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Abstract: The intrusion detection system (IDS) must be able to handle the increase in attack volume,
increasing Internet traffic, and accelerating detection speeds. Network flow feature (NTF) records are
the input of flow-based IDSs that are used to determine whether network traffic is normal or malicious
in order to avoid IDS from difficult and time-consuming packet content inspection processing since
only flow records are examined. To reduce computational power and training time, this paper
proposes a novel pre-processing method merging a specific amount of NTF records into frames, and
frame transformation into images. Federated learning (FL) enables multiple users to share the learned
models while maintaining the privacy of their training data. This research suggests federated transfer
learning and federated learning methods for NIDS employing deep learning for image classification
and conducting tests on the BOUN DDoS dataset to address the issue of training data privacy. Our
experimental results indicate that the proposed Federated transfer learning (FTL) and FL methods
for training do not require data centralization and preserve participant data privacy while achieving
acceptable accuracy in DDoS attack identification: FTL (92.99%) and FL (88.42%) in comparison with
Traditional transfer learning (93.95%).

Keywords: network intrusion detection; deep learning; federated learning; image representation

1. Introduction

A series of operations known as intrusion are intended to compromise the security of
computer and network components. Network intrusion detection system (NIDS) offers
well-established methods that collect and analyze data from various places within a network
to discover potential security breaches in order to protect the network infrastructure [1].
By analyzing current network behaviour patterns or rules, traditional NIDS often assess
whether the network connection is in a normal state or not. However, as the Internet is
a complex, constantly evolving system, it gathers a tremendous amount of complicated
and high-dimensional data. It comes as no surprise that NIDS must be able to handle the
increasing attack volume, the expansion of Internet traffic, and the accelerating detection
speeds. Conventional NIDS methods have become inadequate as a result [2]. In [3], the
challenges of intrusion detection systems (IDSs) are summarized as follows: false alarm
rate, low detection rate, unbalanced datasets, and response time.

Deep packet inspection or stateful protocol analysis are traditional methods used by
IDS to identify attacks in network traffic. Deep packet inspection is too expensive to be used
in terms of processing and energy consumption since real-time classification requires the
analysis of a massive volume of data. NIDSs based on flow analysis provide good options
for real-time traffic classification as flow-based techniques can categorize the entire traffic
by inspecting an equivalent of 0.1% of the total volume [4]. Network flow records are the
input of flow-based IDSs, which are used to determine whether network traffic is normal
or malicious in order to protect IDS from difficult and time-consuming packet content
inspection processing since only flow records are examined [5]. An internet protocol (IP)
flow is a collection of packets that are seen in a network over a period of time and have a
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common characteristic known as its key. These packets can be part of a TCP connection or
a UDP stream, and their source and destination IP addresses, source and destination port
numbers, protocol numbers, etc., can identify them. There are infinite aggregation strategies
in which statistic network packets are collected based on a predefined flow identifier [6].

The Cisco Annual Internet Report [7] shows that both the total number of records
exposed and the number of breaches are increasing. When multiple systems overload
the bandwidth or resources of a targeted system—typically one or more web servers—it
is called a Distributed-Denial-of-Service (DDoS) attack and is the main threat that most
service providers have noticed. Attacks between 100 Gbps and 400 Gbps increased by
776% globally between 2018 and 2019, and the total number of DDoS attacks will double
from 7.9 million in 2018 to 15.4 million by 2023. NIDS must be constantly improved to
avoid malicious activity before it occurs as attackers always come up with new ways
to exploit the network [8]. The authors in [9] highlight the research challenges in the
field of IDS as follows: (i) systematic construction of an up-to-date dataset with enough
instances of almost all the attack types; (ii) lower detection accuracy due to the imbalance
dataset; (iii) low performance in a real-world environment; (iv) most of the IDS approaches
suggested by the researcher are based on extremely sophisticated models requiring a lot of
processing time and computing power. Finally, as stated in [9], one of the main problems
is creating a lightweight IDS model that is effective in terms of computational power and
training time and has a higher intrusion detection rate.

The idea behind FL is to facilitate the building of a model based on a distributed data
set across multiple devices while preventing data leakage. Given data owners, {N1 . . . Ni},
who wish to build a strong model by consolidating their data (D1 . . . Di), conventionally
train the model by combining the data, D = (D1∪ . . . ∪ Di). However, in the FL concept,
the owner collaboratively trains the model in such a way that any data owner Ni does not
reveal its data Di to others. Only a subset of the data Dk ⊆ D with Nk samples is used by the
k-th party, where k ∈ [1, k]. We assumed that the data points in D allocated to any distinct
parties N1 . . . Nk are disjoint, that is, D1 . . . Dk are partitions of D. Let matrix Di define
the data held by owner i with each row in the matrix representing a sample. Let F, Y, and J
denote the feature, label, and sample ID space, respectively. The training dataset is thus
constituted as (F, Y, J) based on how the data are distributed among the subsets, the feature
and sample ID space, and FL can be classified as horizontal FL, vertical FL, and federated
transfer learning (FTL). In horizontal FL, the data sets have the same feature space but
different samples, while in the vertical scenario the datasets have the same sample ID but
share different feature space.

Our novelty and the main idea is to use the network traffic feature (NTF) records
framing technique to reduce computational power and training time while preserving data
privacy using the federated learning (FL) method and the trained models sharing approach.

The main contributions of this paper are:

• Reduced computational power and training time. Overall, 96 times fewer images
are required for deep neural network (DNN) training while adopting the proposed
pre-processing method merging a specific amount of NTF records into frames and
transforming frames into images;

• Preserved data privacy. To ensure data privacy, the FL method was used to share
trained models between participants without the need to publicly centralize training
data in a data centre. As an example of trained model sharing, GitHub may be
used as a distributed version control system, which implies that every developer’s
computer has access to the whole codebase and history, therefore making branching
and merging simple;

• The detailed experimental analysis. Experiments of the proposed approach pre-
sented in three use cases for the DNN training on the classification of DDoS network
attack type: (i) traditional transfer learning (TL) method with mandatory training data
centralization, (ii) federated transfer learning (FTL) method when participants share
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only trained models to continue training, (iii) federated learning (FL) method when
trained models aggregated in a data centre to create the Global Model for sharing;

• Empirical quantification. In the presented experimental use cases, the testing accu-
racy of Global Models is strong, ranging from 88.42 per cent to 93.95 per cent. Although
the majority class in our instance is normal traffic, the fundamental challenge of identi-
fying normal traffic is being resolved. In our experimental results, high F1 score values
of Global Models testing from 93.78% to 96.86% were obtained.

