
Citation: Alsuwian, T.; Usman, M.H.;

Amin, A.A. An Autonomous Vehicle

Stability Control Using Active

Fault-Tolerant Control Based on a

Fuzzy Neural Network. Electronics

2022, 11, 3165. https://doi.org/

10.3390/electronics11193165

Academic Editor: Felipe Jiménez

Received: 9 September 2022

Accepted: 29 September 2022

Published: 1 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

An Autonomous Vehicle Stability Control Using Active
Fault-Tolerant Control Based on a Fuzzy Neural Network
Turki Alsuwian 1 , Mian Hamza Usman 2 and Arslan Ahmed Amin 2,*

1 Department of Electrical Engineering, College of Engineering, Najran University, Najran 11001, Saudi Arabia
2 Department of Electrical Engineering, FAST National University of Computer and Emerging Sciences, Chiniot

Faisalabad Campus, Chiniot 35400, Punjab, Pakistan
* Correspondence: arslan.amin@nu.edu.pk

Abstract: Due to instability issues in autonomous vehicles, the risk of danger is increasing rapidly.
These problems arise due to unwanted faults in the sensor or the actuator, which decrease vehicle
efficiency. In this modern era of autonomous vehicles, the risk factor is also increased as the vehi-
cles have become automatic, so there is a need for a fault-tolerant control system (FTCS) to avoid
accidents and reduce the risk factors. This paper presents an active fault-tolerant control (AFTC) for
autonomous vehicles with a fuzzy neural network that can autonomously identify any wheel speed
problem to avoid instability issues in an autonomous vehicle. MATLAB/Simulink environment
was used for simulation experiments and the results demonstrate the stable operation of the wheel
speed sensors to avoid accidents in the event of faults in the sensor or actuator if the vehicle becomes
unstable. The simulation results establish that the AFTC-based autonomous vehicle using a fuzzy
neural network is a highly reliable solution to keep cars stable and avoid accidents. Active FTC and
vehicle stability make the system more efficient and reliable, decreasing the chance of instability to a
minimal point.

Keywords: active fault-tolerant control; fuzzy logic controller; autonomous vehicle; fault detection
and isolation; virtual sensor and observer

1. Introduction

To reduce pollutants and fuel consumption, the autonomous vehicle is seen as a
promising vehicle architecture. It drives the four wheels with four in-wheel (or hub) mo-
tors, and each wheel’s torque and driving/braking can be adjusted independently. A
system such as this eliminates actuator redundancy and allows for better vehicle alloca-
tion. However, owing to its system complexity and a large number of actuators, it has a
higher failure rate than a manual car architecture, which will almost certainly result in a
devastating traffic collision if one or more motors fail [1]. Improving and enhancing the
reliability of the system fault-tolerance becomes dynamic research in this modern era. Fault
recoverability is a major issue in fault-tolerance design. It should be noted that, in both an
authentic and physical sense, system performance is highly dependent on fault harshness,
which can impact system health [2].

It is important to take measures because in recent years the high number of road
accidents, the unbearable road congestion, and risks of all types of pollution have increased.
Inexperienced drivers and human factors can increase fuel utilization and road accident
and recent research has shown these facts. Autonomous vehicles are equipped nowadays
with automatic systems to ensure safety and efficiency, such as electronic stability programs,
the anti-lock braking system [3], wheel speed control for stabilization [4], and collision
avoidance systems [5].

In the field of autonomous driving, the research is extremely motivated. The devel-
opment of autonomous driving is increasingly feasible based on the recent advances in
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data fusion and mechatronics. In recent years many techniques have been implemented
to overcome the fault issues that arise but most of the research was done using passive
fault-tolerant techniques. These were only capable of removing the fault that can occur but
were not able to overcome the issues that can arise instantly due to which the autonomous
vehicle system collapse and accidents occur. This paper proposes a system of active fault
tolerance based on a fuzzy neural network algorithm that covers the car’s stability and
allows the electric car to keep on moving even if a fault arises in run time with the help
of the fuzzy neural network technique. The fuzzy and neural network techniques are
combined in the proposed research to provide more efficient results and overcome noise
and all random issues that can occur. The motivation of this research was to introduce an
efficient and more reliable fault-tolerant technique that reduces power loss and overcomes
instability issues that arise due to sensor breakdown and can cause an accident. It provides
us with an efficient and reliable technique that will help the modern era to minimize the
risk while traveling in an EV vehicle. This research will help to implement a reliable and
more accurate technique now in the upcoming autonomous vehicles, which will guarantee
safety along with minimal risk chances.

