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Abstract: Four outer rotor surface-mounted permanent magnet synchronous machines (SMPSM),
supplied by a seven-phase drive system, are proposed in this study, considering different q (number
of stator slot per phase per pole ratio) to achieve a satisfying value of electromagnetic torque and
Back-Electromotive Force (Back-EMF) with lower torque pulsation. Accordingly, the proposed
configurations are investigated, and results are comparatively reported. Thus based on the results,
the best-performing configuration, the candidate model, which presents the lowest torque pulsation
with a desirable value of Tavg and Back-EMF is selected. In order to demonstrate the advantages of
this candidate model, an optimization analysis is performed using 2D Finite Element Analysis (FEA).
The resultant values of the variables are applied, designing three optimized models. Performance
results of the optimized models demonstrate that TCog reduced noticeably and TRipple declined
below 5%. The Artemis Drive-Cycles analysis results are also included for the best-optimized
model, considering E-Motorcycle requirements and properties for urban, rural, and motorway
driving conditions. Accordingly, in terms of In-Wheel application of the optimized machine, high
torque/power density along with high values of PF and efficient performance are provided for
E-Motorcycle application.

Keywords: Artemis Drive-Cycle; cogging torque; E-Motorcycle; optimization; SPMSM

1. Introduction

In terms of electric vehicle (EV) propulsion application, enormous studies have been
conducted on transportation electrification technologies, requirements, policies, and electric
machine topologies [1–4]. Permanent magnet synchronous machine (PMSM) is one of the
major alternatives widely investigated for vehicular application [5–10]. PMSM topologies
mostly benefit from a laminated cylindrical slotted stator with a 3-Phase winding, are sup-
plied by an inverter set-up, and utilize a permanent magnet (PM) rotor. In comparison with
induction machine (IM) technologies, PMSM provides advantages as outlined [4,5,11–14]:
(i) higher power density, (ii) higher efficiency, (iii) high power factor, (iv) high ratio of out-
put torque to weight and (v) more reliability. PMSM rotor structure is mainly introduced as
interior/surface mounted PMSM (IPMSM and SPMSM respectively), located on the inner
or outer side of the stator (IR or OR-SPMSM, respectively) [15,16]. Due to features of the
external location of the rotor and corresponding high inertia, OR-SPMSM demonstrates
constant speed operation rather than acceleration operation [4,10,15–17]. However, SPMSM
machines suffer from high values of torque ripple, particularly when operating at low
speed, and it is an urgent issue to be tackled which is studied in the majority of the literature
considering topological design optimizations [12,16,18]. Optimizing the dimension of PMs
and slot entrance designs, along with an optimal selection of slot/pole combinations for
OR-SPMSM, has a high impact on the slotting effect and air-gap flux density of the machine
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and hence effectively results in the cogging torque reduction. In addition, with the advent
of power electronic converters, the multiphase drive system, with advantages such as
reduction of torque pulsation and providing higher torque pulsation frequencies, can apply
to electric motor drive systems [19–26]. Marmaras et al. [3] studied the behavior of the EV
drivers and their impact on electricity and transport electrification systems. About 1000 EV
agents have been investigated while being unaware/aware of the test. Consequently, it
has been found that their behavior directly and indirectly affects both the road transport
system and the electricity grid, traffic on the roads, the distribution network’s stress and the
usage of the charging-related infrastructure. Wu et al. [8] focus on design considerations of
an OR-SPMSM with fractional concentrated winding configuration for In-Wheel applica-
tions, employing particle swarm optimization (PSO). Eight rotor pole numbers for a 48-slot
stator are considered in this study. According to the applied PSO and 2D FEA results,
the 48Slot/44Pole OR-SPMSM with about 10 Nm of torque ripple and 0.5 Nm of cogging
torque provided the best performance in terms of EV application. A territory PSO (TPSO)
is proposed by Ahn et al. [12] for design optimization of a SPMSM for unmanned aerial
vehicle application (UAV). Accordingly, the torque performance of the proposed SPMSM
model is reduced, whereas it has to be more precisely investigated because the model
was applied to low-power SPMSM (below 0.5 kW). In addition, the optimum model still
suffers from about 3% torque ripple for only 2.6 Nm of average torque. A numerical-based
comparative analysis for OR brushless DC machine (BLDC) and SPMSM is studied by
Lee et al. [15], as a low-voltage OR-BLDC and -SPMSM were analyzed using 3D FEA. The
results demonstrated that the proposed OR-SPMSM presents lower value of torque fluc-
tuations due to a reduction of stack length (torque ripple reduced by 78%) in comparison
with the proposed OR-BLDC. Zhao et al. [16] designed and optimized an OR-SPMSM
with reverse step shape PMs. Based on theoretical results, the air-gap flux harmonics
decreased in comparison with the conventional SPMSM. Although, torque ripple value is
reduced for the proposed OR-SPMSM, the optimized models a faced drop in torque den-
sity. Refs. [23,25] addresses the design of a 7-P SPMSM with tooth-concentrated winding
using a maximum torque per ampere (MTPA) control strategy. Scuiller [23] focused on the
design of two radially magnetized PMs to reduce torque ripple. In addition, by injecting
the fifth harmonic current, the produced torque can develop without increasing torque
fluctuations. While Scuiller et al. [25] investigated the simplicity and fault-tolerant ability
of a 7-phase SPMSM.

