
Citation: Zhao, H.; Shu, H.; Huang,

Y.; Yang, J. AIBot: A Novel Botnet

Capable of Performing Distributed

Artificial Intelligence Computing.

Electronics 2022, 11, 3241. https://

doi.org/10.3390/electronics11193241

Academic Editor: Fernando De

la Prieta

Received: 9 September 2022

Accepted: 3 October 2022

Published: 9 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

AIBot: A Novel Botnet Capable of Performing Distributed
Artificial Intelligence Computing
Hao Zhao, Hui Shu *, Yuyao Huang and Ju Yang

State Key Laboratory of Mathematical Engineering and Advanced Computing, Zhengzhou 450000, China
* Correspondence: shuhui123@126.com

Abstract: As an infrastructure platform for launching large-scale cyber attacks, botnets are one of
the biggest threats to cyberspace security today. With the development of network technology and
changes in the network environment, network attack intelligence has become a trend, and botnet
designers are also committed to developing more destructive intelligent botnets. The feasibility of
implementing distributed intelligent computing based on botnet node resources is analyzed with
regard to the aspects of program size, communication traffic and resource occupancy. AIBot, a
botnet model that can perform intelligent computation in a distributed manner, is proposed from the
attacker’s perspective, which hierarchically deploys distributed neural network models in the botnet,
thereby organizing nodes to collaboratively perform intelligent computation tasks. AIBot enables
the distributed execution of intelligent computing tasks on a cluster of bot nodes by decomposing
the computational load of a deep neural network model. A general algorithm for the distributed
deployment of neural networks in AIBot is proposed, and the overall operational framework for AIBot
is given. Two classical neural network models, CNN and RNN, are used as examples to illustrate
specific schemes for deploying and running distributed intelligent computing in AIBot. Experimental
scenarios were constructed to experimentally validate and briefly evaluate the performance of the
two AIBot attack modes, and the overall efficiency of AIBot was evaluated in terms of execution time.
This paper studies new forms of botnet attack techniques from a predictive perspective, aiming to
increase defenders’ understanding of potential botnet threats, in order to propose effective defense
strategies and improve the botnet defense system.

Keywords: cybersecurity; botnet; CNN; RNN; distributed computing

1. Introduction

The frequent occurrence of security incidents in cyberspace, with attacks such as
sensitive information theft, phishing fraud, crypto-ransom threats, spam bombing, malware
distribution and distributed denial of service, has caused widespread concern in academia
and industry. Botnet, the infrastructure platform for launching these large-scale attacks,
is considered one of the biggest security threats in cyberspace today [1]. A botnet is
a general-purpose computing platform that can be remotely controlled by an attacker,
built using many non-cooperative user terminals in the compromised cyberspace and
usually consisting of a botmaster, a command and control (C&C) channel and bots [2].
As the network environment has changed, botnets have gone through different stages of
development, from a single attack in the early days to a wide range of attacks today, and
their scope of influence has expanded from PCs and servers to smart mobile terminals and
IoT devices, with increasingly complex construction techniques, diversified performance
forms, diversified attack methods and gradually increasing damage capabilities, seriously
affecting network security and posing a huge challenge to defenders.

The rapid development of artificial intelligence technologies has had a significant
impact on the current cyberspace security posture. On the one hand, defenders have
achieved good results by using machine learning, deep learning and other big data analysis

Electronics 2022, 11, 3241. https://doi.org/10.3390/electronics11193241 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics11193241
https://doi.org/10.3390/electronics11193241
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://doi.org/10.3390/electronics11193241
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics11193241?type=check_update&version=2

Electronics 2022, 11, 3241 2 of 25

tools for intrusion detection systems, malware classification and abnormal traffic iden-
tification; on the other hand, this also gives attackers the possibility of making network
attacks intelligent, such as through in-depth analysis of collected user data with neural
network models to mine valid information for further attack actions. SNAP_R [3] is the
first known automated, end-to-end spear-phishing campaign generator that uses Twitter
user data to train recurrent neural network models to generate high click-through-rate
phishing tweets and clustering algorithms to identify high-value targets. This type of
cyber-attack mode using deep learning and other artificial intelligence technologies to
achieve automation will become a huge threat to cyberspace security if combined with
botnets and used by a botmaster to launch large-scale intelligent cyber-attack activities.
Therefore, it is very important to study the botnet mechanism and the botnet evolution
law, analyze the feasibility of artificial intelligence technology for botnet attack activities,
predict new botnet forms and attack patterns and improve the existing botnet defense
system in order to improve emergency response capabilities against botnet attack incidents
and guarantee cyberspace security.