The structure of the remaining parts of the paper is as follows. Section 2 discusses
related works. Section 3 presents the methodology. Section 4 presents the results of the
experiments. Finally, Section 5 is dedicated to the discussion of the results.

2. Related Works

NIDS can be classified according to their placement in the network, the detection
concept, and the response to intrusion or attack [10]. Signature-based detection systems,
for example, cannot report deviations that are not in their database as indicative of the
network deviation from the norm. At the same time, behavioural systems (anomaly-
based), which employ the investigated network’s behaviour—assumed as normal, as an
indication—are more likely to have frequent false positives than signature-based systems.
In general, signature systems search for established signals of dangerous behaviour in
traffic flow, whereas behavioural systems strive to track unusual traffic flow signs. It
should be mentioned that researchers are currently concentrating their efforts in the field of
behavioural systems based on anomalies (anomaly-based intrusion detection), which are
capable of detecting both known and unknown abnormalities. If network intrusions are
correctly reflected in the form of an attack, intrusion detection helps to identify them. In this
context, an attack pattern is defined as a specific collection of explicitly documented actions
related to the assault, the application of which to the fields of the object being identified
provides for an unambiguous answer regarding the object’s membership to this attack. In
the network anomaly detection scheme, for the detection of network intrusion, the primary
data for analysis are network traffic [11]. The highlighted network packet properties are
provided to the module, which examines and checks the conformity of input data with the
rules and alerts about the presence of danger. The important issue in identifying abuse
is the appropriate design of the mechanism for setting the correct intrusion detection. In
fact, creating a complete rule base for recognizing all conceivable attacks is impractical,
since describing variances in attacking activities might have a negative impact on their
performance. Even little changes in the attack make detection impossible; hence, the stated
criteria should be general and include more known alterations of network attacks. Although
NIDS technologies are useful for recognizing known forms of attacks, their application to
novel (zero-day) attacks is limited [12].

Modern ML theory and practice include both conventional areas such as supervised
learning and unsupervised learning [13], as well as novel areas such as deep learning [14],
reinforcement learning [15], and transfer learning [16]. However, until recently, ML avoided
information security concerns throughout the training and application stages of the model.
The fact that the majority of ML applications have been local or client/server applications
explains the lack of attention to information security problems. To create predictions such
as recognition of a class of data, traditional ML employs a data pipeline that uses a central
server (on-premises or in the cloud) that hosts the trained model. The disadvantage of
this design is that all data collected by local devices and sensors are routed to a central
server for processing before being delivered to the devices. The model’s capacity to learn
in real-time is hampered by this round-trip.

FL is a technique that trains an algorithm on multiple decentralized peripherals or
servers containing local data samples without sharing them. This approach differs from
traditional centralized ML methods, where all local datasets are loaded onto a single server,
as well as more classic decentralized approaches, which often assume local data samples
are equally distributed. The benefits of FL are as follows [16–18]:
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• FL allows devices, such as mobile phones, to share a common prediction model by
keeping training data on the device rather than downloading and storing the data on
a central server;

• It shifts model training to the peripheral, namely to devices like smartphones, tablets,
the Internet of Things, or even “organizations” like hospitals that must function
under strict secrecy constraints. Keeping personal data in situ provides significant
security benefits;

• Since forecasting occurs on the device itself, real-time forecasting is feasible. FL
decreases the time lag that occurs when raw data is transferred back to a central server
and the results are sent to the device;

• As the models are stored on the device, the forecasting process may continue even if
there is no Internet connection;

• FL decreases the amount of hardware infrastructure required. FL makes use of min-
imum hardware, and what is available on mobile devices is more than sufficient to
operate the FL models.

Successful examples of FL applications include autonomous vehicles [19], healthcare
systems [20], smart cities [21], the Internet of Things [22], industrial manufacturing in
Industry 4.0 [23], and others [24]. The maintenance of data privacy is the main benefit of
FL here for each participating entity in achieving a common goal [1]. Federated database
systems [25], and federated cloud [26] are all examples of federal systems.

Previous research [27] used the KDD’99 dataset and the UNSW-NB15 dataset to
describe experiments for intrusion detection in a federated context. FL is coupled with
blockchain technology [28] to avoid harmful cyber-attacks. The tests presented here were
carried out using supervised autoencoder (SAE) models for anomaly detection in a genuine
intrusion detection use case (AWID dataset). They show that adding blockchain has only
little influence on FL performance. The authors of [29] present a blockchain-enabled
Federated Forest Software Defined Network (SDN) IDS that allows the training of IDS
models that facilitate the detection of controller area network (CAN) intrusions into vehicle
systems while keeping sensitive data confidential. To construct a random forest model, they
employed FL, while the evaluation was performed on the CAN-intrusion dataset (OTIDS).
The authors [30] demonstrate that the suggested wireless NID approach is effective in
terms of classification accuracy, computation cost, and communication cost in a series
of experiments using the AWID intrusion detection dataset. In [31], Huong et al. offer
LocKedge—a multi-attack detection method with low complexity for deployment at the
edge zone while retaining high accuracy. To test the performance of the architecture from
many viewpoints, LocKedge is deployed in two ways: centralized and FL. Using the
BoT-IoT data set, the method can detect 10 types of attacks. Li et al. [32] proposed a
distributed NIDS using FL in satellite-terrestrial integrated networks (STINs) to properly
allocate resources in each domain to analyze and block malicious traffic, including nine
attack scenarios such as botnets, web attacks, backdoors, and six different DDoS attacks
(LDAP, MSSQL, NetBIOS, Portmap, Syn, UDP). Nguyen et al. [33] proposed to employ an
FL approach to anomaly-detection-based intrusion detection in Internet-of-Things (IoT)
devices. Qin et al. [34] used binarized neural networks (BNNs) that can be implemented
as switch functions at the network edge classifying incoming packets in the context of an
FL. Data privacy security guaranteed NIDS based on federated learning proposed in [35].
Tian et al. [36] proposed a specific neural network called a lightweight residual network
(LwResnet) using FL architecture for the detection and classification of DDoS attacks.
Xie et al. [37] presented an enhanced k-means clustering intrusion detection technique
based on FL. To enhance k-means clustering, this approach was coupled with three-way
decision concepts and introduced multiple viewpoints of cosine distance as a measure of
similarity between data items. Rahman et al. [38] propose the FL-based scheme for IoT
intrusion detection that maintains data privacy by performing local training and inference
of detection models, while the approach is validated on the NSL-KDD benchmark dataset
to recognize an attack or normal behaviour. Saadat et al. [39] adopted hierarchical FL (HFL)