Therefore, to study tackling the high values of torque ripple in a SPMSM, this paper
aims to investigate an OR-SPMSM supplied by a 7-phase drive system with four wind-
ing configurations, particularly for low torque ripple In-Wheel E-Motorcycle application.
Results are comparatively reported and the best-performing configuration, providing a
desirable amount of torque density with low fluctuations, is selected to be precisely studied.
Hence, to aim for this goal and for clearing the strengths of the machine, a 2D FEA is
applied to 1000 structural designs considering the best-performed winding pattern. The
final optimized models, meeting the objective function constraints, are determined and
results have been compared. Finally, the model presenting the best performance is analyzed
under the standard Artemis Drive Cycle test and results reported for urban, road, and
motorway operation. Accordingly, the optimized OR-SPMSM presents high torque density
with at most 135 mm outer diameter, which makes it suitable to be placed in motorcycle
wheels of an average size as specified in Section 4.5, in which the constraints for practically
utilizing the proposed optimized model are discussed and studied. Other constraints
about such application are also listed and theoretical principle is discussed. Moreover, the
operating outputs for such applications are reported, including avg. and max. operating
speeds, losses, in-output energies and operational efficiencies.

2. System Equations Review

In the following sections, summarized design formulation and performance equations
for multi-phase PM machines and proposed models are presented.
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2.1. Multiphase PM-Machine Equations

Generally, for any multi-phase electrical machine, power, Pe, and torque, Te, can be
expressed as [27]:

Pe =
m
T

∫ T

0
e(t)i(t)dt (1)

Te =
Pe

Ω
=

m
ΩT

∫ T

0
e(t)i(t)dt (2)

where Ω is the rotational angular speed, m is the number of phases, T is the cycle period
of Back-EMF, e(t) and i(t) are one phase Back-EMF and current, respectively. To enhance
torque density in the m-phase system, current harmonic orders less than m can be injected
into the system [19,27]. Hence, assuming the same harmonic orders for Back-EMF [27]:

e(t) =
m−2

∑
υ

EυSin(υωt) (3)

i(t) =
m−2

∑
κ=1

IκSin(κωt) (4)

where Eυ and Iκ are υth and κth harmonic peak values of Back-EMF and current, respec-
tively, and ω is the electrical angular frequency. Accordingly, the torque equation can be
rewritten as [27]:

Te =
m−2

∑
κ=1

m
2Ω

Eκ Iκ (5)

and Eκ , the peak value of Back-EMF is given by:

