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Abstract: Renewable energy sources and EV growth brings new challenges for grid stabilization.
Smart grid techniques are required to reconfigure and compensate for load fluctuation and stabilize
power losses and voltage fluctuation. Numerical tools are available to equip the smart grid to
deal with such challenges. Distribution Feeder reconfiguration and reactive voltage injection to the
disturbed grid are some of the techniques employed for the purpose. However, either reconfiguration
or injection alone is used commonly for this purpose. In this study, both techniques are applied to
EV penetration as load and compared. A balanced IEEE 33 Radial network is used in this study
and selected branches with high power losses are targeted for the reactive voltage injection and
Minimum Spanning tree techniques (MST). EV charging loads are usually modelled with time
base distribution which requires times base power flow analysis for reactive power injection. A
comparison between coordinated, reconfiguration, and reactive voltage injection shows differences
in power losses, voltage distortion, and cost saving. The analysis is carried out with an integer
linear programming technique for coordinated charging, a minimum spanning tree for network
reconfiguration, and genetic optimization for reactive power injection. Besides, all power flow
analyses are carried out with the Backward/Forward sweep method. The information would help
lowering power losses, grid stabilization, and charging station infrastructure planning.

Keywords: distribution feeder reconfiguration; minimum spanning tree; reactive power injection;
forward/backward sweep power analysis; IEEE 33 radial bus network; mixed integer linear; GA opti-
mization

1. Introduction

The power demand for new emerging electric vehicle technology adds load on power
utility companies. Environmental regulated Renewable Energy (RE) sources also play
a major role as Distributed Generator (DG) connected to the distribution networks. En-
ergy management of the network ensures the demand and supply unit commitment
cost-effectively. EV charging aggregators and stations both for residential and commercial
purposes make use of demographic and economic activity at the network nodes.

Power stability techniques of the network are employed by the energy management
system. Among the most common are (i) Flexible voltage levels (ii) Network reconfiguration
topology [1] (iii) Feeder capacitor bank [2] (iv) Load balancing techniques with an On-load
tap changer (OLTC) of the main transformer are used to overcome the losses in network
buses rather than on bus nodes. Reactive power injection is also used for power stability,
the synchronous motor excitation method at affected nodes was used by Kotenev et al. [3].
A key node reactive power injection for voltage optimization is presented by Meng and
Gao [4]. Zechun and Mingming [5] inject reactive power at nodes based on the sensitivity
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analysis. Whereas, the reactive power margins method to find the affected node was
proposed by Chuan-Quan and Yan [6].

Distribution Feeder Reconfiguration (DFR) also reduces power losses in the power
distribution system by opening and closing the sectional and tie switches in the network.
Due to online capability for controlling remote sectionalizing switches (RSS), Singh and
Tiwari [7] address network configuration for reducing the power losses and relieving the
overload or balancing the network. Two-stage DFR framework was first proposed by Baran
and Wu [8] for active and reactive power management. Zhang and Zeng [9] used ‘OpenDSS’
software to connect a set of five capacitor banks randomly to the network nodes at peak
load hours and find the optimal nodes for minimum power losses. Rostami et al. [10]
use stochastic reconfiguration methods for PHEV charging cost minimization. For EV
charging strategies Cui et al. [11] presented the case of off-peak load charging. The network
reconfiguration is a non-deterministic and combinatorial problem. Metaheuristic evolution
methods like Genetic Algorithm [12,13] and Binary Particle Swarm Optimization [14] were
used to search for global optimal point and doesn’t suit large networks due to convergence
time. Minimum Spanning tree (MST) is a graph theory-based approach used for network
optimization in communication and transportation problems. It has been efficiently used for
solving the DFR problem [15–17]. Krushal’s algorithm [18] has non-cyclic graph property
for the determination of MST problem, which maintains the radial integrity condition of
the network.

Random EV charging load on the network increases power losses, peak-load and
violates voltage stability [19,20]. Adverse effects of random or uncoordinated EV charging
are removed by scheduled coordinated charging schemes. Such coordinated charging
schemes use an aggregator who coordinates with the distribution system operator (DSO).
The aggregator addresses both interests of EV owners and DSO to schedule the charg-
ing/discharging of EVs. The aggregator is used to provide economic incentives and takes
necessary measures to reduce power losses and voltage stabilization [21,22].