Electronics 2022, 11, 3138 5 of 28

for IDS to recognize attacks on IoT applications. A neural network was used to recognize
the attacks. Ten state-of-the-art (SOTA) federated learning methods are chosen for various
datasets with different numbers of features and classes. These methods employ various
network architectures and are presented in Table 1.

Current solutions for network intrusion detection were also observed: malware recog-
nition and network attack detection include deep learning [40,41], ensemble learning [42,43],
multistage deep learning [44], metaheuristic methods [45], a federated learning-based
blockchain-embedded data accumulation scheme [46], and federated transfer learning for
bearing fault diagnosis with discrepancy-based weighted federated averaging [47].

In general, publicly available datasets that combine normal and malicious NTF records
are used to estimate the efficiency of NIDS. Usually, datasets have a huge number of NTF
records. Training data must be centralized on a single machine or in a data centre for
traditional ML processes. Using the collection of private datasets for the traditional training
process, centralization of those datasets is mandatory. In this way, the privacy of the local
device is violated.

We propose to employ the FL method that uses local data to load the current model and
construct an updated model on the device itself (ala edge computing) [48]. The increasing
popularity of FL is largely due to data use limitations such as the General Data Protection
Regulation (GDPR) in the European Union [49] and the California Consumer Privacy Act
(CCPA) [50] to limit the use and transfer of personal data. Using all the dispersed private
data for training would result in stronger models, new tasks, and, eventually, better lives.
The core concept of federativity is the collaboration of numerous autonomous actors.

Without sharing a data sample or inferring the data sample from the local model
updates, FL allows each device to exchange its local model update, that is, weight and
gradient parameters. FL aggregates local model changes on a central server, resulting in a
global model update that may be subsequently downloaded on devices/systems.

Transformation of NTF records into images and the use of image classification for
training allow multiple participants to build a common robust machine learning model
without data sharing, thus solving such an important privacy problem.

FL allows devices to collaborate on a shared prediction model while retaining all
learning data on the device, eliminating the requirement for ML to store data in the cloud.
These locally trained models are then transmitted back from the devices to a central server,
where they are aggregated, i.e., the weights are averaged, and a single consolidated and
improved global model is sent to the devices.

Another way is to employ FTL while trained local models are shared between devices
to continue training and improve the training results.
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Table 1. List of state-of-the-art research papers on federated learning for network intrusion detection.

Reference No. of Features and
Classes Model Details Attack Type (No. of

Records) Dataset Limitations Accuracy

Aliyu et al. [29]
1000 statistical and

entropy features
4 classes

Federated Forest Model

Fuzzy (50,000)
DoS (50,000)

Impersonation (50,000)
Attack-free (50,000)

CAN-intrusion dataset
(OTIDS)

Training 60%
Testing 40%

Employed multiple
statics and entropy

features to handle the
high complexity and
non-linearity in CAN

bus traffic

98.1%

Cetin et al. [30] 74 dataset attributes
4 classes

Stacked Autoencoders
Merging

local models by
averaging their weights

on the central server

Injection (82,061)
Impersonation (68,601)

Flooding (56,581)
Normal (205,285)

Aegean Wi-Fi Intrusion
Dataset (AWID)

For Wi-Fi network only
Balancing

procedure applied
73.12–99.99%

Huong et al. [31]

Features extracted by
principal component

analysis (PCA)
11 classes

Neural network

DoS-HTTP (1485)
DoS-TCP (615,800)

DoS-UDP (1,032,975)
DDoS-HTTP (989)

DDoS-TCP (977,380)
DDoS-UDP (948,255)

OS Fingerprinting (17,914)
Server Scanning (73,168)

Keylogging (73)
Data Theft (6)
Normal (477)

BoT-IoT
Cyberattack

detection in IoT
edge computing

56.098–99.973%

Li et al. [32] 15 Flow-level features
9 classes Deep CNN

SAT20 dataset (82,320):
DDoS-Syn (39,076)
DDoS-UDP (43,244)

TER20 dataset (88,063):
Botnets (14,622)

Web Attacks (13,017)
Backdoor (12,762)

DDoS-LDAP (15,694)
DDoS-MSSQL (15,688)

DDoS-NetBIOS (11,530)
DDoS-Portmap (4750)

SAT20 and TER20 datasets
Training 80%
Testing 20%

For Satellite-Terrestrial
integrated networks only 85–90%
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Table 1. Cont.

Reference No. of Features and
Classes Model Details Attack Type (No. of

Records) Dataset Limitations Accuracy

Qin et al. [34]

Packet-level features
5-tuple (IP addresses,
layer-4 protocol and

ports) and IP
packet length

The BNN implemented
inside the data plane

contains one fully
connected hidden layer
with 120 neurons and a
single-neuron output.