Eκ = ΩKeκ Bκ NtDgL (6)

where κth harmonic of winding factor and air-gap flux density are Keκ and Bκ , respectively.
Nt is the number of turns per phase and Dg and L are the air-gap diameter and stack length
of the machine, respectively. In order to achieve torque enhancements, the RMS value of
phase current (including peak values of current harmonics) can be given as [27]:

Irms =
I1√

2Keκ B1

√√√√m−2

∑
κ=1

(Keκ Bκ)
2 (7)

where I1 is the peak value of 1st current harmonic, Ke1 and B1 are the corresponding
winding factor and air-gap flux density harmonics, respectively. Inserting electrical loading,
A, as [27]:

A = 2mNt
Irms

πDg
(8)

into (7), one can obtain:

I1 =
πADgKe1B1

√
2mNt

√
m−2
∑

κ=1
(Keκ Bκ)

2

(9)

and
Iκ =

Keκ Bκ

Ke1B1
I1 (10)

Thus, the electromagnetic torque can be expressed as [25]:

Te =
πAD2

gL

2
√

2

m−2

∑
υ=1

(KeυBυ)
2√

m−2
∑

κ=1
(Keκ Bκ)

2

(11)
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Calculating Do, outer diameter, by

λo =
Dg

Do
(12)

Torque equation based on sizing equation, Do
2L, for a multiphase PM machine can be

expressed as Equation (13):

Te =
πAλoD2

o L
2
√

2

m−2

∑
υ=1

(KeυBυ)
2√

m−2
∑

κ=1
(Keκ Bκ)

2

(13)

2.2. Winding Types

Considering the value of q, the number of stator slots per rotor pole per phase, two
main types of winding can be introduced [28,29]:

(i) q is an integer, distributed-winding type: conventionally used in electric machines,
where greater value of q results in more sinusoidal magnetomotive force (MMF) wave
produced.

(ii) q is not an integer, concentrated-winding type: this type is mostly wounded in single
or double layers, for which the comparison is given in Table 1.

Table 1. Concentrated Single- and Double-layer winding Properties [29].

Winding Layers Single Double

Fundamental winding factor (kw) high low
End Windings long short
Eddy Current high low

Over-load Torque Capability high low
Back-EMF Harmonics high low
Torque Ripple (TRipple) high low

It can be found from Equation (13) that the variation in air-gap flux density and the
value of m has a high impact on the torque performance of the machine. In addition, based
on the q ratio as:

q =
Ns

mNp
(14)

the values of Ns, Np, and m have a direct effect on the winding pattern, corresponding
winding factor and MMF. Overall, Bg is influenced by the ratio of slot/pole combination
along with the number of phases and the value of PMs flux linkage in the rotor. Therefore,
it directly affects the electromagnetic torque of the PM machine.

3. Proposed Model

In this study, based on the former introduction in Section 2, four winding patterns
and corresponding Ns for a six-pole seven-phase outer-rotor SPM machine (Figure 1)
are investigated for In-Wheel application in an E-Motorcycle. The proposed models are
designed and analyzed under the same condition, assuming 40 ◦C of ambient temperature.
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Figure 1. 3D-View of an OR-SPMSM.

3.1. Configuration and Design Parameters

Four Ns/Np ratios, namely 42/6, 28/6, 21/6, and 14/6, are considered in this study,
resulting in q equal to 1, 2/3, 1/2, and 1/3, respectively. The initial values of design parameters
are given in Table 2. The winding patterns and the objective function of this study are
as follow.

Table 2. Initial Design Parameters.

