. This package solves all problems connected with the
step of technology mapping [40,41]. In Section 7, we use Vivado to compare the proposed
method with some known FSM design methods.

6. Algorithm of State Redistribution

If a class Ak ∈ πV includes Mk states, then it is necessary Rk state variables to encode
the states am ∈ Ak by the partial state codes C(am). The value of Rk is determined by (5).
We denote as MNPk the maximum possible number of states in a class Ak ∈ πV . This value
is determined as

MNPk = 2Rk − 1. (29)

Our research shows that it is quite possible that some class Ak ∈ πV includes fewer
states compared to the value of MNPk. For example, we have the following classes for
FSM S1: A1 = {a2, a5} and A2 = {a8, a9}. Using (5) gives R1 = R2 = 2. Using (29) gives
MNP1 = MNP2 = 3. So, both classes might be supplemented by states from the set
AMB = {a1, a3, a4, a6, a7}. One state can be added to each of the classes Ak ∈ πV .

So, it is quite possible that we need to redistribute states between sets AMB and APC.
Obviously, these new elements of APC should be added into some classes Ak ∈ πV . It is
obvious that it is expedient to transfer states in such a way as to reduce the number of
states in the set AMB as much as possible.

We propose to use an estimate I(am), which we called the influence of the state
am ∈ AMB on the sets XT and XV . In the discussed case, these sets are the following:
XT = {x1, x2, x3} and XV = {x2, x3, x5, x6, x7}.

The best candidate for transfer to the set Ak ∈ πV is the state am ∈ AMB that minimizes
the number of inputs in the set XT and minimally increases this number in the set Xk. The
influence of a state am ∈ AMB on the set XT is determined as

IT(am) = |X(am)\XT |. (30)
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The influence of a state am ∈ AMB on the set Xk is determined as

IV(am) = |X(am)\Xk|. (31)

So, the overall influence of the state am ∈ AMB is defined as

I(am) = IT(am)− IV(am). (32)

Obviously, it is necessary to transfer the states with the greatest influence. This is the
basis of our proposed redistribution algorithm (Figure 9).

Start
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End

a

M =MPN ?k k

0 1

k:=k+1

b

k > K?
01

a
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0
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Figure 9. Block-diagram of state redistribution algorithm.
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During the redistribution, a queue γk is formed from the states am ∈ AMB. This queue
is based on the following rule: the states are placed as the value of I(am) decreases. If the
influence is the same for states am, as ∈ AMB(I(am) = I(as)), then, in the queue, the state
with lower subscript precedes a state with higher subscript. A state can be included into a
class Ak ∈ πV , if its including does not violate the condition (4). In our algorithm, we use
the abbreviation CBI (can be included). For each class Ak ∈ πV , the queue γk includes Jk
elements. This preliminary information is quite enough to proceed to the description of the
proposed algorithm.

We start the redistribution from the testing the set AMB (Block 1). If this set is empty
(output 1), then the redistribution cannot be executed. If there are some states in the set AMB
(output 0), then the redistribution process begins. The analysis starts with class A1 ∈ πV
(Block 2). If the analyzed class includes the maximum number of states (output 1 from
Block 3), then it is necessary to proceed to the analysis of the next class (go to Block 15). The
algorithm is terminated when all classes are analyzed (output 1 of Block 16). Otherwise,
the next class is analyzed (go to from Block 16 to Block 3).

If an additional state can be included in the class Ak ∈ πV (output 0 from Block 3),
then there is created a queue γk having Jk elements (Block 4). Next, the sequential analysis
of the states from the queue γk is performed. The analysis starts from the first element of
the queue (Block 5).

The j-th element is taken from the queue (Block 6). If it cannot be included into the
class Ak ∈ πV (output 0 from Block 7), then the next element of the queue should be
analyzed (go to Block 13). If all elements are analyzed (output 1 of Block 14), then it is
necessary to analyze the class Ak+1 ∈ πV (go to Block 15). Otherwise (output 0 of Block 14),
the next element of the queue is analyzed (go to Block 6).