Attack (43.92%)
Normal (56.08%) ISCX Botnet 2014

Only 5-tuple
packet-level

features used
and a

single-neuron output

94.5%
98.3%

Shi et al. [35]

Netflow features
(49 features from

UNSW-NB15, 80 features
from CICIDS2018)

Centralized CNN
compared with
Federated CNN

UNSW-NB15
(Analysis, Backdoor, DoS,
Exploits, Fuzzers, Generic,
Nor-mal, Reconnaissance,

Shellcode, Worms)
CICIDS2018

(HeartBleed, DoS, Botnet,
DDoS, Brute Force,
Infiltration, Web)

UNSW-NB15 Training
150,000

Validation 20,000
CICIDS2018

Training
100,000

Validation
50,000

Testing 50,000

Datasets were
used partially

Example:
UNSW-NB15 full

training set 175,341
and full testing set 82,332

Centralized
CNN 83.46%

Federated
CNN 81.19%
Centralized
CNN 98.77%

Federated
CNN 78.46%

Tian et al. [36] 87 netflow features
7 classes

Custom-made
lightweight residual
network (LwResnet)

6 types of DDoS attacks
(UDP flood, MSSQL attack;
LDAP and NetBIOS attacks;

TFTP and NTP attacks)

CICDDoS2019 600 epochs used for
classification 91–99%

Xie et al. [37]

Features extracted by
principal component
analysis (PCA) from

the AWID
154 attribute values

4 classes

Modified K-means
clustering

Flooding (56,581)
Impersonation (68,601)

Injection (82,061)
Normal (2,163,975)

AWID For Wi-Fi network only 86–95%

Rahman et al. [38]

41 features such as
duration, protocol type,

service, flag
2 classes

The FL model using
122 input variables,
288 neurons for the
hidden layer, and

2 neurons in the output
layer to represent the
abnormal and normal

decision.

Attack (71,363)
Normal (77,154) NSL-KDD

Complexity of the
network

Legacy dataset
73.34–80.47%
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Table 1. Cont.

Reference No. of Features and
Classes Model Details Attack Type (No. of

Records) Dataset Limitations Accuracy

Saadat et al. [39] 41 network features
5 classes

NN is composed of
122-neuron input layer,

and two hidden layers of
80 and 40 neurons,
respectively, and

5-neuron output layer.

DoS (53,385)
User to Root (252),

Remote to Local (3649)
Probe attacks (14,077)

Normal (77,154)

NSL-KDD
Complexity of the

net-work
Legacy dataset

75–80%
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3. Materials and Methods
3.1. Framing Network Flow for Anomaly Detection Using Image Recognition and
Federated Learning
3.1.1. Proposed Approach for Network Flow Anomaly Detection

The proposed approach for the detection of network flow anomalies using (FTL) and
FL methods is depicted in Figure 1.
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The process of an FTL method consists of stages depending on the number of partici-
pants (see Figure 1a):

• Stage 1. Participants (in our case nodes) register to an open source community and
get the registration number;

• Stage 2. First Local Model training process—the first node1 trains the model using its
own local dataset and then shares the trained local model1 with the second participant
of an open source community;

• Stage 3. Second Local Model training process—the second node2 downloads the trained
local model1 and uses that model to retrain it with its own local dataset and then shares
the trained local model2 with the next participant of an open source community;

• Stage 4. Next Local Model training process—the next nodei downloads the trained
local model2 and uses that model2 to retrain it with its own local dataset and then
shares the trained local modeli with another participant of an open source community;

• Stage 5. Continuous model retraining process—each participant retrains the model,
obtained from its neighbour with its own dataset, and shares the trained model; the
process continues until the last registered participant is reached;

• Stage 6. Last Local model training—the last noden downloads the trained local
modeln-1 and uses that modeln-1 to retrain it with its own local dataset and then
shares the trained local modeln for sharing with an open source community as a
Global Model;

The process of an FL method consists of four stages (see Figure 1b):

• Stage 1. Participant Selection—the server (in our case, Cloud Data Center Model Ag-
gregator) selects a group of participants (in our case, nodes) who meet the prerequisites
to participate in the training process;

• Stage 2. Local Models Computation—participants train the local model using their
own device’s local dataset. This step is carried out at local nodes;

• Stage 3. Aggregation of Local Models—the server collects enough locally trained deep
learning models from participants to update the global deep learning model (the next
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stage). To prevent the server from analyzing individual deep learning model parame-
ters, this aggregation process must incorporate some privacy-preserving techniques
such as safe aggregation, differential privacy, and sophisticated encryption approaches;

• Stage 4. Global Model Update—based on the aggregated model parameters collected
in Stage 3, the server updates the current global deep learning model. This revised
global model will be sent to participants.

The pseudocode of the FL algorithm for the server (as master), the participating nodes
(as workers), and the variants of the aggregate function proposed in [51].

3.1.2. Proposed Method for Framing Network Flow and Representing Frames as Images

There are tons of records of network traffic features (NTF) in a network flow and if we
transform records into images, using a one-to-one manner, we will get millions of images
for training and recognition. To reduce the number of images, we propose to collect NTF
records in a frame and transform the frames into images, so that we will obtain fewer
images for training. Obviously, in the frame, only normal traffic records or only attack
traffic records or mixed records can be included.

The proposed method for framing NTF records and representing frames as images is
shown in Figure 2.
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As depicted in Figure 2 for the training phase, the benchmark dataset is used and then
the trained model is used for image classification and anomaly detection.
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For evaluation of the proposed approach and the comparative study, we performed
our experiments in three use cases.

• 1. Traditional transfer learning. Mandatory centralization of training data. Employed
DNN with ResNet50 architecture, which allows comparing widely used ML practice
with our proposed FTL and FL methods;

• 2. Federated transfer learning. Training data is disposed at local nodes. Proposed
13-layer DNN architecture. The MATLAB trainNetwork function is used, which trains
the models according to the proposed FTL method, as shown in Figure 1a;

• 3. Federated learning. Training data is disposed at local nodes. Proposed 12-layer
DNN architecture. The stochastic gradient descent with momentum (SGDM) algo-
rithm is used with a custom training loop, which trains the models according to the
proposed FL method, as shown in Figure 1b.

4. Experimental Results

ML models were trained on transformed images using MATLAB. All experiments
were carried out on a desktop computer with 64-bit Windows 10 OS with Intel(R) Xeon(R)
CPU E5-2630 v2 @ 2.60 GHz (2 processors) with 96 GB RAM and NVIDIA GeForce GTX
1650 SUPER. We use two approaches to train models: transfer learning using the ResnetV2
approach, when 70% of the dataset is used for training purposes and 30% of the dataset is
used for testing purposes, and the FL approach, where we use a common dataset to test
local models and global models.