Quantity Sym. Value Unit

Num. Phases m 7 —
Rated Voltage Vn 120 V
Rated Current In 70 A
Rated Speed nr 1500 rpm

Motor Length LM 100 mm
Stator Outer Diameter DSO 135 mm

Stator Slot Depth LSSD 25 mm
Rotor Outer Diameter DRO 165 mm

Rotor Back Iron DRBI 10 mm
Axle Diameter DA 55 mm

Num. Stator Slots Ns 42, 28, 21, 14 —
Num. Rotor Poles Np 6 —
Ratios of Ns/mNp q 1, 2/3, 1/2, 1/3 —

Air-gap Length Lg 1 mm
Stator Tooth Width WST 5 mm
Stator Slot Opening LSO 2 mm

Stator Tooth Tip Depth LTTD 1 mm
PM Length LPM 50 °

PM Thickness WPM 4 mm
PM Type — N42SH —

Steel Type — M400-50A —

3.2. Winding Pattern

According to the value of q in Table 2, four concentrated winding patterns and selected
Ns values as shown in Figures 2–5 are considered. The corresponding winding factor and
winding harmonics of each q are presented in Figures 6 and 7, respectively.
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3.3. Variables and Objective Function

The objective function of this study is to enhance torque performance of the machine
for electric vehicle application. Accordingly, the following development processes are
considered to be investigated using 2D Finite Element Analysis (FEA). The initial design
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parameters are presented in Table 2, and the variables considered for sensitivity analysis of
the candidate model are illustrated in Figure 8.
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v Initial Configurations

â Objective Function: minimum torque pulsation, satisfying torque density and
Back-EMF: determination through q selection

â Constraints: initial design parameters in Table 2.

v Candidate Model

â Objective Function: minimize torque pulsation and maximize torque: for
determination of the best-performing model through FE sensitivity analysis

â Constraints: WPM = 4 mm, LSSD = 25 mm, WST = 5 mm, TCog ≤ 1 Nm,
TRipple < 5%, Tavg ≥ 80 Nm

v PM Dimension and slot entrance design variables: 0 mm ≤ X1 ≤ 9 mm,
0 mm ≤ X2 ≤ 5 mm, 5° ≤ X3 ≤ 55°

4. E-Magnetic Results

By applying 2D FEA to the proposed structures, the following results have been
achieved, so that in Section 4.1, initial models are investigated in order to select the candi-
date model, which provides a satisfying and desirable amount of torque and Back-EMF
amplitude. Then the resultant candidate model is sensitively analyzed with constraints
mentioned for X1, X2, and X3, with results illustrated in Section 4.2. Optimized mod-
els, providing highest Tavg, lowest TCog and TRipple are introduced in Section 4.3, where
comparative results are reported. In Section 4.4 efficiency and power factor maps of the best-
optimized model are reported. Finally, Section 4.5 displays results of Drive-Cycle torque
graph for In-Wheel application of an E-Motorcycle, adopting the best-performing model.

4.1. Analysis of the Initial Models

Figures 9–12 demonstrate the analysis results of the average torque, cogging torque,
torque ripple, and back-EMF for the initial configurations, respectively.

As shown in Figure 9a, the greater the value of q, the more average torque is produced
by the proposed 7-P SPMSM. As a result, according to torque FFT analysis shown in
Figure 9b, the amplitude of the fundamental harmonic increases as q grows.

Based on TCog results, illustrated in Figure 10, the cogging torque does not follow the
same path the average torque did, thus, the growing value of q does not directly affect TCog.
This means, for q = 2/3 and 1/3, the peak-to-peak cogging torque is approximately 50% less
than q = 1 and 1/2, respectively, where q = 2/3 presents the lowest TCog (less than 2 Nm).

On the contrary, TRipple is reduced for q ≤ 2/3, reaching from 13% in q = 1/3 to 7% in
q = 2/3; however, it is suddenly doubled in q = 1 (Figure 11).
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The one-phase back-EMF and the corresponding FFT analysis results of the proposed
models are presented in Figure 12a,b, respectively. Accordingly, the peak value of the phase
back-EMF increased along with the increasing value of q, from 50 V to 70 V for q = 1/3

to q = 1, respectively. The amplitude of harmonics for q = 2/3 continuously decreased to
about zero for n ≥ 7th harmonic, whereas other q values suffer from n > 7 harmonic orders.
Thus, the phase back-EMF, produced by the q = 2/3 model, presents fewer fluctuations with
desirable peak values.