If the j-th element can be included into the class Ak ∈ πV (output 1 from Block 7), then
the following actions are executed (Block 8): (1) the state aj ∈ AMB is included into the set
Ak ∈ πV ; (2) the state aj ∈ AMB is excluded from the set AMB. If now (after excluding state
aj ∈ AMB) the set AMB becomes empty (output 1 of Block 9), the redistribution process is
terminated (go to End). Otherwise (output 0 of Block 9), the next element of queue should
be analyzed (go to Block 10). If all elements are already analyzed (output 1 of Block 11),
then it is necessary to analyze the class Ak+1 ∈ πV (go to Block 15). Otherwise (output
0 of Block 11), the next element of queue should be analyzed. This can be done if the class
Ak ∈ πV does not contain the maximum possible number of elements. This is checked in
the Block 12. If the class is full (output 1 of Block 12), then it is necessary to analyze the
class Ak+1 ∈ πV (go to Block 15). Otherwise (output 0 of Block 12), the next element of the
queue is analyzed (go to Block 6).

There are two conditions to terminate this redistribution process. First, if there are
no elements in the set AMB (outputs 1 from Blocks 1 and 9). Second, all classes Ak ∈ πV
have been tested and, if it was possible, supplemented by states am ∈ AMB (output 1 from
Block 16).

So, the k-th step of the redistribution process starts from creating current sets AMB
and X0. Next, it is necessary to find the values of I(am) for states am ∈ AMB and create the
current queue γk. So, there are K columns corresponding to classes Ak ∈ πV in the table
of redistribution. Each column is divided by the following sub-columns: AMB, I(am), γk,
j = 1, j = 2, . . . , j = Jk. In this table, the line am includes states am ∈ AMB transferred in
the particular class Ak ∈ πV . The lines for these states are marked by ⊕. If a state cannot
be included into the class Ak ∈ πV , the corresponding line includes the sign “−”. The last
line of the table contains the classes Ak ∈ πV . Table 7 shows the redistribution process for
FSM S1.



Electronics 2022, 11, 3089 16 of 26

Table 7. Redistribution process for FSM S1.

k = 1 k = 2
AMB I(am) γ1 j = 1 j = 2 AMB I(am) γ2 j = 1 j = 2

a1 −1 4 – a1 −1 3 –
a3 −1 5 – a3 −1 4 –
a4 0 2 – a4 0 2 –
a6 0 3 – a6 1 1 ⊕ –
a7 1 1 ⊕ – – – – – –
am a7 am a6
A1 a2a5a7 A2 a8a9a6

Let us go back to the previous section. After executing the step 2, we have the
following sets: AMB = {a1, a3, a4, a6, a7}, APC = {a2, a5, a8, a9}, XT = {x1, x2, x3} and
XV = {x2, x3, x5, x6, x7}. After executing the step 3, we have the partition πV = {A1, A2}
with the following classes: A1 = {a2, a5} and A2 = {a8, a9}. These classes are characterized
by the sets X1 = {x2, x5, x6} and X2 = {x3, x5, x7}.

So, for k = 1, the column AMB contains the states a1, a3, a4, a6, a7. For the state
a1 ∈ AMB, we can find the set X(a1) = {x1}. Let us find the value of I(a1). Using (30)
gives the following: IT(a1) = |X(a1)\XT | = |{x1}\{x1, x2, x3}| = 0. Using (31) gives
IV(a1) = |X(a1)\X1| = |{x1}\{x2, x5, x6}| = 1. Using (32) gives I(a1) = IT(a1)− IV(a1) =
0− 1 = −1. This value is written in the intersection of the line a1 and sub-column I(am)
for k = 1. In the same way, the values of I(am) for all other states am ∈ AMB are calculated.

Using the values of I(am), we can get the queue γ1 =< a7, a4, a6, a1, a3 >. In the
intersection of the line am and the sub-column γ1, there is written the place of this state in
this queue. So, we should check the possibility of redistribution starting from the state a7.
If we place the state a7 into the class A1, then there is no change for values of L1 and R1. So,
the state is included into A1 and excluded from AMB. Now, there is M1 = MPN1 = 3. So,
during the step j = 2 no state can be added into the class A1.

Now, there are the following modified sets: A1 = {a2, a5, a7}, AMB = {a1, a3, a4, a6}
and XT = {x1, x3}. Using the modified sets AMB and XT , we can start the next step of
redistribution (k = 2).

The values of I(am) are shown in the corresponding sub-column of the column k = 2.
Using them gives the queue γ2 =< a6, a4, a1, a3 >. If we place the state a6 into the class A2,
then there is no change for values of L2 and R2. So, the state a6 is included into A2 and
excluded from AMB. Now, there is M2 = MPN2 = 3. So, during the step j = 2 no state can
be added into the class A2. So, the class A2 is ready.