4.1. Dataset for Proposed Approach Implementation

As shown in Table 1, various datasets are used to measure the accuracy of network
attack recognition. The NSL-KDD benchmark dataset contains four classes of attacks:
DoS, Probe, R2L, and U2R. The UNSW-NB15 benchmark dataset contains nine classes of
attacks: Analysis, Backdoor, DoS, Exploits, Fuzzers, Generic, Normal, Reconnaissance,
Shellcode, and Worms. The two latest proposed benchmark datasets are LITNET-2020 [52]
and BOUN-DDoS [53].

For evaluation of the proposed methods, we selected the full BOUN DDoS dataset [53],
which has two classes: DDoS attack traffic by flooding TCP SYN and attack-free network
traffic. Network-based DDoS intrusion detection techniques or systems can be effectively
tested using this. The single victim server that is connected to the campus’s backbone
router is the target of the attacks. The attack packets contained spoof source IP addresses
that were generated randomly. More than 4000 active hosts were included in the data trace,
which was recorded on the backbone. There are tons of NTF records in the BOUN DDoS
dataset, which is tremendously more than nine million records (total of 9,335,605). Thus,
we propose the NTF records framing method that reduces the number of observations. To
simulate federation with its nodes, we create four dataset partitions from the full BOUN
DDoS dataset and assume that we have a four-node federation and every node has its own
local dataset (in our case partition of the whole BOUN DDoS dataset).

4.2. BOUN-DDoS Dataset Preparation for Experiments
4.2.1. Transformation of NTF Records of the BOUN-DDoS Dataset

Every record of the BOUN-DDoS dataset has 12 NTFs, and four of them are categorical.
We transform the NTF records of the BOUN-DDoS dataset into frames and then transform
each frame into 32 × 32 pixels images according to the scheme depicted in Figure 3. In
the first stage, dataset records are sequentially distributed into frames, where the frame
contains 96 NTF records of the BOUN-DDoS dataset (see Figure 3).
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Figure 3. Creating images of frames from the BOUN-DDoS dataset NTF records.

The time and frame number are not used because they are not related to the attack
properties. The last ten NTFs of the record are 32-bit unsigned integers. Four bytes of
every integer represent the values of ARGB image pixels. To create a 32 × 32 pixels image,
we construct one row of the ARGB image using 3 NTF records plus two padding integer
values (3 × 10 = 30 + 2 = 32) to obtain a 32-byte image width. To create a 32-pixel image
height we need to use all 96 NTF records from the image frame: 32 × 3 = 96. An example
of transformed NTF frame images is depicted in Figure 4.

Using the proposed approach, we reduce the number of images 96 times compared
to image creation using the one-to-one image creation technique. The creation of one-
to-one images produces 9,335,606 images from the full BOUN-DDoS dataset. Using the
proposed framing method, the number of transformed images decreases to 97,243. Thus,
the computational power and training time can be reduced.

4.2.2. Dataset Partitions for Traditional Transfer Learning Method

We use the definitions of training, validation, and testing datasets as follows:

• Training set. A partition of the dataset used to train, fit, and select the parameters of
the model is referred to as the training set. It must reflect the complexity and diversity
of the model and often comprises 60 to 70 per cent of the dataset data;

• Validation set. A partition of the dataset used to evaluate the performance of the
model while tuning the hyperparameters of the model is referred to as the validation
set. The validation set indirectly influences the model, since these data, which typi-
cally comprise between 30 and 40% of the dataset data, are used for more frequent
evaluation and hyperparameter updates. Although it is typically advised, tuning a
model’s hyperparameters is not strictly necessary;
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• Testing set. This dataset serves as an objective assessment of how well the model
fits the data from the training set. This set is only used after the model has com-
pleted the training and does not have a bearing on the model; it is only used to
determine performance.

We divide the images into four partition subsets to evaluate the traditional transfer
learning process (see Figure 5) using the pre-trained ResNet50 architecture when the subsets
were trained locally and the set of all images was trained and validated independently. The
ResNet50 architecture contains 50 layers.

As depicted in Figure 5, we train all models independently using the traditional
transfer learning (TTL) method when 70% of the images from every dataset partition are
used for training and 30% of the images from every dataset are used for validation. To
test trained models, we create a common testing dataset partition by randomly selecting
images from all datasets. It has 10,416 images, where 9814 images represent normal traffic,
and 602 images represent DDoS attacks.

4.2.3. Dataset Partitions for Federated Transfer Learning Method

To simulate the FTL method training process (see Figure 6), we use the same local
dataset partitions of the full BOUN DDoS dataset that were used for the TTL method with
the ResNet50 architecture. The key distinction between the TTL and FTL methods is that
FTL models are trained using all images from a local dataset, excluding images from the
full dataset, and preserving training data privacy. As depicted in Figure 6, four datasets
represent four different nodes, where the nodes train the models sequentially using the
trained model shared with the neighbouring node to continue the training process. For all
models, the common testing dataset partition as in the previous section (see Figure 5) was
used, including 10,416 randomly selected images.
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The final trained local model is used to construct a Global Model for sharing after
FTL is complete. Figure 6 shows that the trained Model4 is being used as a Global Model
for sharing.

4.2.4. Dataset Partitions for Federated Learning Method

To simulate the FL method training process, we use the same local dataset partitions
of the full BOUN DDoS dataset that were used for the TTL method with the ResNet50
architecture and the FTL method (see Figures 5 and 6). The key distinction between the
TTL and FL methods is that FL models are trained using all images from a local dataset,
excluding images from the entire dataset, and preserving the privacy of the training
data. The key distinction between the FTL and FL methods is that FL models are trained
independently and the Global Model for sharing is created by averaging all trained local
models as depicted in Figure 7. For all models, the same testing subset of 10,416 randomly
selected images as in previous sections (see Figures 5 and 6) was used.
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The Global Model is created by averaging the learnables of all trained local models
and evaluated using the dataset with images for validation/testing.

4.3. Experimental Results and Evaluation

We used a confusion matrix to visualize the performance of a supervised learning
algorithm for the purpose of evaluating the experimental results. There are four possible
classification results, as shown in Figure 8. A true positive (TP) is recorded if the instance
is positive and is classified as such; a false negative (FN) is recorded if the classification
is negative. Instances that are classified as negative are counted as true negatives (TN);
instances that are classified as positive are counted as false positives (FP).