The system was trained with more than 500 data set values that were embedded in
the virtual sensor for better performance. This model was implemented with the help of
MATLAB/Simulink. A model was designed for the electric vehicle along with the engine
attached to the tires to check the stability of the car. The optical wheel speed sensors
along with the virtual sensors were attached with the help of a fuzzy neural network and
PID control algorithm to check and control the tire’s speed for its accurate and efficient
movement. The slip of each tire was measured so that if any error in the slip of the tires
at any moment, then the brakes are applied so that the car slows down and risk can be
avoided. Similarly, on each tire two sensors were attached so that if any of the sensors
fail the car keeps moving on the next sensor, and if both sensors fail then there is the help
of an observer (virtual sensor) that produces an estimated value with the help of a fuzzy
logic controller.

Further contents of the paper are organized as: The literature review is presented in
Section 2; the research methodology has been described in Section 3; results and discussions
are presented in Section 4. A comparison with existing works is mentioned in Section 5.
Finally, the conclusions with future work directions has been mentioned in the last section.

2. Literature Review

In tire/vehicle dynamics and control, tire slip angle is an essential variable. This
research [6] suggests a precise estimation strategy that combines machine learning and
intelligent tire technology. Microelectromechanical systems (MEMS) accelerometers are
integrated into the inner lining of the intelligent tire. It has a strong potential to undoubtedly
increase vehicle safety, particularly during extreme maneuvers, because all other states and
characteristics, which are vital to enhanced vehicle control, may be quickly and precisely
obtained with the accurate tire slip angle estimation.

Many active vehicle safety applications, such as lane departure avoidance, rollover
prevention, and yaw stability control, benefit from real-time knowledge of the slip angle of
a vehicle. For typical vehicle applications, sensors to measure slip angles, such as optical
sensors and two-antenna GPS systems, are prohibitively expensive. Using affordable
sensors often used for yaw stability control applications, this research [7] provides a real-
time algorithm for slip angle estimation. Model-based estimation and kinematics-based
estimate are both used by the algorithm. This research provides for the presence of road
bank angle and differences in tire-road characteristics when compared to results on slip
angle estimation that have previously been published. On a Volvo XC90 sport utility
vehicle, experimental evaluations are used to evaluate the created algorithm. The created
system can accurately estimate slip angle for a variety of test movements, according to
detailed experimental data.
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Modern vehicles, particularly SUVs and LTVs, are required to feature active safety
systems. There are still numerous places where they can be improved, although they have
advanced in many ways. Due to the crucial function tires play in providing directional
stability and control, it would be important to be able to gather information concerning
tire-vehicle states (such as tire slip-ratio, tire slip-angle, tire forces, and tire-road friction co-
efficient). The implementation strategy for a dynamic tire slip-angle estimate methodology
using a tire-based sensor and an observer system is presented in [8]. The observer uses two
different methods, the first of which uses a sliding mode observer to measure tire forces
along the lateral and longitudinal axes. The tire slip angle is then produced in the second
stage utilizing a Luenberger observer and linearized tire model equations, which make use
of the force information.

The creation of side slip angle-based vehicle stability control (VSC) schemes is dis-
cussed in this research [9], as well as how the control schemes were assessed on a virtual
test track. A three-degree-of-freedom yaw plane vehicle model has been used to construct
a differential brake control rule based on vehicle planar motion.

The majority of control methods are based on linear models (except SMC and adaptive
control). However, systems in real-world applications are nonlinear. Control synthesis
assumptions might influence the closed-loop system’s performance [10]. Thus, for a class
of nonlinear systems, the linear parameter varying (LPV) approach also includes linear
control theories. Indeed, the system is represented by graph models, which are linear. The
LPV model’s state space representation is as follows:

∑LPV

{ .
x(t) = Ap∆x(t) + Bp∆u(t)
y(t) = Cp∆x(t) + Dp∆u(t)

(1)

The state vector is x(t), the control vector is u(t), and the output vector is y(t). Real
matrices Ap∆, Bp∆, Cp∆, and Dp∆ are of appropriate dimensions. Few studies have been
done on the design of a passive fault-tolerant controller based on LPV representation. A
second-order model was used to describe the pitch system of a wind turbine in theoretical
research. The damping and natural frequency of the system are multiplied as a result of
the flaws. The following is how the passive fault-tolerant controller is built on the LPV
dynamic output-feedback controller:{ .