Most of the references discussed above study the impact of EV charging on grid
stabilization, while others have given solutions with the DFR technique and reactive
power injection without the 24 h time frame. In this paper, we have analyzed and compared
coordinated, DFR and reactive power injection EV charging optimizations to get the optimal
power losses and voltage stabilization for 24 h period. A comparison between reactive
power injection with DFR comparison shows an almost 15% reduction in power losses and
voltage distortion with increased charging cost.

EV Charging Problem

EV penetration and interaction with IEEE 33 network bus with tie and sectionalizing
switches, aggregator, and DSO is shown in Figure 1. Modern inverters DSTATCOM
and capacitor banks improve voltage profiles and minimize power with reactive power
injection [23]. EV charger available in aggregator resources also has the capability of
allowing reactive power flow to the grid by utilizing the DC Link capacitor. The optimal
node’s location, reactive power magnitude, and time duration will be made available
through aggregator resources and passed to Distribution Grid Control Centre/DSO to take
proper action to reduce power losses and voltage stabilization.
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number of EVs, battery characteristics, charging rates, EV energy balance, and daily load 
profile parameters are defined in Section 2, Figure 2. The data in Section 2 are 
preprocessed to obtain the EV statistical charging load which is added to the daily 
residential load in Section 2.3 for further analysis. In Section 3 Mixed Integer linear 
programming (MILP) is used for comparing coordinated EV charging with reactive 
injection and Distribution Feeder Reconfiguration techniques in Sections 4 and 5, 
respectively. 

 
Figure 2. Numerical Computation Analysis flow chart. 

2.1. EV Charging Distribution 
EV cars’ battery energy capacity 𝐸  varies within ranges of 4 kWh–50 kWh. The 

battery charging load depends upon the driving pattern and the energy requirement 
probability can be represented by the Weibull density [24] curve defined in Equation (1). 

Figure 1. IEEE 33 radial bus network with EV aggregator chargers, Distributed Operator (DSO) and
reactive power compensators.

2. Simulation Methodology

The methodology adopted in this work for EV penetration load is shown in Figure 2.
The Aggregator in Figure 1 is responsible for minimization of EV charging and cost; based
on EV driving pattern, the number of the network’s charging nodes, charging cost, number
of EVs, battery characteristics, charging rates, EV energy balance, and daily load profile
parameters are defined in Section 2, Figure 2. The data in Section 2 are preprocessed
to obtain the EV statistical charging load which is added to the daily residential load in
Section 2.3 for further analysis. In Section 3 Mixed Integer linear programming (MILP)
is used for comparing coordinated EV charging with reactive injection and Distribution
Feeder Reconfiguration techniques in Sections 4 and 5, respectively.
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2.1. EV Charging Distribution

EV cars’ battery energy capacity Ereq
m varies within ranges of 4 kWh–50 kWh. The

battery charging load depends upon the driving pattern and the energy requirement
probability can be represented by the Weibull density [24] curve defined in Equation (1).
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f (Ereq) =
b
a
·
(

Ereq + c
a

)b−1
·e−(

Ereq+c
a )

b

(1)

where a = 15, b = 1.4, c = 2, and the probability curve is given in Figure 3. Average EV
charging is considered as Pavg = 9.2 KW.
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Figure 3. Weibull density probability for EV charging energy requirement.

Considering the users’ preferable charging behavior as 20% between 07 h 00 and 10 h
30, 40% 16 h 00 to 21 h 00, and the rest of 40% evenly distributed over the day, the EV start
charging times tst are randomly generated in Figure 4. Charging stop time to determine the
time interval Um for mth EV is evaluated from both start time tst and probability of energy
required Ereq

m Equation (1) is defined by Equation (2).

Um = [tst; stoptime]
Um =

[
tst; tst +

Ereq
m

Pavg

] (2)
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2.2. IEEE 33 Bus and EV Charging Parameters

EV charging process parameters are given in Table 1. The daily residential load profile
Presd

t and cost tariff λt data of electricity used for simulation are shown in Figure 5. For
node analysis, the data are expanded to two dimensions: time (t) and nodes (n) as Presd

t,n and
λt,n. For power flow analysis the backward/forward (B/F) sweep method [25] is used for
IEEE 33 radial distribution system as shown in Figure 2.