1.1. Botnet Evolution

The development and application of network technologies are intended to promote
social progress, and Internet developers are happy to open source the latest technical
achievements for the general technical community to study and discuss. However, due
to the profit motive, there are numerous cases of positive technologies being maliciously
exploited by hackers, which is particularly evident in botnet attack campaigns. For example,
the Mirai botnet has taken advantage of the booming Internet of Things to control vast
numbers of end devices to launch DDoS attacks [4]. This has led to the proliferation of
IoT botnets, which are expanding the size of the network by hacking into end devices
through username and password guessing and firmware vulnerability scanning [5]. The
development and application of Web 2.0 technology have given rise to the popularity of
online media such as social networks but also provided a platform for botmasters to exploit.
Up to 40% of accounts on Facebook, Twitter and other popular online social networks
(OSNs) belong to botnets [6]. Botmasters use online social networks to build command and
control channels for a variety of attack, abuse and control activities, such as spamming and
political activism [7]. In recent years, researchers have continued to track botnet evolution
trends; analyzed the application of anonymous communication techniques, such as Tor, in
botnet command and control mechanisms [8,9]; and proposed corresponding preventive
measures [10]. Innovations in network technology have brought about changes in the
network environment, giving rise to new means for network attacks and the emergence
of new botnets that are more destructive and stealthy. Therefore, botnet prediction has
become one of the main research directions in related fields [11], with the aim of proposing
new possible types of future botnets from the attacker’s perspective and forward-looking
defense methods.

1.2. Motivation and Reason

For botmasters, a shift in the botnet attack paradigm towards intelligence is necessary.
The large amount of data (such as user information, text, images and voice) obtained from
end devices needs to be computationally processed to unlock value. In the field of data
analysis, deep learning algorithms and models are the current mainstream techniques, and
a previous study [12] showed a large improvement in solving similar problems compared
to previous approaches. Sending huge amounts of raw data back to the cloud server for
further centralized intelligent analysis will undoubtedly generate huge amounts of network
traffic, which places greater demands on the building of botnet back channels and also
increases the risk of exposure. If the data can be intelligently computed and processed at
the node side, and only the intermediate or final results after computation are returned,
it will significantly improve the attack efficiency and reduce the scale of communication
traffic. Therefore, running intelligent computational models right at the edge nodes to

Electronics 2022, 11, 3241 3 of 25

compute and process the collected data is likely to be the evolving trend in botnet attack
patterns. This is both a scenario for the application of artificial intelligence technology in
botnet attack activities and also a reflection of the intelligence of botnet attacks.

It makes sense to deploy and run artificial intelligence algorithms, such as deep
learning, in a botnet. Intelligent algorithms based on deep neural networks (DNNs) have
made significant progress in recent years, mainly due to the dramatic increase in hardware
computing power. In botnets, controlled clusters of scaled nodes are very substantial idle
computing resources. The types of nodes in the botnet cover multiple layers of network
devices, most of which have difficulty performing complex intelligent computing tasks
independently. However, the neural network model is capable of distributed deployment
after corresponding modification and decomposition of computational units; i.e., the
computational tasks are performed jointly by multiple nodes. The botmaster can deploy
trained neural network models into the botnet in a distributed manner and organize
relevant nodes to collaborate in performing intelligent computing tasks, thereby completing
attack tasks, such as data classification, prediction and generation; such an attack model is
perfectly feasible in theory.

In summary, how distributed node resources can collaborate to accomplish complex
intelligent computing tasks is the focus of botnet designers, and the key to the problem
lies in studying and proposing distributed deployment strategies and methods for neural
networks that fit with the botnet architecture. In fact, distributed artificial intelligence is a
current research hotspot [13], but such research mainly focuses on parallel training of and
optimization acceleration in neural network models in large-scale distributed environments,
while botnet controllers focus on the distributed deployment of optimized algorithmic
models to various nodes and then collaborative execution of intelligent computational tasks.
To investigate this potential cybersecurity threat, this paper proposes AIBot, a botnet model
that can be distributed to deploy deep neural network algorithms and that hierarchically
deploys distributed neural network models in botnets, which in turn can organize nodes to
collaboratively perform intelligent computing tasks.