xc(t) = Acpxc + Bcpy(t)
y(t) = Ccpxc + Dcpy(t)

(2)

where Acp, Bcp, Ccp, and Dcp are controller matrix gains that are set using Lyapunov theory
to solve non-convex BMI conditions. These BMIs are indeed challenging to solve, and the
controller fails to guarantee convergence to the global minimum. There is a technique to
solve this problem by deleting the scheduling variables and employing a fault detection
and isolation (FDI) unit to deliver fault information, resulting in active fault tolerance [11].
So, to overcome this issue, the backstepping control technique was introduced, which is
discussed below.

The nonlinear nature of this controller is also easily applicable in other domains
including a quad-rotor or spacecraft attitude. A passive SMC was also implemented in
an FWIA electric vehicle for an additive actuator fault (by subtracting one volt from the
motor control signal), a multiplicative fault (by turning off the front-right motor), and
a lock-in-place fault (by fixing the control signal of the rear-left wheel at −2 volts. The
experimental experiments have proved that the system can maintain stability when faults
occur [12].

However, control signals have a high-frequency variation, which is known as the
Chattering Phenomenon; this is the main problem of the SMC, which is caused by the
nonlinear switching control term. Although studies have replaced the sign function with a
saturation function, the Chattering Phenomenon still exists, and the saturation function
can even decrease the controller’s stability.
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The advantage of the AFTC is that it uses a fault detection and identification (FDI)
mechanism to determine the fault position and amplitude, and then the closed-loop control
rejects the fault effect rather than accommodating the problem or changing the baseline
controller. Model predictive control (MPC) has capabilities to manage limited systems,
flexibility to changes in system parameters, and applicability to nonlinear plants have made
it one of the most promising fault-tolerant techniques [13]. The remaining actuators will
be driven to their limits if any of the actuators fail. The MPC can handle this problem by
integrating these limitations (faults) in the optimization process and therefore providing
the control signal [14].

The MPC model is a continuous process that uses the current states and the estimated
control signal to produce predicted future state pathways at each step. Indeed, the MPC is
regarded as an ideal control method. According to the FTC, this approach has been an active
research topic in several fields. As a result, they applied an advanced modeling technique
known as an online sequential extreme learning machine (OSELM) in combination with
a hyper-level fault-tolerance-based supervisor (FTS) [15]. The OSELM sends the plant
model to the controller-based MPC, which takes care of linearizing it and allows for
computational errors and parametric changes in the power train system. When a high-
severity defect is discovered, the FTS unit alerts the driver. Due to the limited time to recover
a malfunctioning plant, the FDI paradigm is critical in operating the MPC controller, which
may risk system safety [16]. On the other hand, the time required in an online restricted
optimization process is quite high, and current computer technology is incapable of meeting
this challenge for rapid systems such as ground vehicles.

Under various failure scenarios of the drive system, coordinated adaptive fault-tolerant
control of the drive and steering systems can accomplish the necessary control objectives.
Stability analysis is used to demonstrate the control system’s error convergence and input-
output boundedness [17]. Finally, simulations and other tests are conducted to verify
the fault-tolerant system’s efficacy and real-time reaction in various driving conditions.
The findings show that our suggested method can keep longitudinal speed inaccuracy
(below 3%) and lateral stability within acceptable limits, hence enhancing vehicle safety [18].

One of the most promising approaches for accomplishing FTC tasks is the integration
of multiple models (IMM). In comparison to the CS and IMM approaches, which run the
models individually, the IMM runs the models in a mutually interactive manner [19]. As
a result, the IMM is a learning algorithm with four phases in each cycle. The algorithm
executes the following stages during iteration:

• Interaction of the model-conditional estimates.
• Model-conditional filtering.
• Mode probability update.
• Estimates combination.

The prior estimates of all models are combined in the first phase based on the activation
chances of each model. The current status of each model is estimated in the second phase
by a bank of estimators based on one of the stochastic models. The extended Kalman
filter (EKF), unscented Kalman filter (UKF), unscented particle filter (UPF), and extended
Kalman particle filter (EKFP) have all been tested for the IMM topic [20]. In the third
phase, the likelihood functions are used to update the model probabilities, and lastly, the
aggregated state estimation is derived by weighting the estimations of each model using
their probabilities.