Table 1. Network and EV Parameters.

Load (PQ) nodes, N 32
EV per node, M 500/node

EV Charging Rate, Pch 14.4 KW
Average EV Charge, Pavg 9.2 KW

Slack node 1 (PV) (Single Feeder) 7 MW
EV charger Power Factor, pf 0.74–0.98

Timestamp ∆t = 15 min 96 min
Total EVs (m.n) 16,000

No. of Reactive Power Injection nodes 5
Base MVA 1000
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2.3. EV Charging Statistical Load

EV aggregator is responsible to meet the demand for battery charging at optimal cost.
Since this work simulates charging over 24 h times the EV power charging parameter is
a function of three indexed variables, timestamp variable (t) network node (n), and EV
number (m), as Ereq

t,n,m (KWh) and is evaluated from the Weibull distribution Equation (1),
the charging interval Ut,n,m is evaluated from Equation (2). Then, the charging power Pev

n,t
required for all EVs on 32 (n) nodes for time t (1:96) is given in Equation (3).

Pev
t,n =

M=500

∑
m

Ereq
t,n,m

Ut,n,m
(3)

EV charger has an adverse effect on power factor [18] and is considered here to vary
between pf = [0.98: 0.74] and pf = 0.74 corresponding to −42.3◦ phasor angle between the
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voltage and current. With the addition of real Pev
t,n Equation (3) and Residential load Presd

t,n ,
the total EV charging power in Equation (4a–c) is:

PEV
t,n = Pev

t,n + Presd
t,n (4a)

SEV
t,n =

[
PEV

t,n

p fn

]
(4b)

QEV
t,n =

√
SEV

t,n
2 − PEV

t,n
2 (4c)

3. Coordinated EV Charging-MILP

Charging cost reduction is the key objective of coordinated EV charging. To achieve
coordinated charging, an optimized charging schedule is required to avoid peak load times
at high tariffs. If Px

t,n,m is an EV charging decision variable and λt,n is the charging cost then
the optimization objective function is defined in Equation (5).

f coor
min,t = ∑0 ≤ n ≤ 96

1 ≤ t ≤ N
1 ≤ m ≤ M

Px
t,n,m · λt,n (Objective Function) (5)

Subjected to constraint:

Px
t,n,m ≤ Pch (Max charging Limit) (6)

Px
t,n,m ≤ PEV

t,n + PResd
t,n,m (EV + Base Load Equation (4a)) (7)

Px
t,n,m · Ut,n,m = Ereq

t,n,m (Energ Balance, Equation (1)) (8)

Px
t,n,m ≥ 0 (9)

Constraints in Equations (6)–(9) specify that the optimized charging load should be
less than or equal to the total inclusive of EV and base loads, and optimized charging
energy Px

t,n,m·Ut,n,m should be equal to the required EV charging energy Ereq
t,n,m and positive

charging power, respectively.
IBM ILOG CPLEX linear programming function ‘cplexlp’ is used in MATLAB 2020

environment for large-scale optimization. EV charging power PEV
t,n in Equation (4a) is

further expanded to cater for EV index (m) in PEV
t,n,m for analysis. Time span for 24 h analysis

is considered here as t + ∆t, where ∆t = 15 min interval. The optimized EV power Px
t,n,m

after analysis in this section is given in Equation (10).

Pcoor
t,n =

M=500

∑
m

Px∗
t,n,m (10)

Then, Qcoor
t,n,m can be found to be similar to (4b,c). The maximum EV charging demand

power at each node is defined in Equation (11).