Electronics 2022, 11, 3138 16 of 28Electronics 2022, 11, x FOR PEER REVIEW 16 of 28 
 

 

 

Figure 8. Confusion matrix to visualize the performance of a supervised learning algorithm. 

Accuracy is defined as follows: 

Accuracy = (TN + TP)/(TN + FP + TP + FN), (1) 

Precision is defined as follows: 

Precision = TP/(TP + FP), (2) 

Recall is defined as follows: 

Recall = TP/(TP + FN), (3) 

F1 score is defined as follows: 

F1 score = 2 × (Precision × Recall)/(Precision + Recall), (4) 

In addition, MATLAB provides a loss function and accuracy values during the ML 

process. An algorithm for ML is optimized using a loss function. The performance of the 

model in these two sets determines how the loss is calculated, which is based on training 

and validation data. In training or validation sets, it is the total number of errors produced 

for each example. The loss value of a model indicates how well or poorly it performs after 

each optimization cycle. The performance of the algorithm is evaluated using an under-

standable accuracy metric, which is expressed as a percentage. It measures how closely 

your model’s forecast matches the actual data. 

4.3.1. Experimental Results of Traditional Transfer Learning Method 

Training options for the TTL with ResNet50 architecture are as follows: initial learn 

rate 0.001, validation frequency 50, maximum epochs 10, mini-batch size 256, learning da-

taset of the 70% randomly selected images from the complete training dataset, and vali-

dation dataset of the 30% randomly selected images from the complete training dataset. 

All trained models were tested using a subset of images for testing according to Figure 5. 

Figure 8. Confusion matrix to visualize the performance of a supervised learning algorithm.

We utilized a common plot created using the MATLAB function confusionchart for
the display of the confusion matrix. Each cell’s total number of observations is shown in
the confusion matrix. The true class is represented by the rows of the confusion matrix
and its columns represent the predicted class. Cells that are diagonal and off-diagonal
relate to observations that were correctly and incorrectly categorized, respectively. The
percentages of correctly and incorrectly classified observations for each true class are shown
in a row-normalized row summary. The percentages of correctly and incorrectly classified
observations for each projected class are shown in a column-normalized column summary.
Many standard metrics are built on the foundation of this matrix, and we use four metrics
to identify the highest performance of the models: accuracy, precision, recall, and F1 score.

Accuracy is defined as follows:

Accuracy = (TN + TP)/(TN + FP + TP + FN), (1)

Precision is defined as follows:

Precision = TP/(TP + FP), (2)

Recall is defined as follows:

Recall = TP/(TP + FN), (3)

F1 score is defined as follows:

F1 score = 2 × (Precision × Recall)/(Precision + Recall), (4)



Electronics 2022, 11, 3138 17 of 28

In addition, MATLAB provides a loss function and accuracy values during the ML
process. An algorithm for ML is optimized using a loss function. The performance of the
model in these two sets determines how the loss is calculated, which is based on training
and validation data. In training or validation sets, it is the total number of errors produced
for each example. The loss value of a model indicates how well or poorly it performs
after each optimization cycle. The performance of the algorithm is evaluated using an
understandable accuracy metric, which is expressed as a percentage. It measures how
closely your model’s forecast matches the actual data.

4.3.1. Experimental Results of Traditional Transfer Learning Method

Training options for the TTL with ResNet50 architecture are as follows: initial learn
rate 0.001, validation frequency 50, maximum epochs 10, mini-batch size 256, learning
dataset of the 70% randomly selected images from the complete training dataset, and
validation dataset of the 30% randomly selected images from the complete training dataset.
All trained models were tested using a subset of images for testing according to Figure 5.

The confusion matrices visualizing the performance of the TTL with ResNet50 archi-
tecture to train local models are presented in Figure 9.

The confusion matrix visualizing the performance of TTL with ResNet50 architecture
to train the Global Model (according to Figure 5) is presented in Figure 10.

The experimental results are summarized in Table 2. Testing accuracy is calculated
using Equation (1).
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Table 2. Experimental results of the TTL with ResNet50 architecture.

Images
Dataset

Most Ob-
servations

Fewest Ob-
servations

Observations
(70%)

Maximum
Iterations

Validation
Accuracy

Validation
Loss

Testing
Accuracy

Training
Time

Local
Model1

Normal
(14,657)

DDoS
(2843) 17,500 680 86.80% 0.3396 72.27% 9 min 9 s

Local
Model2

Normal
(14,179)

DDoS
(3320) 17,499 680 62.72% 0.4268 68.51% 9 min 23 s

Local
Model3

Normal
(12,327)

DDoS
(3245) 15,572 600 77.64% 0.4419 90.11% 8 min 4 s

Local
Model4

Normal
(14,668)

DDoS
(2832) 17,500 680 83.54% 0.4244 94.05% 9 min 12 s

Global
Model

Normal
(55,831)

DDoS
(12,239) 68,070 2650 80.94% 0.4256 93.95% 43 min 31 s

The results seem to be not so good: the validation accuracy is in the range of 62.72% to
86.80%. The number of observations for the training process was calculated as 70% of every
NTF frame images dataset used for training purposes and 30% of each dataset used for
validation purposes. The testing accuracy using the common testing dataset (see Figure 5)
is in the range of 68.51% to 94.05%. The accuracy of Global Model testing is 93.95%. We
assume that the results are not so good for two reasons:

• Distributions of NTF records and combination into frames lead to an overwhelming
burst in every frame that distributes 96 NTF records, and thus, each frame can contain
normal and DDoS NTF records in any random proportion;

• The ResNet50 architecture contains 50 layers and is very complex and redundant for
training a recognition network for the proposed types of images.

To train the Global Model using the TTL method, mandatory data centralization is
required and data privacy is not ensured. Moreover, to train the Global Model, the full
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data set must be used, and the training process requires a lot of computational power and
takes a long time. After evaluation and discussion of the mentioned reasons, we decided to
employ the DNN architecture and propose the use of FTL and FL methods.

4.3.2. Experimental Results of Federated Transfer Learning Method

To simulate FTL, we propose to use the MATLAB trainNetwork function that trains
models according to the suggested FTL method as depicted in Figure 1a and creates the
13-layer DNN architecture depicted in Figure 11.
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Figure 11. The 13-layer DNN architecture for the FTL method.