Now, there are the following modified sets: A1 = {a2, a5, a7}, A2 = {a6, a8, a9},
AMB = {a1, a3, a4} and XT = {x1}. Obviously, these sets are the same as we use as the
outcome of Step 4 in our example.

7. Experimental Results

In this section, the results of experiments conducted with the benchmarks [42] are
shown. The library [42] consists of 48 benchmarks. The benchmark FSMs are represented by
their STTs. To represent the STTs, the format KISS2 is used. These benchmarks have a wide
range of basic characteristics (numbers of states, inputs, and outputs). Different researchers
use these benchmarks to compare various characteristics of FSM circuits [28,29,32]. The
characteristics of benchmarks are shown in Table 8.

Our current research is connected with Mealy FSMs which are the parts of digital
systems. It is known that Mealy FSMs are not stable [6],: fluctuations at the inputs lead to
fluctuations at the outputs. This can lead to errors in the operation of the digital system
as a whole. To avoid these errors, the FSM inputs should be stabilized. The stabilization
presumes using an additional input register (AIR) [30]. When input values stabilize,
they are loaded into the AIR. Now, fluctuations at the inputs (which are the outputs of
some system’s blocks) do not lead to fluctuations at the FSM outputs. However, the AIR
consumes some resources of a chip: (1) it requires L additional LUTs and flip-flops and
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(2) it is synchronized (due to it, AIR uses some resources of the synchronization tree). So,
this register consumes additional LUTs, flip-flops, power and time (it adds some delay to
the whole synchronization cycle time). Such an approach allows taking into account this
overhead connected with the stabilization of FSM operation.

Table 8. Characteristics of benchmarks [42].

Benchmark L N RMB + L M/RMB H Class

bbara 4 2 8 12/4 60 1
bbsse 7 7 12 26/5 56 1
bbtas 2 2 6 9/4 24 0
beecount 3 4 7 10/4 28 1
cse 7 7 12 32/5 91 1
dk14 3 5 8 26/5 56 1
dk15 3 5 8 17/5 32 1
dk16 2 3 9 75/7 108 1
dk17 2 3 6 16/4 32 0
dk27 1 2 5 10/4 14 0
dk512 1 3 6 24/5 15 0
donfile 2 1 7 24/5 96 1
ex1 9 19 16 80/7 138 2
ex2 2 2 7 25/5 72 1
ex3 2 2 6 14/4 36 0
ex4 6 9 11 18/5 21 1
ex5 2 2 6 16/4 32 0
ex6 5 8 9 14/4 34 1
ex7 2 2 12 17/5 36 1
keyb 7 7 12 22/5 170 1
kirkman 12 6 18 48/6 370 2
lion 2 1 5 5/3 11 0
lion9 2 1 6 11/4 25 0
mark1 5 16 10 22/5 22 1
mc 3 5 6 8/3 10 0
modulo12 1 1 5 12/4 24 0
opus 5 6 10 18/5 22 1
planet 7 19 14 86/7 115 2
planet1 7 19 14 86/7 115 2
pma 8 8 14 49/6 73 2
s1 8 7 14 54/6 106 2
s1488 8 19 15 112/7 251 2
s1494 8 19 15 118/7 250 2
s1a 8 6 15 86/7 107 2
s208 11 2 17 37/6 153 2
s27 4 1 8 11/4 34 1
s386 7 7 12 23/5 64 1
s420 19 2 27 137/8 137 4
s510 19 7 27 172/8 77 4
s8 4 1 8 15/4 20 1
s820 18 19 25 78/7 232 4
s832 18 19 25 76/7 245 4
sand 11 9 18 88/7 184 3
shiftreg 1 1 5 16/4 16 0
sse 7 7 12 26/5 56 1
styr 9 10 16 67/7 166 2
tma 7 9 13 63/6 44 2

The experiments are conducted using a personal computer with the following char-
acteristics: CPU: Intel Core i5-11300H, Memory: 16GB RAM LPDDR4X. To get the FSM
circuits, we use the Virtex-7 VC709 Evaluation Platform (xc7vx690tffg1761-2) [43] by AMD
Xilinx. There is SL = 6 for LUTs used in this platform includes. The CAD tool Vivado
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v2019.1 (64-bit) [39] executes the technology mapping. The results of experiments are taken
from reports produced by Vivado. To connect the library with Vivado, we use VHDL-based
FSM models. These models are obtained by a transformation of the files in KISS2 format
into VHDL codes. The transformation is executed by the CAD tool K2F [30].