1.3. Contributions and Structure

Based on the current cyberspace security situation, this paper analyzes the botnet
evolution law and discusses the rationality and necessity of organizing botnet nodes to
perform intelligent computing tasks in a distributed manner from the attacker’s perspective.
The difficulties in designing this type of botnet in terms of program size, communication
traffic and resource consumption are comprehensively analyzed, possible solution ideas
are discussed and a botnet model (AIBot) that can perform intelligent computing tasks is
proposed on this basis. Unlike traditional botnets that send the collected sensitive data
back to the cloud center for processing, AIBot deploys the neural network model to the end
devices in a distributed manner, analyzing and processing data directly at the bot nodes,
thus making full use of the computing resources of the botnet. A formal representation
of the operation process of AIBot is given, its overall operational framework is given,
the distributed deployment schemes of two neural network models (CNN and RNN) in
the botnet are elaborated and the architecture is presented in a hierarchical manner. An
experimental scenario is constructed to mimic the real network environment, and simple
feasibility verification and performance evaluation of AIBot are conducted. The limitations
of AIBot are analyzed, and potential defense strategies are proposed. Intelligent botnet
attack activities will cause great harm to cyberspace security, and it is necessary to study
their theoretical basis and implementation principles. Therefore, this paper proposes a new
form of botnet attack from a predictive perspective, aiming to increase the understanding
of the new botnet threat by conducting relevant research ahead of the attackers and thus
suggesting effective defenses.

The remainder of this paper is structured as follows: Section 2 presents the research
background and related work. Section 3 analyzes the difficulties of the work in this
paper and the corresponding solution ideas. Section 4 describes the botnet model (AIBot)

Electronics 2022, 11, 3241 4 of 25

proposed in this paper in terms of its formal representation, the distributed deployment
of neural networks and architecture, etc. Section 5 presents experiments and a brief
evaluation of the attack effectiveness and execution efficiency of AIBot. Section 6 discusses
the limitations of AIBot and possible defensive measures. Section 7 provides a summary of
the whole paper.

2. Background and Related Work

In this paper, we study a novel attack model combining a botnet and artificial intel-
ligence techniques. This is a topic with limited directly related research, so we describe
the background and related work in terms of botnet attacks, deep neural networks and
distributed artificial intelligence. As shown in Figure 1, we first classify botnet attacks
according to different attack locations and compare similarities and differences between
the work in this paper and virtual currency mining; then, we introduce two typical deep
neural networks and analyze their applications in network security; finally, we introduce
the concept of distributed computing and the related work on distributed neural networks.

Electronics 2022, 11, 3241 4 of 26

perspective, aiming to increase the understanding of the new botnet threat by conducting
relevant research ahead of the attackers and thus suggesting effective defenses.

The remainder of this paper is structured as follows: Section 2 presents the research
background and related work. Section 3 analyzes the difficulties of the work in this paper
and the corresponding solution ideas. Section 4 describes the botnet model (AIBot) pro-
posed in this paper in terms of its formal representation, the distributed deployment of
neural networks and architecture, etc. Section 5 presents experiments and a brief evalua-
tion of the attack effectiveness and execution efficiency of AIBot. Section 6 discusses the
limitations of AIBot and possible defensive measures. Section 7 provides a summary of
the whole paper.

2. Background and Related Work
In this paper, we study a novel attack model combining a botnet and artificial intel-

ligence techniques. This is a topic with limited directly related research, so we describe
the background and related work in terms of botnet attacks, deep neural networks and
distributed artificial intelligence. As shown in Figure 1, we first classify botnet attacks
according to different attack locations and compare similarities and differences between
the work in this paper and virtual currency mining; then, we introduce two typical deep
neural networks and analyze their applications in network security; finally, we introduce
the concept of distributed computing and the related work on distributed neural net-
works.

Figure 1. Background and related work.