Based on results discussed and demonstrated in Figures 9–12, the proposed 28/6
initial model with q = 2/3 provides a satisfying average torque value of 95 Nm, TCog less
than 2 Nm, 7% of TRipple and 67 V of phase back-EMF, and is selected as the candidate
model. Hence, in order to achieve the goal of this study, reduction of torque pulsation,
a sensitivity analysis is performed considering the variables shown in Figure 8. The flux
density distribution of the initial models is illustrated in Appendix A.

4.2. Sensitivity Analysis of the Candidate Model

As depicted in Figure 8, the analysis variables, namely X1, X2, and X3, are sensitively
analyzed for the candidate model from Section 4.1, considering the constraints in the
objective function. Torque, cogging torque, and torque ripple results of this sensitivity
analysis are illustrated in Figures 13–15. As depicted in Figure 13, decreasing value of
X1 and X2 along with an increase in X3 value increases Tavg, so that Tavg-Max produced
equals 96.2 Nm for X1 = 2.5 mm, X2 = 3.5 mm, and X3 = 45°. TCog results are illustrated
in Figure 14, where X1 and X2 should move in opposite directions in order to provide
lower cogging torque. For X3, TCog fluctuates in the way that the lowest TCog produced is
0.018 Nm as X1 = 0 mm, X2 = 5 mm and X3 = 5°. Lower TRipple is presented by increasing
values of X2 and X3, where X1 causes fluctuations in torque ripple. However, TRipple-Min is
provided by values of X1 = 0 mm, X2 = 4.5 mm and X3 = 45°, which equal to 1.7%. Based on



Electronics 2022, 11, 3192 10 of 19

the results shown in Figures 13–15, and resultant values for X1 to X3, the best-performing
models are categorized. They are those which provide maximum average torque (Model-I),
minimum cogging torque (Model-II), and minimum torque ripple (Model-III), respectively.
Corresponding results for the optimized models are reported in Table 3.
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Table 3. Output Data of the Optimized Models.

Parameter Model-I Model-II Model-III

X1 (mm) 2.5 0 0
X2 (mm) 3 5 4.5

X3 (°) 45 5 45
TAvg (Nm) 96.2 4.73 85.1
TCog (Nm) 8.5 0.018 0.26
TRipple (%) 7.8 8.53 1.7
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Table 3. Cont.

Parameter Model-I Model-II Model-III

Eff. (%) 88.5 22.94 86.75
PF 0.9 0.18 0.82

B-EMF (V) 114.7 8.2 67.2

4.3. Analysis of the Optimized Models

With regard to the goal of this paper, a comparative study is performed for the models
designed by means of X values in Table 3, and the results are presented in Figures 16–19.
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It can be obtained from Figure 16a,b that the Model-II presents poor torque density.
However, it produced TCog close to zero which is desirable. The Model-I provides the high-
est electromagnetic torque, whereas it suffers from high fluctuations in comparison with the
Model-III, visiting the objective function constraints (Tavg ≥ 80 Nm) with low pulsations.

Accordingly, TCog and TRipple are depicted in Figures 17 and 18 respectively, where
the Model-III produced significantly low pulsations in comparison with other models and
the initial q = 2/3 configuration, as desired in the objective function (TCog ≤ 1 Nm and
TRipple ≤ 5%). Meanwhile, Model-I and –II present the highest TCog and TRipple, respectively.

Figure 19a,b demonstrates the phase back-EMF and corresponding FFT analysis of
the proposed models in Table 3. It can be determined that in comparison with the can-
didate model, the amplitude of phase back-EMF harmonics in the Model-I to -III faced a
noticeable reduction. Although the phase back-EMF amplitude is low in the Model-II and
-I, containing higher harmonics amplitude and even suffers from 9th harmonic order, the
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Model-III produces an acceptable peak-to-peak phase back-EMF value of 67.2 V with lower
amplitude harmonic orders, damped for n ≥ 5th harmonic.