The topic of IMM in aircraft fault-tolerant control is being studied theoretically. The
estimator’s efficacy in detecting sensor, actuator, and component problems in simulations,
and the LQR and Eigen structure Assignment ensured closed-loop stability. A different
technique, known as multiple model adaptive estimate (MMAE), was utilized by and is
similar to the IMM. In the simulation, this technique’s capacity to redistribute the control
signal following a single or dual sensor error has been demonstrated.

The usefulness of the IMM in practical application to identify problems in X-By-Wire
car systems has been demonstrated in a recent example of experimental investigation [21].
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It is obvious that the IMM can identify sensor, actuator, and component defects reliably,
whether additive or multiplicative. However, performing the FTC job in the event of
numerous defects is challenging. Furthermore, because the IMM is based on a probabilistic
Markovian jump matrix, it is difficult to fix this matrix in a form that allows for fault
detection and recovery.

3. Research Methodology

The system for active fault-tolerant for the autonomous vehicle model is designed in
MATLAB/SIMULINK (version 2022a). A fuzzy neural network algorithm was used along
with the help of a PID Controller to design a reliable system to maintain stability if any
fault occurs. Moreover, an active fault-tolerant control design was implemented on the
system so that if any error occurs then instead of stopping the process the car keeps on
moving with the help of estimated values and shows an error that can be removed after
completion of the journey. The model for the autonomous vehicle is shown in Figure 1 [22].
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3.1. Mathematical Modeling of Autonomous Vehicle

This section describes the mathematical modeling of the autonomous vehicle. The
Tire (Magic Formula) block simulates a tire with longitudinal behavior described by the
Magic Formula [23], an empirical equation based on four fitting coefficients. The block may
represent tire dynamics under constant or varying pavement conditions.

The tire’s rolling motion on paved surfaces follows the same longitudinal direction. Based
on the Tire-Road Interaction (Magic Formula) block [24], this block is a structural element.

3.1.1. Tire Model

The Tire (Magic Formula) block models the tire as a rigid wheel-tire combination in
contact with the road and subject to slip. When torque is applied to the wheel axle, the tire
pushes on the ground (while subject to contact friction) and transfers the resulting reaction
as a force back on the wheel. This action pushes the wheel forward or backward. If you
include the optional tire compliance, the tire also flexibly deforms under load. Figure 2
shows the forces acting on the tire [24].
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Table 1 defines the tire model variables [25].

Table 1. Parameters to calculate slip of tire.

Symbol Description and Unit

rw Wheel Radius

Vx Wheel hub longitudinal velocity

u Tire longitudinal deformation

Ω Wheel angular velocity

Ω′
Contact point angular velocity. If there is no tire longitudinal deformation,

that is
u = 0, Ω′ = Ω

rw Ω′ Tire thread longitudinal Velocity

Vxx = rwΩ−Vx Wheel slip velocity

Vxx
′ = rwΩ′ −Vx

Contact slip velocity. If there is no tire longitudinal deformation, that is
u = 0, Vxx

′ = Vxx

k =
Vxx

| Vx |
Wheel slip

k′ =
Vxx
′

| Vx |
Contact slip. If there is no tire longitudinal deformation, that is

u = 0, k′ = k

Vth Wheel hub threshold velocity

Fz Vertical load on the tire

Fx The longitudinal force exerted on the tire at the contact point

C f x = (
∂Fx

∂u
) Tire longitudinal stiffness under deformation

B f x = (
∂Fx

∂u
) Tire longitudinal damping under deformation

Iw Wheel-tire inertia, such that the effective mass is equal to Iw
r2w

τdrive Torque applied by the axle to the wheel

3.1.2. Modelling for Tire Slip

Figure 3 represents the model to calculate the slip of the tire. Slip errors only occur
when there is an error in the tire due to which the rotational force on the tire is affected, and
as a result, an accident may occur. So, to overcome this issue, a fault detection and isolation
unit has been added to each tire slip so that if any error occurs in the slip, then to maintain
the stability of the car, brakes are applied instantly so that damage can be minimized.