We have found three main characteristics of P2C Mealy FSMs. They are: the occupied
chip area (the LUT count), performance (both the values of cycle time and maximum
operating frequency), and power consumption. We compared the obtained values with
the corresponding values for four different FSMs. Three of them are P Mealy FSMs based
on: (1) Auto of Vivado (it uses MBCs); (2) One-hot of Vivado; (3) JEDI (it uses MBCs, too).
Moreover, for the comparison, we use PT-based FSMs [12] whose circuits we try to improve.

As shown in [30], all main characteristics of LUT-based FSM circuits depend on the
relation between the values of L + RMB, on the one hand, and the value of SL, on the
other hand:

nSL < (L + RMB) ≤ (n + 1)SL. (33)

Analysis of Table 8 allows dividing the benchmarks into five sets. The benchmarks
belong to class of trivial FSMs (set 0), if n = 0 (it gives RMB + L ≤ 6). I The benchmarks
belong to set of simple FSMs (set 1), if n = 1 (it gives RMB + L ≤ 12). The benchmarks
belong to set of average FSMs (set 2), if n = 2 (it gives RMB + L ≤ 18). The benchmarks
belong to set of big FSMs (set 3), if n = 3 (it gives RMB + L ≤ 24). The benchmarks
belong to set of very big FSMs (set 4), if n = 4 (it gives the relation RMB + L > 24). As
research [37] shows, the larger the set number, the bigger the gain from using methods of
twofold state assignment.

The results of experiments are shown in Tables 9–11. These tables are organized in the
same manner. The table columns are marked by the names of investigated methods. The
last column includes the number of the benchmark set to whom the particular benchmark
belongs. The table rows are marked the names of benchmarks. There are results of
summation of values from columns in the row “Total”. The row “Percentage” includes
the percentage of summarized characteristics of FSM circuits produced by other methods
respectively to P2C-based FSMs. We start the analysis of experiments from Table 9. This
table contains the values of LUT counts for each benchmark used in the experiments.

As follows from Table 9, the circuits of P2C-based FSMs use a minimum number of
LUTs compared to other investigated methods. There is the following gain: (1) 36.92%
compared to Auto-based FSMs; (2) 56.23% compared to One-hot–based FSMs; (3) 16.11%
compared to JEDI-based FSMs; (4) 5.74% compared to PT-based FSMs. In our opinion, this
gain is associated with a decrease in the number of variables used in partial state codes
(compared to equivalent PT-based FSMs). The second source of a decrease in the LUT
counts can be a decrease in the number of partition classes. If the relation (K + 1) < I
takes place, then there is a decrease in the required number of LUT inputs for elements of
LUTerTY. If the condition (13) is violated but the condition (K + 1) < SL holds, then the
circuit of LUTerTY is multi-level for a PT-based FSM as opposed to the single-level block
circuit of an equivalent P2C-based FSM.

Careful analysis of the table reveals the following feature of the proposed method:
there are the same values of LUT counts for equivalent PT- and P2C-based FSMs for the
Set 0. This can be explained as follows. For this set, the condition (14) holds. This means
that each function f j ∈ D ∪ Y does not require being decomposed. Only a single LUT is
enough to implement a logic circuit for any function f j ∈ D ∪Y. In this case, there is the
same single class into both partitions, πA and πV . Due to it, the block FAB is absent. This
means that both PT and P2C FSMs turn into P FSMs. So, there are the same circuits for PT
and P2C FSMs. Obviously, these circuits have the same values of LUT counts. The same
should take place also for other characteristics of these two models.
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Table 9. Experimental results (the LUT counts).