Thus, the proposed Model-III provides the best performance and meets the established
constraints, producing 85.1 Nm of torque with low pulsation, as TCog = 0.26 Nm and
TRipple = 1.7%. Flux density distribution of the optimized models are shown in Appendix A.

4.4. Efficiency and Power Factor Map

As shown in Figure 20 in terms of the efficiency map of the Model-III, considering
Motoring (M) and Generating (G) modes of operation, constant torque region is pro-
vided with up to 1500 rpm of speed and with 85 Nm of torque. When in generating
mode, a wider region of high efficiency is determined. Hence, constant torque above
80 Nm with an efficiency value of 80% is achievable when speed ≥ 900 rpm in M op-
eration and speed ≥ 1100 rpm in G mode. However, efficiency ≥ 90% is provided for
500 ≤ speed ≤ 2200 and 500 ≤ speed ≤ 2500 rpm in M and G mode respectively, produc-
ing at most 60 Nm of average torque.
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Based on the Model-III power factor (PF) map illustrated in Figure 21, a higher power
factor (above 0.7) is determined for P ≥ 5 kW. As shown in Figure 21, for both M and
G modes of operation, unlike the constant torque region, PF is increasing along with an
increase in P for the constant power region. Conversely, in the constant torque region it
declines from 0.99 to 0.7 and 0.5 in M and G mode, respectively, while in the constant power
region it reaches from 0.15 to above 0.8 for both M and G operational modes.
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Figure 22 demonstrates the corresponding phase advance (PA) analysis results for
the M mode of the Model-III. Accordingly, for 0° ≤ PA ≤ 35° a constant torque region
is provided, where speed ≤ 1500 rpm and TAvg ≤ 85 Nm. The constant power region is
achieved for 35° ≤ PA ≤ 90° for speed values above 1500 rpm, providing average torque
below 80 Nm.
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Figure 22. Phase Adv. (◦) map of the Model-III.

Overall, based on the results reported, not only has the 3rd Model designed based on
the optimization processes met the constraints mentioned in the objective function, but it
also presents desirable torque, power, PF, and efficiency performance. These factors make
Model-III the best-performed model to be adapted for an E-Motorcycle application.

4.5. Artemis Drive-Cycle Analysis

Measuring vehicle speed over time as data series in form of drive cycles (DCs) are
created theoretically or based on real-world driving records. Due to developments of EV
industries, DCs are mainly utilized in order to test fuel consumption and CO2 emissions of
a vehicle, and recently have begun being used to size electrical powertrain components [11].

The sizing of the powertrain is heavily dependent on vehicular and conditional pa-
rameters such as (Figure 23) [11]:
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Air resistance, which is defined as Fair in Figure 23, representing the main force to
overcome when driving on a flat road. Fair is proportional to air density (ρ), the square
form of vehicle’s velocity (υ2), a drag coefficient (Cd) and frontal cross-sectional area of the
vehicle (A):

Fair =
1
2

ρACdυ2 (15)

Rolling resistance, defined as Froll, occurs due to interaction between the surface of
tires and road surface. Froll is proportional to vehicle mass (m), gravity acceleration (g),
road gradient (α), and a rolling coefficient (Cr):

Froll = Crmg cos α (16)

Grading force, Fgrade, is the force required for up/downhill movement. Fgrade can be
either be positive or negative, thus it can be considered as resistive or supportive force and
it can be determined by multiplication of m, g, and sin(α):

Fgrade = mg sin α (17)
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Acceleration force, FAcc is a major parameter in electrical machine sizing and has a
significant contribution in total traction force, calculating by-product of m and derived
velocity over time (dυ/dt).

FAcc = m
dυ

dt
(18)

Traction force, Ftrac, is the summation of the above forces in which the desired torque
of the machine has a direct relation with the total traction force.

Ftrac = FAcc + Froll + Fgrade + Fair (19)

A complete drive cycle study based on the Volvo XC90 and S60 cars can be found
in [11] using a real-world database and dynamic model of the proposed cars.