2.1. Botnet Attack
The main purpose of an attacker when building and controlling a botnet is to control

a large number of nodes to launch cyber-attack activities for financial or political gain.
The types of attacks are classified from the perspective of the location of the attack: (i)
external attacks: distributed denial of service attacks (DDoS), click fraud [14], phishing,
spamming [15], scanning probes, etc.; and (ii) internal attacks: information harvesting,
virtual currency mining [16], crypto-extortion [17], etc. In the former case, the attack
targets are located outside the botnet, while in the latter case, the attack activity is carried
out inside the botnet. Virtual currency mining refers to the control of a large number of
bot node resources for “mining” in return for virtual cryptocurrency. This attack has
similarities to this paper’s research in that it exploits the computational resources of
nodes that are idle for long periods to perform complex computing tasks. The difference
is that “mining” has a mature “pool-miner” mechanism that can be directly transplanted
to botnets, while there is no solution for deploying distributed neural network models in
botnets. As cyber-attack awareness and defensive capabilities increase, traditional botnet
attack campaigns are developing more mature defensive and mitigation strategies, so

Botnet Attack Attack Position

Virtual Cryptocurrency Mining

Deep Neural
Network

Distributed Artificial
Intelligence

Cyber Security

Design Principles and Operating
Characteristics of Botnet

This Work

Positive Use

Malicious Use

Distributed
Computing

Distributed
Neural Network

CNN

RNN

External Attack

Insider Attack

Figure 1. Background and related work.

2.1. Botnet Attack

The main purpose of an attacker when building and controlling a botnet is to control a
large number of nodes to launch cyber-attack activities for financial or political gain. The
types of attacks are classified from the perspective of the location of the attack: (i) external
attacks: distributed denial of service attacks (DDoS), click fraud [14], phishing, spam-
ming [15], scanning probes, etc.; and (ii) internal attacks: information harvesting, virtual
currency mining [16], crypto-extortion [17], etc. In the former case, the attack targets are
located outside the botnet, while in the latter case, the attack activity is carried out inside
the botnet. Virtual currency mining refers to the control of a large number of bot node
resources for “mining” in return for virtual cryptocurrency. This attack has similarities to
this paper’s research in that it exploits the computational resources of nodes that are idle
for long periods to perform complex computing tasks. The difference is that “mining” has
a mature “pool-miner” mechanism that can be directly transplanted to botnets, while there
is no solution for deploying distributed neural network models in botnets. As cyber-attack
awareness and defensive capabilities increase, traditional botnet attack campaigns are
developing more mature defensive and mitigation strategies, so expanding internal attack
methods is likely to be one of the evolving directions for botnets. However, the existing
literature mainly focuses on the construction level of botnets and less on the evolution of
botnet attack behavior.

Electronics 2022, 11, 3241 5 of 25

2.2. Deep Neural Network

In recent years, artificial intelligence technology, as represented by deep learning,
has seen rapid developments, and it is a hotspot for current research. Deep learning is
mainly implemented based on deep neural networks, and the representative algorithms
are convolutional neural networks (CNNs) and recurrent neural networks (RNNs). A CNN
is a class of feedforward neural network (FNN) with convolutional computation and a
deep structure; these networks have representation learning capabilities and are capable of
shift-invariant classification of input information according to their hierarchical structure.
Recurrent neural networks (RNNs) take sequential data as input and utilize recursion in
the direction of sequence evolution with all nodes (recurrent units) connected in a chain,
and long short-term memory networks (LSTMs) are the most widely used among them.

Deep learning algorithms are mainly used to solve problems such as image classifi-
cation, speech recognition and natural language processing, and their performance has
been greatly improved compared to traditional machine learning algorithms. Researchers
have thus been inspired to apply deep neural network models to the field of cybersecurity,
achieving good results in network traffic classification, malicious domain name detection
and attack identification [18]. In the field of botnet countermeasures, existing research
related to deep learning has focused on botnet detection and identification [19]. There are
no publicly available cases of botnet developers applying intelligent computing models,
such as deep neural networks, in their attack campaigns.