Benchmark Auto One-Hot JEDI PT Our Approach Set

bbara 21 21 14 15 14 1
bbsse 40 44 31 29 24 1
bbtas 7 7 7 7 7 0
beecount 22 22 17 15 13 1
cse 47 73 43 39 36 1
dk14 19 30 13 15 13 1
dk15 18 19 15 9 9 1
dk16 17 36 14 12 12 1
dk17 7 14 7 7 7 0
dk27 4 6 5 7 7 0
dk512 11 11 10 9 9 0
donfile 33 33 26 21 18 1
ex1 79 83 62 51 51 2
ex2 11 11 10 10 9 1
ex3 11 11 11 10 9 0
ex4 21 19 18 16 13 1
ex5 11 11 11 10 10 0
ex6 29 41 27 25 20 1
ex7 6 7 6 6 6 1
keyb 50 68 47 44 39 1
kirkman 54 70 51 47 39 2
lion 4 7 4 4 4 0
lion9 8 13 7 7 7 0
mark1 28 28 25 23 20 1
mc 7 10 7 7 7 0
modulo12 8 8 8 8 8 0
opus 33 33 27 28 24 1
planet 138 138 95 87 87 2
planet1 138 138 95 87 87 2
pma 102 102 94 86 77 2
s1 73 107 69 65 59 2
s1488 132 139 116 100 100 2
s1494 134 140 118 102 102 2
s1a 57 89 51 49 49 2
s208 23 42 21 20 17 2
s27 10 22 10 10 10 1
s386 33 46 29 25 20 1
s420 29 50 28 27 27 4
s510 67 67 51 48 48 4
s820 13 13 13 14 14 1
s832 106 100 86 76 76 4
s840 98 97 80 72 65 4
sand 143 143 125 112 112 3
shiftreg 3 7 3 5 5 0
sse 40 44 37 33 29 1
styr 102 129 90 82 82 2
tma 52 46 46 40 34 2
Total 2099 2395 1780 1621 1533
Percentage, % 136.92 156.23 116.11 105.74 100.00

Furthermore, from Table 9 we see that the values of LUT counts are the same for some
equivalent PT and P2C FSMs that do not belong to the set 0. This phenomenon occurs for the
following benchmarks: dk16, ex1, planet, planet1, s1488, s1494, s1a, s420, s510, s810, s832, sand
and styr. Analysis of Table 8 reveals the nature of this phenomenon: there are more than
SL = 6 bits in state codes for these FSMs. This means that the following condition holds:

RMB > SL. (34)
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In this case, the condition (14) is violated. This leads to the empty set AMB. In turn, this
makes correct the following relations: APC = A and πA = πV . So, if the condition (34)
holds, then P2C FSMs turn into PT FSMs. Obviously, there are the same LUT counts for
such equivalent P2C and PT FSMs.

Table 10. Experimental results (the minimum cycle time, nanoseconds).

Benchmark Auto One-Hot JEDI PT Our Approach Set

bbara 8.811 8.811 8.352 8.394 7.601 1
bbsse 10.096 9.642 9.213 8.763 7.924 1
bbtas 8.497 8.497 8.451 8.497 8.497 0
beecount 9.605 9.605 8.941 8.568 7.740 1
cse 10.558 9.840 9.343 8.570 7.764 1
dk14 8.821 9.395 8.762 8.964 8.070 1
dk15 8.797 8.998 8.735 8.890 8.009 1
dk16 9.491 9.320 8.672 8.327 7.539 1
dk17 8.617 9.587 8.617 8.617 8.602 0
dk27 8.325 8.424 8.369 8.325 8.325 0
dk512 8.566 8.566 8.477 8.566 8.566 0
donfile 9.033 9.034 8.509 7.916 7.628 1
ex1 10.425 10.955 9.454 8.496 8.496 2
ex2 8.635 8.635 8.596 8.566 7.738 1
ex3 8.731 8.731 8.707 8.731 8.731 0
ex4 9.214 9.315 8.874 8.745 7.902 1
ex5 9.147 9.147 9.119 9.147 9.147 0
ex6 9.564 9.772 9.330 8.701 7.863 1
ex7 8.598 8.578 8.584 8.582 7.751 1
keyb 10.121 10.699 9.666 9.063 8.174 1
kirkman 10.971 10.392 10.280 9.621 8.300 2
lion 8.539 8.501 8.541 8.595 8.595 0
lion9 8.470 8.998 8.444 8.427 8.427 0
mark1 9.825 9.825 9.343 8.942 8.063 1
mc 8.688 8.719 8.682 8.688 8.688 0
modulo12 8.302 8.302 8.299 8.302 8.302 0
opus 9.684 9.684 9.275 9.290 8.353 1
planet 11.264 11.264 9.073 8.897 8.897 2
planet1 11.264 11.264 9.073 8.897 8.897 2
pma 10.634 10.634 9.681 9.215 7.963 2
s1 10.623 11.154 10.156 9.669 8.308 2
s1488 11.013 11.372 10.155 9.114 9.114 2
s1494 10.487 10.654 9.878 9.163 9.163 2
s1a 10.313 9.462 9.704 9.385 9.385 2
s208 9.503 9.434 9.361 8.859 7.684 2
s27 8.672 8.862 8.662 8.671 7.832 1
s386 9.676 9.494 9.311 9.205 8.298 1
s420 9.864 9.780 9.755 9.619 9.619 4
s510 9.742 9.742 9.155 8.889 8.889 4
s820 10.691 10.641 9.775 9.317 9.317 1
s832 10.975 10.638 9.866 9.297 9.297 4
s840 9.195 9.228 9.158 9.248 8.321 4
sand 12.390 12.390 11.652 9.895 9.895 3
shiftreg 8.302 7.265 7.091 8.302 8.302 0
sse 10.096 9.642 9.455 9.002 8.597 1
styr 11.067 11.497 10.666 9.398 9.398 2
tma 9.831 10.495 9.821 9.247 7.974 2
Total 453.73 454.88 431.08 417.58 395.94
Percentage, % 114.60 114.89 108.88 105.46 100.00