The training options for FTL using the created 13-layer DNN architecture are as follows:
learning rate 0.001, validation frequency 50, maximum epochs 10, and the shuffle parameter
set to ‘every-epoch’. All frame images in every dataset were used for training as depicted
in Figure 6. Exactly: 25,000 images from the dataset for local Model1, 22,499 images
from the dataset for local Model2, 22,499 images from the dataset for local Model4, and
22,245 images from the dataset for local Model3 were used.

The FTL training process starts at node1 using the dataset for local Model1. After the
training process in node1 is completed and the trained local Model1 is created, it is shared
with the second node2. Node2 continues training using its dataset for local Model2 starting
the training process from the trained local Model1. After the training process in node2 is
completed and the trained local Model2 is created, it is shared with the third node3. Node3
continues training using its dataset for local Model3 starting the training process from the
trained local Model2. After the training process in node3 is completed and the trained local
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Model3 is created, it is shared with the fourth node4. Node4 continues training using its
own dataset for local Model4 starting the training process from the trained local Model3.
After the training process in node4 is completed and the trained local Model4 created, it
is treated as the Global Model ready for sharing. The same image dataset was used for
validation and testing, as shown in Figure 6.

The confusion matrices visualizing the performance of the FTL method (according to
Figure 6) are shown in Figure 12.
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The experimental results of the progress of the proposed FTL method are summarized
in Table 3. Testing accuracy was calculated using Equation (1).

Table 3. Experimental results of the proposed FTL method and the 13-layer DNN.

Images
Dataset

Most Ob-
servations

Fewest Ob-
servations

Observations
(100%)

Maximum
Iterations

Validation
Accuracy

Training
Error

Testing
Accuracy

Training
Time

Local
Model1

Normal
(20,939)

DDoS
(4061) 25,000 1950 69.72% 13.18% 69.72% 2 min 50 s

Local
Model2

Normal
(20,256)

DDoS
(4743) 24,999 1950 93.32% 18.63% 93.32% 2 min 55 s

Local
Model3

Normal
(17,610)

DDoS
(4635) 22,245 1730 84.89% 15.37% 84.89% 2 min. 37 s

Local
Model4

Normal
(20,954)

DDoS
(4045) 24,999 1950 92.99% 14.63% 92.99% 2 min 53 s

As we can observe, the validation and testing results are the same because the same
dataset was used for validation and testing. According to the proposed FTL method, the
local Model4 is treated as a Global Model ready for sharing.
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4.3.3. Experimental Results of Federated Learning Method

To simulate the FL method, we propose using the stochastic gradient descent with the
momentum (SGDM) algorithm and a custom training loop, which will train the models
according to the proposed FL method as depicted in Figure 1b and create the 12-layer DNN
architecture depicted in Figure 13.
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We trained the 12-layer DNN with a unique learning rate schedule using the SGDM
optimizer to classify images of frames. As a custom learning rate schedule is not available
in the trainNetwork function, a custom training loop is created using automated differentia-
tion [54]. The time-based decay learning rate schedule is used in this approach to train a
network to classify images. The solver employs the learning rate provided by Equation (5).

Ni = Lr(1 + k × i), (5)

where, i—is the iteration number, Lr—is the initial learning rate, and k—is the decay.
In order to obtain the gradients of the loss with respect to the learnable parameters in

the network and the related loss, we use the function modelGradients [54], which accepts the
proposed 12-layer dlnetwork object, a mini-batch of input data, and the corresponding labels.
The training parameters for FL using the proposed 12-layer architecture and custom training
loop are as follows: initial learn rate 0.001, decay 0.01, momentum 0.9, maximum epochs 10,
the shuffle parameter is set to ‘every-epoch’, and mini-batch size 256. The datasets used for
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learning, validation, and testing are shown in Figure 7. For each epoch, the training loop
over mini-batches of data evaluates the model loss, gradients, state, updates the network
parameters using the sgdmupdate function, and displays the training progress.

Each local model is trained independently using its own dataset and preserving the
privacy of the training data. When the final local model’s training process is finished, an
averaged Global Model is created and ready for sharing. Visualizations of the training
progress and performance of the FL method are presented in Figures 14–17.
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The confusion matrix visualizing the performance of the FL method when testing the
aggregated Global Model is shown in Figure 18.

The experimental results of the FL method training progress are summarized in Table 4.
Testing accuracy was calculated using Equation (1).

Table 4. Experimental results of training progress using the FL method and the 12-layer DNN.

Images
Dataset

Most Ob-
servations

Fewest Ob-
servations

Observations
(100%)

Maximum
Iterations

Validation
Accuracy

Validation
Loss

Testing
Accuracy

Training
Time

Local
Model1

Normal
(20,939)

DDoS
(4061) 25,000 500 65.57% 0.1873 65.57% 1 min 54 s

Local
Model2

Normal
(20,256)

DDoS
(4743) 24,999 500 87.96% 0.2105 87.96% 2 min 16 s
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Table 4. Cont.

Images
Dataset

Most Ob-
servations

Fewest Ob-
servations

Observations
(100%)

Maximum
Iterations

Validation
Accuracy

Validation
Loss

Testing
Accuracy

Training
Time

Local
Model3

Normal
(17,610)

DDoS
(4635) 22,245 500 84.97% 0.1260 84.97% 2 min 11 s

Local
Model4

Normal
(20,954)

DDoS
(4045) 24,999 500 93.26% 0.1436 93.26% 2 min 20 s

Global
Average
Model

Normal
(79,759)

DDoS
(17,484) 97,243 - - - 88.42% -
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5. Discussion

We evaluate all the obtained results using Equations (1)–(4) and summarize them in
Table 5.