2.3. Distributed Artificial Intelligence

With the growth of the Internet, some applications have developed high requirements
for computing power, which are time-consuming if traditional centralized computing is
used. Distributed computing is used to solve exactly this type of complex problem by
breaking down the computational task into many smaller parts and distributing them to
multiple computers for processing. Compared with centralized computing, distributed
computing can reduce overall computing time and greatly improve computing efficiency.
As the network environment has changed, concepts such as fog computing [20] and edge
computing [21] have been introduced. What these computing patterns have in common
is the full utilization of the computing resources of the end device. A cluster of nodes
controlled by a botnet can be seen as a distributed computing platform used to perform
attack tasks, and this distributed architecture fits in with distributed computing systems.
Therefore, the research in this paper also belongs to the category of distributed computing
to some extent, but there are special features of botnet-based distributed AI computing that
cannot be directly applied to the above-mentioned computing pattern.

There are currently two imperfect solutions for machine learning systems on end
devices: (i) one is to aggregate data collected by edge nodes to the cloud for computation;
(ii) the other is to execute simple machine learning models (e.g., SVM) independently on end
devices. The former results in significant communication costs, while the latter is lacking in
performance. With the exponential growth of training data and computation, distributed
AI was born, with the main purpose of spreading the work of machine learning across
multiple devices and transforming a centralized system into a distributed one. Current
research in distributed AI focuses on the efficient parallelization of the training process and
the establishment of consistent models, with the main aim of rationally distributing training
data and accelerating the training process [22], which is not the same as the purpose of this
paper. In terms of distributed computing of neural network models, Teerapittayanon [23]
et al. proposed BranchNet, a neural network model with multiple exit points based on the
idea that a shallow convolutional neural network would be able to correctly classify most
of the samples, and designed a distributed neural network DDNN [24] on this basis. The
above work has some reference value, but the research in this paper focuses on new attack
modes of botnets and explores the distributed deployment and application of different
types of neural network models in botnets under multiple scenarios, and it needs to

Electronics 2022, 11, 3241 6 of 25

be considered in conjunction with the design principles and operational characteristics
of botnets.

3. Difficulties and Solutions
3.1. Difficulties

The following is an analysis of the difficulties in designing this type of botnet from the
perspective of botnet developers in terms of bot program size, communication interaction
traffic and node resource consumption:

• Bot program size: In order for a device to run the corresponding intelligent learning
model, a bot program needs to be loaded with the structure and parameters of the
computational model, and neural networks often have thousands or even tens of
thousands of parameters. Therefore, the size of this type of bot program is positively
correlated with the number of parameters contained in the model and is significantly
larger than that of traditional bot programs;

• Communication interaction traffic: Due to the large scale of the numbers of neural
network parameters, the downloading of the files may generate extensive communica-
tion traffic. On the other hand, although multiple nodes working together to complete
the computation process can take advantage of the number of nodes in the botnet, this
also generates additional communication traffic for collaborative interactions between
nodes as a result;

• Node resource consumption: When a botnet utilizes distributed node resources to
collaboratively perform intelligent computing tasks, the CPU needs to perform a large
number of parallel computations in a short time, and the computational resources of
the nodes will be in a high occupancy state. Although most of the controlled nodes
are in an unattended state, the long-term high occupancy rate still increases the risk of
botnet exposure.

3.2. Solutions

Based on the analysis in the previous section, we argue that attackers should consider
both the commonality of botnets, in terms of detection resistance and stealth, and the
specificity of combining distributed deployment and intelligent computational models
when building botnets that can perform AI computational tasks. As shown in Figure 2,
the following potential solutions are proposed from the attacker’s perspective for the
difficulties that may be faced in building this type of botnet.

Electronics 2022, 11, 3241 7 of 26

Figure 2. Idea analysis.

• Simplify model: In order to accommodate the characteristics of the botnet, the al-
gorithmic model needs to be simplified. In fact, the performance of a fully trained
shallow neural network model is basically able to meet the requirements when
processing the task. The reason for increasing the number of neural network layers
is to further improve the performance of the model, but at the cost of an exponential
increase in the number of parameters. Considering the balance between program
size and model performance, organizing nodes to run a simpler neural network
collaboratively is a feasible solution. For CNNs, the number of model layers is scaled
down to reduce the number of parameters while ensuring usability; for RNNs, the
number of parameters in the recurrent units can be scaled down by setting the vec-
tors to a lower dimensionality.