As follows from Table 10, the circuits of P2C-based FSMs are the fastest compared to
the circuits produced by other investigated methods. There is the following gain: (1) 14.60%
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compared to Auto-based FSMs; (2) 14.89% compared to One-hot–based FSMs; (3) 8.88%
compared to JEDI-based FSMs; (4) 5.46% compared to PT-based FSMs. We think that this
gain is due to the fact that in some cases the circuits of P2C-based FSMs have fewer levels of
LUTs than the circuits of PT-based FSMs. We discussed the reasons for this phenomenon in
the analysis of Table 9. It is interesting to note that the average gain in the cycle time almost
coincides with the average gain in the LUT counts (for PT- and P2C-based FSMs).

Table 11. Experimental results (the maximum operating frequency, MHz).

Benchmark Auto One-Hot JEDI PT Our Approach Set

Benchmark Auto One-Hot JEDI PT FSM PE FSM Set
bbara 113.496 113.496 119.727 119.139 131.556 1
bbsse 99.049 103.713 108.539 114.116 126.199 1
bbtas 117.687 117.687 118.336 117.687 117.687 0
beecount 104.112 104.112 111.839 116.720 129.199 1
cse 94.713 101.626 107.030 116.680 128.807 1
dk14 113.364 106.439 114.134 111.556 123.908 1
dk15 113.675 111.137 114.487 112.485 124.862 1
dk16 105.362 107.294 115.316 120.096 132.647 1
dk17 116.049 104.308 116.049 116.049 116.249 0
dk27 120.122 118.709 119.494 120.122 120.122 0
dk512 116.740 116.740 117.963 116.740 116.740 0
donfile 110.706 110.696 117.517 126.323 131.093 1
ex1 95.922 91.281 105.777 117.700 117.700 2
ex2 115.808 115.808 116.340 116.744 129.234 1
ex3 114.536 114.536 114.846 114.536 114.536 0
ex4 108.530 107.352 112.690 114.356 126.552 1
ex5 109.327 109.327 109.661 109.327 109.327 0
ex6 104.556 102.333 107.183 114.930 127.186 1
ex7 116.306 116.576 116.495 116.526 129.011 1
keyb 98.806 93.466 103.453 110.340 122.342 1
kirkman 91.148 96.232 97.272 103.938 120.476 2
lion 117.110 117.634 117.083 116.353 116.353 0
lion9 118.065 111.136 118.421 118.668 118.668 0
mark1 101.781 101.781 107.032 111.834 124.020 1
mc 115.102 114.694 115.174 115.102 115.102 0
modulo12 120.454 120.454 120.498 120.454 120.454 0
opus 103.265 103.265 107.818 107.642 119.717 1
planet 88.777 88.777 110.222 112.395 112.395 2
planet1 88.777 88.777 110.222 112.395 112.395 2
pma 94.039 94.039 103.293 108.524 125.587 2
s1 94.134 89.653 98.465 103.426 120.362 2
s1488 90.800 87.934 98.472 109.727 109.727 2
s1494 95.357 93.861 101.236 109.135 109.135 2
s1a 96.963 105.687 103.048 106.558 106.558 2
s208 105.231 106.000 106.825 112.874 130.136 2
s27 115.314 112.842 115.449 115.324 127.676 1
s386 103.348 105.329 107.401 108.642 120.512 1
s420 101.378 102.249 102.514 103.961 103.961 4
s510 102.648 102.648 109.226 112.493 112.493 4
s820 93.537 93.975 102.300 107.336 107.336 1
s832 91.117 94.001 101.354 107.563 107.563 4
s840 108.755 108.364 109.196 108.133 120.184 4
sand 80.711 80.711 85.821 101.059 101.059 3
shiftreg 120.454 137.645 141.028 120.454 120.454 0
sse 99.049 103.713 105.760 111.085 116.315 1
styr 90.359 86.979 93.754 106.411 106.411 2
tma 101.719 95.284 101.819 108.141 125.413 2
Total 4918.26 4910.30 5157.58 5301.80 5605.42
Percentage, % 87.74 87.60 92.01 94.58 100.00
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As follows from Table 10, for the Set 0, there are the same values of cycle times for
equivalent benchmarks using models of single-core and dual-core FSMs. The explanation
is the same as it is for the equality of LUT counts. Moreover, from Table 10 we can find
out that the temporal characteristics are the same for the following benchmarks: dk16, ex1,
planet, planet1, s1488, s1494, s1a, s420, s510, s810, s832, sand and styr. The reasons for this
phenomenon have also been analyzed in the previous paragraphs.