Evaluating the proposed NTF records framing method to reduce computational power,
we can observe the following:

• The BOUN-DDoS dataset (total number of NTF records 9,335,605) is highly imbalanced
(this is true for other network intrusion datasets as well) because there is a very small
number of NTF records with DDoS attack (125,557) represented as 1.34% compared to
NTF records with normal traffic (9,210,048) represented as 98.66%;

• Framing NTF records into one image reduces the number of images compared to
images of NTF records created on a one-to-one basis (in such a case for BOUN DDoS
we would have 9,335,605 images). The framing approach reduces the number of
images to 97,243–that is, 96 times less;

• On the other hand, framing NTF records into one image makes the ML process
complicated because some images represent only NTF records with normal traffic,
while others incorporate normal traffic and an unpredictable number of NTF records
with DDoS attack. If a DDoS attack takes more than 96 NTF records consistently, such
a frame image only represents a DDoS attack.
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Evaluating the proposed FTL and FL methods to reduce training time, we can observe
the following:

• Compared to FL, the training time for models that utilize TTL with ResNet50 archi-
tecture requires more time. It takes roughly 43 min to train a Global Model using a
dataset with all 97,243 images when employing TTL. Training local models using the
TTL method took more than an hour in total (see Table 2), compared to 12 min when
using the FTL method with the 13-layer DNN architecture (see Table 3) and 9 min
when using the FL method with the 12-layer DNN architecture (see Table 4). As a
result, that is about five times faster than utilizing TTL with ResNet50 architecture.

Evaluating the experimental results of the training progress of the proposed FTL and
FL methods, we can observe the following.

• The number of observations, both positive and negative, that were correctly identified
depends on the accuracy. It is a measurement of how closely the model’s forecast
matches the actual data. It is simple to obtain a high accuracy score when using
accuracy on imbalanced problems by categorizing all observations as belonging to the
majority class. Since the testing accuracy of Global Models is strong, ranging from
88.42% to 93.95%, the majority class in our instance is NTF records of normal traffic,
and the fundamental challenge to identify normal traffic is being resolved;

• The F1 score, which accounts for both false positives and false negatives, is the
weighted average of precision and recall. In most cases, the F1 score is more helpful
than accuracy, particularly when the class distribution is imbalanced. The high F1
scores of the Global Models for the suggested FTL method (96.31%) and the FL method
(93.78%) are extremely similar to the F1 score for the TTL with ResNet50 architecture
(96.86%).

Table 5. Evaluation of the experimental results.

Parameter Local Model1 Local Model2 Local Model3 Local Model4 Global Model

Total No. of images 25,000 24,999 22,245 24,999 97,243
No. of images of Normal traffic 20,939 20,256 17,610 20,954 79,759
No. of images of DDoS attack traffic 4061 4743 4635 4045 17,484
Use case 1. Traditional transfer learning (TTL)
Testing accuracy Equation (1) in % 72.27 68.51 90.11 94.05 93.95
Precision Equation (2) in % 94.25 94.86 94.2 94.48 94.77
Recall Equation (3) in % 75.16 70.39 95.37 99.49 99.04
F1 score Equation (4) in % 83.63 80.81 94.78 96.92 96.86
Training time 9 min 9 s 9 min 23 s 8 min 4 s 9 min 12 s 43 min 31 s
Use case 2. Federated transfer learning (FTL)
Testing accuracy Equation (1) in % 69.72 93.32 84.89 92.99 92.99
Precision Equation (2) in % 94.23 94.24 94.98 95.46 95.46
Recall Equation (3) in % 72.28 98.96 88.65 97.19 97.19
F1 score Equation (4) in % 81.81 96.54 91.7 96.31 96.31
Training time 2 min 50 s 2 min 55 s 2 min 37 s 2 min 53 s -
Use case 3. Federated learning (FL)
Testing accuracy Equation (1) in % 65.57 87.96 84.97 93.26 88.42
Precision Equation (2) in % 93.47 94.29 94.65 97.64 95
Recall Equation (3) in % 68.23 92.85 89.08 95.15 92.58
F1 score Equation (4) in % 78.88 93.56 91.78 96.38 93.78
Training time 1 min 54 s 2 min 16 s 2 min 11 s 2 min 20 s -

Evaluating the performance of the proposed FTL and FL methods testing vs. privacy,
we can observe the following:

• Using the proposed FTL and FL methods for training does not require data centraliza-
tion and preserves participant data privacy while obtaining nearly the same Global
Models testing results in accuracy and F1 score as using the TTL method.
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• We can notice that local model testing occasionally yields better testing results when
we compare the results of testing local models with those of testing Global Models.
When all participants use the Global Model instead of their local models, participant
privacy is guaranteed, even though the use of the global model may be superior for
some participants while being poorer for others.

Future work will involve suggesting a strategy for developing a dynamic frame
creation approach that uses moving windows through NTF records.

6. Conclusions

Building NIDS effectively requires the application of deep learning techniques, which
is not an easy undertaking given how crucial NIDS are to cybersecurity. In this article, we
investigate three distinct machine learning (ML) methods: Traditional transfer learning
(TTL), Federated transfer learning (FTL), and Federated learning (FL). In this work, we
propose how to create datasets for FL simulation utilizing big, already-existing BOUN-
DDoS datasets for federated learning experiments, and framing NTF records into one
image method to reduce the number of images for ML. The complexity of the network, the
number of layers, and the number of neurons in each layer often influence training and
testing (inference) time.

Researchers must consider the trade-offs between accuracy and model complexity. As
a result, we recommended employing the proposed NTF records preprocessing method,
which simplifies the network architecture and minimizes computational complexity. Our
experiments show that acceptable results with fast convergence can be obtained by reducing
model training time: the number of training epochs (10 epochs in our experiments) and the
time required to achieve a model’s average accuracy (epochs to convergence).

When FL simulation datasets are used to solve the NIDS problem, the FL model based
on deep learning exhibits a classification performance that is comparable to that of the
centralized TTL. The suggested FTL and FL methods differ from the TTL strategy in that
they avoid the need to transfer data to a centralized server, preserving user privacy—which
is crucial for this particular situation. The experimental investigation shows how both
FTL and FL contribute to preserving privacy without significantly lowering accuracy and
F1-score. Framing NTF records into one image method realized in C# programming lan-
guage has a possibility of hardware implementation employing NET Framework Common
Language Runtime.
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classification using vgg19 network and spatial convolutional attention. Electronics 2021, 10, 2444. [CrossRef]

42. Azeez, N.A.; Odufuwa, O.E.; Misra, S.; Oluranti, J.; Damaševičius, R. Windows PE malware detection using ensemble learning.
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