In normal conditions, the slip of the tires is nearly equal to zero. To check the stability
and if the brakes are working, a fault was injected. As soon as the car starts to move and
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the fault is injected in wheel 1, the brakes start to work and the car begins to slow down,
indicating the error in a slip of wheel 1.
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3.1.3. Modelling for Fault-Tolerant Controller

The benefit of the AFTC is that, rather than tolerating the issue or altering the baseline
controller, the closed-loop control rejects the fault effect by using a dedicated FDI unit to
assess the fault position and amplitude. The projection-based method and reconfiguration,
often known as controller redesign, are the AFTC’s two key strategies. The FDI unit gives
AFTC the ability to address a variety of problems. This is more practical and ideal for
unforeseen problems (but their models must be recognized). The AFTC then becomes a
topic for safety-critical systems such as self-driving cars on the ground. As part of ongoing
research, numerous strategies have been examined in several applications. An active
fault-tolerant control system is applied to autonomous vehicles, as shown in Figure 4. An
observer is designed that estimates and predicts the values if any error occurs in the slip of
any vehicle. In such conditions, if errors occur in the slip, then a fault-tolerant controller
takes place and the observer sends the estimated value instead of the error value, due to
which the autonomous electric vehicle keeps on moving and shows an error signal that
should be replaced after the journey is over. So AFTC helps to solve the run time error
issues that can arise in the wheel slip and thus improves the reliability of the system.
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3.1.4. Fuzzy Neural Network Algorithm

The fuzzy control paradigm is one of the approaches to nonlinear system control
(Figure 5). The Takagi–Sugeno (TS) representation is a method that represents plant
nonlinearities by a sum of linear models weighted by weighting factors [26]. Consider the
following nonlinear plant:

.
x(t) = f

(
x(t)

)
+ g

(
x(t)

)
u(t) (3)
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The TS representation of the equation above is given by:

x(t) = ∑r
i=1 µi(ρ(t))(Aix(t) + Biu(t)) (4)

where µi stands for the weighting functions, and ρ(t) stands for the membership param-
eters. The identification technique and the sector nonlinearity method are the two basic
approaches for calculating weighting functions. Fuzzy control has become a popular study
area in fault-tolerant control in recent years [27]. The simplicity with which stability anal-
ysis in closed-loop may be performed using the Lyapunov theory has inspired greater
attention. Thus, in general, this technique is based on one of the fuzzy observer paradigms
for the FDI task, and an augmented state space representation is derived by adopting the
error dynamics between the output and the estimated state, in such a way that the fixed
gains ensure the fuzzy controller and observer’s asymptotic stability [28].
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3.1.5. Fuzzy Logic Controller

A well-known artificial intelligence-based control approach is fuzzy logic control
(FLC). It makes use of the functionary’s prior knowledge of the target system. The primary
responsibility of the functionary is to establish decision-based rules through system behav-
ior analysis and language input variable analysis. Before producing the output, the inputs
given to the FLC must go through the three fundamental processes of fuzzification, decision-
making, and defuzzification. With the aid of specified membership functions (MFs), the
input variable is turned into a linguistic variable during the fuzzification stage [29].

The result from the fuzzification step is then utilized to produce the output that has
been fuzzified by the established ruleset. The fuzzified output is finally converted into the
necessary output utilized for system control during the defuzzification stage. The FLC
does require the exact model of the system throughout its construction, which is the most
intriguing element of it. For systems with significant levels of uncertainty and nonlinearity,
The FLC has a wide range of applications in the field of machine control.

The fuzzy logic controller is being used in this model for tracking the values of the
slip of all the tires (Figure 6). In the proposed system firstly, the fuzzy controller is trained
by getting the values from previous slip tires to train the observer to generate a random
estimate value after providing it with almost 5000 data sets, as shown in Figures 7 and 8 [30].
These data set values to help generate a value of the virtual sensor closer to the slip values
so that if any error occurs in the slip, then instead of stopping the car an estimated value
from the observer is sent so that the electric autonomous vehicles keep on moving and
shows an error for a slip that could be replaced after the completion of the journey.
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4. Results and Discussions

While driving an autonomous vehicle, the main aim is to stabilize the vehicle to
overcome the possibility of accidents that may occur. Figure 9 shows the speed of the
autonomous vehicle that is moving at a constant speed of 100 mph. As the system was
turned on, the car started to move and after a certain period attains a constant speed.
Figure 9 shows that there is no error in the vehicle, and it has moved smoothly toward the
required speed.
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Figure 9. Autonomous vehicle speed profile without any fault.

Figure 10 shows the results in a tire slip that is nearly equal to zero. A pre-defined
value has been set for the slip to be equal to zero if the electric vehicle is moving smoothly
without any error, and if any error occurs in any vehicle, the display outputs a value of
2 and adds 0.1 if there occur any errors in the slip.
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Figure 10. Tire Slip error without fault.