Using values of cycle times, we can trivially compute the values of maximum operating
frequencies. These values are shown in Table 11.

As follows from Table 11, the circuits of P2C-based FSMs have the highest values
of maximum operating frequencies compared to the circuits based on other investigated
methods. There is the following gain: (1) 12.26% compared to Auto-based FSMs; (2) 12.40%
compared to One-hot–based FSMs; (3) 7.09% compared to JEDI-based FSMs; (4) 5.42%
compared to equivalent PT-based FSMs. Obviously, the gain in frequency is related to the
gain in cycle time. We discussed all the reasons for this phenomenon above.

The value of power consumption is one of the most important characteristics of FSM
circuits [44]. Very often, the gain in area-temporal characteristics is accompanied with an
increase in the power consumption [27]. Using Vivado reports allows constructing Table 12
with values of consumed power.

The main goal of the proposed method is to obtain FSM circuits with fewer LUTs than
it is in circuits of equivalent PT-based FSMs. Of course, this improvement can lead to an
increase in power consumption. As follows from Table 12, this increase is extremely small.
Compared to PT-based FSMs, the circuits of equivalent P2C-based FSMs consume less than
one percent more power (0.76%). If compare P2C-based FSMs with other investigated
methods, then there is the following gain: (1) 16.38% compared to Auto-based FSMs; (2)
24.02% compared to One-hot–based FSMs; (3) 1.90% compared to JEDI-based FSMs.

We associate this loss with the following. In PT-based FSMs, the state variables Tr ∈ T
are connected only with the block LUTerV. However, in P2C-based FSMs, these variables
are connected with LUTs of both LUTerV and CoreT. This increase in the number of
connections leads to an increase in the value of parasitic capacitance in an FSM circuit [26].
Due to it, P2C-based FSMs consume more power than equivalent PT-based FSMs. Obviously,
this phenomenon does not occur for FSMs from the Set 0. Moreover, for the benchmarks
dk16, ex1, planet, planet1, s1488, s1494, s1a, s420, s510, s810, s832, sand and styr both PT- and
P2C-based FSMs consume equal values of power.

So, the proposed method allows obtaining circuits with either better or the same values
of area-temporal characteristics than they are for equivalent PT-based FSMs. Our main
purpose is to get the FSM circuits with fewer LUTs than it is for equivalent PT-based FSMs.
As follows from the conducted experiments, this goal has been achieved. Furthermore, the
proposed method has an additional positive effect: it allows getting faster FSM circuits than
the circuits of equivalent PT-based FSMs. Our method loses slightly in terms of the amount
of power consumed. However, this loss does not exceed 1% on average. We think that our
approach can be used instead of PT FSMs if area-temporal characteristics determine the
optimality of the resulting FSM circuits.
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Table 12. Experimental results (the consumed power, Watts).