Ecoor
t,n = max

M∈500

[
Pcoor

t,n,m·Ut,n,m
]

(11)
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3.1. Coordinated Power Flow Analysis

Node Power losses Pcoor,Loss
t,n , Qcoor,Loss

t,n and voltage p.u. Vcoor
t,n are evaluated with B/F

sweep power flow, the network branches resistance Rn and reactance Xn is obtained from
Appendix A Tables A1 and A2, then:

Scoor
t,n =

Pcoor
t,n

p fn
(12a)

Qcoor
t,n =

√
Scoor

t,n
2 − Pcoor

t,n
2 (12b)

Pcoor
t,n = Pcoor′

t,n+1 + Rn
Pcoor′

t,n+1
2
+Qcoor′

t,n+1
2

V2
t,n+1

Pcoor′
t,n+1 = Pcoor

t,n + PLoad
t,n

Qcoor′
t,n+1 = Qcoor

t,n + QLoad
t,n

(13)

Qcoor
t,n = Qcoor′

t,n+1 + Xn
Pcoor′

t,n+1
2
+ Qcoor′

t,n+1
2

V2
t,n+1

(14)

and

Icoor
t,n =

conj
(

Pcoor
t,n + j·Qcoor

t,n
)

Vcoor
t,n

(15a)

where
Vcoor

n=1 = 1p.u.

Vcoor
t,n+1 = Vcoor

t,n − Icoor
t,n ·(rn + jXn) (15b)

Pcoor,Loss
t,n = Icoor2

t,n ·Rn (16)

Qcoor,Loss
t,n = Icoor2

t,n ·jXn (17)

The total power losses Pcoor,Loss
t,n at all nodes over 24 h is shown in Figure 6 and the

average voltage (p.u.) Vcoor
t,n is shown in Figure 7.
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4. Power Injection GA-Optimization with Power Flow Analysis

Reactive Power injection can improve power losses and voltage. Mixed Integer Genetic
Algorithm (GA) with parameters in Table 2 is used here to optimize EV power Pev

n,t by
searching K = 5 nodes to reduce the network power losses and stabilize the voltage. The
reactive power can be supplied from a shunt capacitor bank, EV battery DC link, or offload
synchronous motor condenser. Reactive power injection variable term Q

[
Jn
k
]

is a function
of the node location index Jn

k in (19) for mixed integer GA optimizer. The input powers

from Pinj
t,n from Equation (4a) are given as:

Table 2. Mixed Integer Genetic Algorithm Parameters.

No. of Integers 5

No. of generations 20

Population Size 32

Population Type “custom”

Create_Permutation fun. Randi ([0 500],32,1)

No. Iteration 96

Solution Convergence ‘TolCon’ 10−8

4.1. Injection Power Flow Analysis

The Analysis is performed similarly to Section 3.1 with an addition of reactive power
injection Qinj

t,n(k) in Equation (19) and discussed in the later section as:

Pinj
t,n = PEV

t,n

Sinj
t,n =

Pinj
t,n

p fn

Qinj
t,n =

√
Sinj

t,n
2
− Pinj

t,n
2

Pinj
t,n = Pj′

t,n+1 + Rn
Pj′

t,n+1

2
+Qj′

t,n+1

2

V2
t,n+1

(18)
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Qinj
t,n = Qinj

t,n(k) + Qj′
t,n+1 + Xn

Pj′
t,n+1

2
+Qj′

t,n+1

2

V2
t,n+1

where

Pj′
t,n+1 = Pinj

t,n + PLoad
t,n

Qj′
t,n+1 = Qinj

t,n + QLoad
t,n

(19)

and

Iinj
t,n =

Conj
(

Pinj
t,n +j·Qinj

t,n

)
Vinj

t,n

where
Vinj

n=1 = 1 p.u.

(20a)

and
Vinj

t,n+1 = Vinj
t,n − Iinj

t,n ·(Rn + jXn) (20b)

Pinj,Loss
t,n = Iinj2

t,n ·Rn (21)

Qinj,Loss
t,n = Iinj2

t,n ·jXn (22)

4.2. Random Search of Injection Nodes and Magnitude

The reactive power injection magnitude Qinj
t,n(k) in Equations (23) and (24) is a reactive

power injection magnitude variable, and k is a random searched injection index of the node.
Where k = 1 to K for K = 5 nodes e.g., k = [12; 13; 14; 26; 33]K=5 is a searched result by the
optimizer to minimize K highest power in branches at any time interval t = t + ∆t, the
remaining (33 − K) nodes are set to zeros as

n(k)= randperm
n

[
0, . . . , 1n=12

k=1 , 1n=13
k=2 , 1n=14

k=3 , 0, . . . , 1n=26
k=4 , . . . , 0, . . . , 1n=33

k=5 ]1×33 (23)