A fault was injected in wheel 1 to observe its impact on the speed. As soon as the fault
was injected into the wheel slip, the value of 0.1 was added to the slip of the tire and the
value for the brake was shown as 2, which started to slow down as shown in Figure 11.
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Figure 11. Tire slip error after fault injection in Wheel 1.

As soon as the fault is detected in the slip of any tire, at that moment, the brakes are
applied to avoid an accident. The speed for the brakes has been set at 0.5 value so that the
brakes are applied slowly to avoid slipping or accidents with the INR. The autonomous
vehicle’s speed starts to decrease and reaches a speed of 20 mph, as shown in Figure 12.
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To see the speed of the vehicle, a display has been made that contains a speedometer
along with an FDI unit that informs about fault injection and the speed of the car on which
it is moving at run time. Such a dashboard helps the observer to see the stats in real-time on
which the vehicle is moving; the dashboard and the speedometer are shown in Figure 13.

The main aim of our research was to apply fault-tolerant on the autonomous vehicle
so if any error occurs in the slip of the tires, then instantly fault-tolerant control takes place
and instead of stopping the car, it keeps on moving with the help of the observer values that
have been generated with the help of estimated values provided by the fuzzy controller.
To carry out this process we used a fuzzy logic controller that was trained with the help
of more than 5000 values of sets that were provided by running the model, again and
again, to obtain estimated values. If any slip sensor stops working, it can generate random
values or wrong values and send them instead, so the car keeps on moving for a short
interval of time and the journey can be completed. As soon as the sensor becomes faulty,
the dashboard starts to show a red light, which means that the sensor has become faulty
and should be replaced. This phenomenon keeps updating all slips and the car keeps on
moving continuously as shown in Figure 14.
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output method that was only affected by predefined values, and as soon as any current 
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It is clear that after a fault was again injected the slip was not affected as the virtual
sensor starts to send the estimated value, due to which the car moved at the same speed
without any hassle, as shown in Figure 15.
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5. Comparison with Existing Work

A comparison of the proposed autonomous vehicle has been performed with the
existing works in this section. It was seen earlier that AFTC has increased the reliability
and efficiency of the system due to the presence of a fuzzy controller that sends virtual
values whenever the slip sensor fails. It has reduced the chances of a breakdown in the
autonomous model by providing an alternative virtual sensor for continuous processes.
The previous model was based on passive fault-tolerant control using multiple input and
multiple output method that was only affected by predefined values, and as soon as any
current error occurred, the system collapses and fails to overcome runtime errors. However,
the proposed active fault-tolerant control system can continue operation even if errors
occur at runtime. Additionally, it has a virtual sensor that sends estimated values if any
sensors fail, to minimize the risk factor. Furthermore, the proposed work with the active
type of fault-tolerant controller is novel and we could not find enough relevant literature to
make a comparison table with already published similar works.
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6. Conclusions

This paper presented an active fault-tolerant system operated on an autonomous
vehicle, which is done on MATLAB/Simulink and can easily detect faults that occur in
the slip sensor of the tire. It presented an active fault-tolerant control for autonomous
vehicles with a fuzzy logic controller that can autonomously identify if there is any problem
in the wheel speed to avoid accidents and maintain car stability. MATLAB/Simulink
(version 2022a) was used for simulation experiments and the results demonstrate the stable
operation of the wheel speed sensors to avoid accidents in the event of faults in the sensor
or actuator if the vehicle becomes unstable. The presented works show that the proposed
model is highly reliable and efficient with the addition of active fault-tolerant control that
minimizes the error and helps to maintain vehicle stability.

Future work may include designing a controller for all the sensors that are attached
along with each wheel, as it will improve and increase the accuracy and efficiency of the
system and will increase the speed as well.
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Nomenclature

Abbreviation Description
FTC Fault-Tolerant Control
AFTC Active Fault-Tolerant Control
PFTC Passive Fault-Tolerant Control
4WID Four Wheel Independently Driven
SMC Sliding Mode Control
LPV Linear Parameter Varying
CA Control Allocation
MPC Model Predictive Control
SELM Sequential Extreme Learning Machine
FTS Fault-Tolerance Based Supervisor
FDI Fault Detection and Isolation
CS Control Switching
IMM Integration Multiple Model
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