Benchmark Auto One-Hot JEDI PT Our Approach Set

bbara 0.961 0.961 0.880 0.818 0.841 1
bbsse 2.651 1.637 2.144 2.028 2.072 1
bbtas 0.900 0.900 0.900 0.900 0.900 0
beecount 2.011 2.011 1.401 1.389 1.392 1
cse 1.389 1.450 1.322 1.306 1.312 1
dk14 3.339 3.710 3.332 3.301 3.321 1
dk15 1.783 2.285 1.779 1.712 1.728 1
dk16 3.334 3.109 2.879 2.801 2.801 1
dk17 2.268 2.302 2.258 2.286 2.286 0
dk27 1.524 1.210 1.514 1.539 1.539 0
dk512 1.852 1.852 1.701 1.743 1.743 0
donfile 1.076 1.076 0.970 0.912 0.934 1
ex1 4.564 3.430 2.804 2.612 2.612 2
ex2 0.735 0.753 0.709 0.698 0.712 1
ex3 0.758 0.758 0.758 0.758 0.758 0
ex4 1.980 1.659 1.605 1.589 1.605 1
ex5 0.754 0.754 0.752 0.765 0.765 0
ex6 2.675 4.256 2.648 2.613 2.661 1
ex7 1.359 1.548 1.361 1.342 1.392 1
keyb 1.524 1.502 1.506 1.492 1.501 1
kirkman 2.204 2.355 1.950 1.846 1.852 2
lion 0.909 0.996 0.914 0.923 0.923 0
lion9 1.100 1.337 1.095 1.102 1.102 0
mark1 1.851 1.851 1.633 1.621 1.643 1
mc 0.827 0.941 0.823 0.823 0.823 0
modulo12 0.915 0.915 0.919 0.921 0.921 0
opus 1.750 1.750 1.689 1.678 1.714 1
planet 4.553 4.553 2.887 2.714 2.714 2
planet1 4.553 4.553 2.887 2.714 2.714 2
pma 1.818 1.818 1.701 1.686 1.717 2
s1 3.133 3.578 2.966 2.895 2.918 2
s1488 4.430 4.544 3.996 3.801 3.801 2
s1494 3.527 3.626 3.430 3.396 3.396 2
s1a 1.770 2.458 1.656 1.602 1.602 2
s208 1.858 3.311 1.740 1.694 1.726 2
s27 1.148 2.342 1.157 1.114 1.143 1
s386 1.682 1.824 1.552 1.501 1.543 1
s420 1.960 3.443 1.909 1.812 1.812 4
s510 2.166 2.166 1.714 1.643 1.643 4
s820 1.128 1.197 1.124 1.112 1.112 1
s832 2.662 2.409 2.071 1.985 1.985 4
s840 2.704 2.695 2.436 2.243 2.315 4
sand 1.640 1.640 1.479 1.401 1.401 3
shiftreg 0.879 0.959 0.868 0.879 0.879 0
sse 1.651 1.727 1.520 1.503 1.521 1
styr 4.506 5.233 3.649 3.598 3.598 2
tma 2.020 1.745 1.752 1.711 1.763 2
Total 96.78 103.13 84.74 82.52 83.162
Percentage, % 116.38 124.02 101.90 99.24 100.00

8. Conclusions

Modern FPGAs are very powerful design tools [45]. Nowadays, a single FPGA chip
may implement a very complicated digital system. The main drawback of FPGAs is a
very small number of LUT inputs [19,46]. This complicates the problem of optimizing
the FSM circuits representing sequential blocks of digital systems. Very often, the process
of technology mapping for such FSMs is connected with applying various functional
decomposition methods. In this case, the resulting LUT-based FSM circuits are multi-level.
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The technology mapping can be based on applying various methods of structural
decomposition [30]. The research results shown in [11] prove that, very often, the SD leads
to FSM circuits with significantly better characteristics compared to their counterparts
based on the FD. Our research [12] shows that single-core circuits with the twofold state
assignment have better characteristics compared to their FD-based counterparts. However,
this approach is connected with using a special transformer creating the extended state
codes. This transformer consumes some resources of FPGA chip used.

In our current article, we propose to use two cores generating systems of partial
Boolean functions. This leads to P2C Mealy FSMs where different systems of state variables
are used in different cores. Our approach allows reducing LUT counts and improving tem-
poral characteristics in comparison with PT-based FSMs. Note that this gain is associated
with a very slight increase in the power consumption (up to 1% on average).

In our future research, we will try to use this approach to optimize Mealy FSM circuits
based on various structural decomposition methods. We will also check the possibility
of using the double-core approach for optimizing the circuits of LUT-based Moore FSMs.
We hope these methods can be used for implementing sequential devices of modern
embedded systems.
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Abbreviations

The following abbreviations are used in this manuscript:

AIR additional input register
CAD computer aided design
CLB configurable logic block
ESC extended state codes
FAB function assembly block
FD functional decomposition
FPGA field-programmable gate array
FSM finite state machine
IMF input memory function
LUT look-up table
MBC maximum binary state codes
PBF partial Boolean functions
SBF system of Boolean functions
SD structural decomposition
SOP sum of products
STG state transitions graph
STT state transition table
TSA twofold state assignment
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