MATLAB command ‘randperm’ is a random and combinatorial set of cyclic permuta-
tions for GA optimization. Then the injection magnitude is:

Qinj
t,n(k) = Qinj

[
0(1), . . . , 1n=12

k=1 , 1n=13
k=2 , 1n=14

k=3 , 0(7), . . . , 1n=26
k=4 , . . . , 0(27), . . . , 1n=33

k=5

]
(24)

4.3. Reactive Injection Objective Function

The reactive power injection magnitude Qinj
t,n(k) is assigned an injection range of

[0 500] KVar to minimize the objective function in (25). The minimum power cost objective
function similar to Equation (5) is:

f inj
min,t = ∑N

n Pinj
t,n ·∑

M
m ∑N

n
λt,n,m (25)

GA optimized nodes injection Qinj
t,n(k) nodes locations over 24 h are shown in Figure 8.

Higher injection during 16–22 h is due to higher charging demand as shown in Figure 4.
The resulting power loss Pinj,Loss

t is shown in Figure 6 and the voltage Vinj
t is shown in

Figure 7.
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5. Minimum Spanning Tree (MST) Analysis

In power network Minimum Spanning Tree analysis, consider here the network used
in Figure 1, which shows 32 sectional and five tie switches, totaling 37 switches. Given the
branches’ power as Edges (E = 37) weights and vertices (V = 33) as nodes of minimum
spanning tree graph G = (V, E), a radial network output ET (33,32) is given as a set of edges
by eliminating those branches with the highest weights. The greedy Kruskal’s algorithm in
MST eliminates cycles and maintains the radial structure of the network.

5.1. Branch Search for Maximum Flow

The edges weights are power PEV
t,n in branches evaluated with B/F sweep analysis. A

binary GA algorithm is used for randomly searching the tie (tie
1:5) switches combination

together with sectional (s = 1 to 32) switches and MST evaluates minimum branch power.
W(t,m = n + 5) is the power in branches with extra five tie branches.

W[t, m] = PEV
t,n+5·randperm

m

[
s1, s2, s3, s4, s5, s6 . . . s32, tie

33, . . . tie
35, tie

36, tie
37

]
(26)

5.2. MST Power Flow Analysis

Charging EV power in Equation (4a) Pev
n,t is summed over branches and evaluated

with the B/F sweep method
P�t = ∑32

n=2 PEV
n,t (27)

and optimized over spanning tree method for reconfiguration as

� (t, E, V)(32,33) = MinSpanTree(t, W, N)(36,33) (28)

Power flow analysis with a new configuration is carried out similar to Sections 3 and 4.
The total Power P�t is evaluated below:

P�
′

t,n+1 = P�
′

t,n+1 + Rn
P�

′
t,n+1

2
+ Q�

′
t,n+1

2

V�
2

n+1,t

(29)

Q�
′

t,n = Q
[
ninj

sel

]
+ Q�

′
t,n+1 + Xn

P�
′2

t,n+1 + Q�
′2

t,n+1

V�
2

t,n+1

(30)
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P�t = ∑32
n=2 P�t,n

and

I�t,n =
conj(P�t,n+j·Q�t,n)

V�t,n
where

V�n=1 = 1 p.u.
V�t,n+1 = V�t,n − I�t,n·(Rn + jXn)

P�,Loss
t,n = I�

2

t,n ·Rn

Q�,Loss
t,n = I�

2

t,n ·jXn

(31)

5.3. MST Objective Function

The GA is used for branch power minimization with the objective function

f�min,t = ∑N
n P�t,n·∑

M
m ∑N

n λt,n,m (32)

The objective function in Equation (32) is evaluated over 24 h at an interval of
∆t = 15 min. The map of tie and sectional switches status over 24 h period is shown in
Figure 9. The Dark boxes are opened and the white boxes represent the closed switches. The
most consistent opened (dark) sectional switches 14, 21, 22, and 28 closest to tie switches,
are where the highest power losses have occurred, as can be seen in Figure 10. The total
power loss P�,Loss

t,n and voltage V�t,n are shown in Figures 6 and 7, respectively. The resulting
total power loss P�,Loss

t and average voltage V�n are shown in Figures 6 and 7, respectively.
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6. Results and Analysis

The large-scale simulation of 16 K EVs shows the lowest power losses and stable
voltage with DFR analysis. The reactive injection power gives the second-best results. The
coordinated analysis shows large peak losses in Figure 6 due to accumulated EV loads
which are eliminated in reactive power injection and also in the DFR technique due to the
selection of tie switches to avoid maximum power branches. The coordinated technique
peak locations are visible in generation requirement and bus load in Figures 11 and 12.
However, the generation and cost of generation are lowest for coordinated technique as
no additional power is utilized for stabilization. Total Power losses and generation cost
comparison is presented in Table 3.
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Table 3. Power Losses and Cost Comparison.