Assessment and Reliability of Transport Emission Models and Inventory Systems
(Artemis) is a European standard project based on a large database of European real-world
driving patterns [30]. In this study, standardized Artemis DC is utilized consisting of three
driving conditions:

- Urban Cycle: 991 s of operation with an average speed of 17.7 km/h, displacement
value of 4.9 km, and Max. speed of 57.3 km/h

- Rural Road Cycle: 17.3 km rural road trip in 1080 s with an average speed equal to
57.5 km/h reaching its Max. at 111.1 km/h.

- Motor Way130 Cycle: 96.9 km/h average speed (Max. 131.4 km/h) in 1066 s for 28.75
km motorway trip.

The corresponding drive-cycle speed is illustrated in Figure 24a. For an E-Motorcycle
concept design shown in Figure 23 with properties listed in Table 4, and by applying the
Artemis DCs to the Model-III of this study, DC torque and DC operational data points
are demonstrated in Figure 24b,c. Table 5 reports the drive cycle analysis results of each
Artemis cycle applied to the Model-III.

Table 4. Drive-Cycle Properties.

Vehicle Properties Value

Mass (kg) 80
Rolling Resistance Coefficient 0.005

Air-Density (kg/m3) 1.225
Frontal Area (m2) 1.5
Drag Coefficient 0.26

Wheel Radius (m) 0.3
Mass Correction Factor 1.04

Motoring (M) Torque Ratio 1
Generating (G) Torque Ratio 1

Table 5. Artemis Drive-Cycle Data for the Model-III.

Drive Cycle Urban Rural M. Way

Data Value Value Value Unit

Time 991 1080 1066 s
Distance 4.9 17.3 28.75 km

Avg. Speed 17.7 57.5 96.9 km/h
Max. Speed 57.3 111.1 131.4 km/h

Avg. Efficiency 71.65 85.2 82.33 %
Input Energy 80.71 558.5 2291.3 Wh

Output Energy 13.53 11.4 7.54 Wh
M. Energy 60.19 478.3 1887.4 Wh
G. Energy 22.17 16.35 10.3 Wh
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Table 5. Cont.

Drive Cycle Urban Rural M. Way

Data Value Value Value Unit

Total Loss 29.17 85.1 406.6 Wh
Copper Loss 24.48 66.4 369.9 Wh

Iron Loss 2.54 11.04 23.99 Wh
Magnet Loss 0 0 0.02 Wh

Mechanical Loss 2.15 7.64 12.7 Wh
M. Operation 77.8 91.2 94.5 %
G. Operation 22.2 8.8 5.53 %
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Overall, according to Table 5, for E-Motorcycle application the studied Model-III
operates efficiently with high values of torque/power density and power factor in different
conditions of driving.

5. Conclusions

The goal of this paper is to investigate outer-rotor surface-mounted permanent mag-
net synchronous machines (OR-SPMSM) for E-Motorcycle application capable of low
torque fluctuations and high torque–power density. Four winding patterns (q = 1, 2/3, 1/2,
1/3) are proposed and applied to the OR-SPMSM. Results are comparably reported and
demonstrated that OR-SPMSM with q = 2/3 presents the best performance in terms of low
torque pulsation. In order to investigate the advantages of this configuration and reach-
ing enhanced design, a parameter optimization process is considered with three design
parameters involved, resulting in three optimized models, producing Tavg-Max (Model-I),
TCog-Min (Model-II), and Tripple-Min (Model-III). The results referencing each model are
reported, where the Model-III provides the best performance in meeting the objective
function constraints with low torque fluctuations. The Artemis Drive Cycles are applied to
the Model-III in order to simulate the performance of the proposed machine for urban, road,
and motorway applications of an E-Motorcycle. Accordingly, due to high torque density
with low torque pulsations and efficient operation under high values of power factor, the
Model-III presents the best performance and can be considered as a vital alternative for
In-Wheel Light-Weight EV applications.
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