No. EV + Base Load
Analysis Optimization Total Power

Losses KW
Gen. Cost $

(1000)
Min. Voltage

p.u.

1 Coordinated MILP 868 400 0.8

2 Injection Mixed Int.
GA 652 431 0.84

3 DFR MST *—GA 546 429 0.87
* Minimum Span Tree.

7. Conclusions

In conclusion, every technique has its merits and demerits. Coordinated analysis
has the lowest cost but the least voltage stability since no other power compensation is
used. Distributed feeder reconfiguration (DFR) gives better results with low power losses
and greater voltage stability but at a higher cost than the coordinated technique. Reactive
voltage injection has a higher cost due to injection but better voltage stability than the
coordinated technique. The drawback of the injection technique is equipping all nodes
for reactive injection voltage V2G. The advantage of DFR method is that nowadays smart
grids are used with embedded switching control. Changing EV’s user driving pattern
distribution in Equation (1), cost (λ), and local load profile in Figure 4, will help to locate
the installation of EV charging stations where the EV load is highest in the network for
system stability.
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Appendix A

Table A1. IEEE 33 Bus Data.

No. Sn Rc Resistance Reactance

1 1 2 0.0922 0.0470
2 2 3 0.4930 0.2511
3 3 4 0.3660 0.1864
3 3 4 0.3660 0.1864
4 4 5 0.3811 0.1941
4 5 6 0.8190 0.7070
6 6 7 0.1872 0.6188
7 7 8 0.7114 0.2351
8 8 9 1.0300 0.7400
9 9 10 1.0440 0.7400
10 10 11 0.1966 0.0650
11 11 12 0.3744 0.1238
12 12 13 1.4680 1.1550
13 13 14 0.5416 0.7129
14 14 15 0.5910 0.5260
15 15 16 0.7463 0.545
16 16 17 1.289 1.721
17 17 18 0.732 0.574
18 2 19 0.164 0.1565
19 19 20 1.5042 1.3554
20 20 21 0.4095 0.4784
21 21 22 0.7089 0.9373
22 3 23 0.4512 0.3083
23 23 24 0.898 0.7091
24 24 25 0.896 0.7011
25 6 26 0.203 0.1034
26 26 27 0.2842 0.1447
27 27 28 1.059 0.9337
28 28 29 0.8042 0.7006
29 29 30 0.5075 0.2585
30 30 31 0.9744 0.963
31 31 32 0.3105 0.3619
32 32 33 0.341 0.5302
33 8 21 2 2
34 9 15 2 2
35 22 12 2 2
36 18 33 2 2

Table A2. IEEE 33 Bus Voltage Data.

Bus |VL||pu| θ deg|

2 0.997 0.015
3 0.9829 0.097
4 0.9754 0.163
5 0.968 0.23
6 0.9495 0.136
7 0.946 −0.096
8 0.9323 −0.249
9 0.926 −0.324
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Table A2. Cont.

Bus |VL||pu| θ deg|

10 0.9201 −0.388
11 0.9192 −0.38
12 0.9177 −0.368
13 0.9115 −0.462
14 0.9092 −0.542
15 0.9078 −0.58
16 0.9064 −0.604
17 0.9044 −0.683
18 0.9038 −0.693
19 0.9965 0.004
20 0.9929 −0.063
21 0.9922 −0.083
22 0.9916 −0.103
23 0.9793 0.066
24 0.9726 −0.023
25 0.9693 −0.067
26 0.9475 0.175
27 0.945 0.232
28 0.9335 0.315
29 0.9253 0.393
30 0.9218 0.498
31 0.9176 0.413
32 0.9167 0.39
33 0.9164 0.383
34 - -
35 - -
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