• Reduce traffic: Reducing the traffic interactions between nodes due to the compu-
tation process is an important part of making a botnet run intelligent algorithms. In
order to reduce the large number of data interactions for intermediate results in the
computation process, when allocating computation tasks, one can try to let a single
node run the complete computation unit, complete the process of intermediate re-
sults inside the node and only output the final result of the computation unit exter-
nally. For the communication generated by the loaded model, the download traffic
is reduced by the “simplify model” approach described above. For the input
sources, the input data (e.g., images, corpus, etc.) are obtained locally at the node;
i.e., the data collection and processing process is completed locally at the node.

• Decompose computation: The following methods can be used to decompose the
computation quantity. First, the computation quantity of each node can be allocated
according to the device performance—i.e., the hardware performance of the node
can be determined by means of node sensing and detection, etc.—and the number of
computation units in the node can be allocated according to a certain proportional
coefficient so as to control the computation resource occupation rate of the node.
Second, when the bot program executes the computation task, a waiting time can be
added to the computation process (i.e., a time interval is inserted between the
computation steps), and the duration of resource occupation can be actively reduced
by means of intermittent execution.

Figure 2. Idea analysis.

Electronics 2022, 11, 3241 7 of 25

• Simplify model: In order to accommodate the characteristics of the botnet, the al-
gorithmic model needs to be simplified. In fact, the performance of a fully trained
shallow neural network model is basically able to meet the requirements when pro-
cessing the task. The reason for increasing the number of neural network layers is
to further improve the performance of the model, but at the cost of an exponential
increase in the number of parameters. Considering the balance between program size
and model performance, organizing nodes to run a simpler neural network collabora-
tively is a feasible solution. For CNNs, the number of model layers is scaled down to
reduce the number of parameters while ensuring usability; for RNNs, the number of
parameters in the recurrent units can be scaled down by setting the vectors to a lower
dimensionality.

• Reduce traffic: Reducing the traffic interactions between nodes due to the computa-
tion process is an important part of making a botnet run intelligent algorithms. In
order to reduce the large number of data interactions for intermediate results in the
computation process, when allocating computation tasks, one can try to let a single
node run the complete computation unit, complete the process of intermediate results
inside the node and only output the final result of the computation unit externally. For
the communication generated by the loaded model, the download traffic is reduced
by the “simplify model” approach described above. For the input sources, the input
data (e.g., images, corpus, etc.) are obtained locally at the node; i.e., the data collection
and processing process is completed locally at the node.

• Decompose computation: The following methods can be used to decompose the
computation quantity. First, the computation quantity of each node can be allocated
according to the device performance—i.e., the hardware performance of the node
can be determined by means of node sensing and detection, etc.—and the number of
computation units in the node can be allocated according to a certain proportional
coefficient so as to control the computation resource occupation rate of the node.
Second, when the bot program executes the computation task, a waiting time can
be added to the computation process (i.e., a time interval is inserted between the
computation steps), and the duration of resource occupation can be actively reduced
by means of intermittent execution.

4. Proposed Botnet Model
4.1. Formal Representation

The formal representation of the proposed botnet model that can run artificial intelli-
gence algorithms is given below, and the composition of the botnet can be represented by
Equation (1):

AIBot = {Master, C&C, ZOMBIE} (1)

Master is the botnet controller, and C&C represents the command and control chan-
nel of the botnet. ZOMBIE represents the set of bot nodes, which can be expressed by
Equation (2), where n represents the size of the botnet:

ZOMBIE = {zombiei| i = 1, 2, . . . n} (2)

Each bot node zombie can be seen as consisting of a bot and host together, state denotes
the state of the node and data denotes the data collected by the current node (i.e., the input
to the intelligent computation model), which can be expressed as Equation (3):

zombiei = (boti, hosti, datai, statei) (3)

If we denote the AI model deployed and run in the botnet as Model, then Model can be
divided into multiple computational units, denoted as the sub-model model, and m denotes
the number of units that can be divided, as in Equation (4):

Model = {modeli| i = 1, 2, . . . m} (4)

Electronics 2022, 11, 3241 8 of 25

In AIBot, each node is assigned the corresponding computational task according
to its computational performance, and the computational quantity is denoted by C. The
quantitative performance index of the bot host is denoted by P. Then, the relationship
between the computational unit model loaded in the bot program and Model can be roughly
expressed with Equation (5), where r is the proportionality constant:

C
(
modelboti

)
= P(hosti) ∗ C(Model) ∗ r (5)

The intelligent computational process in AIBot can be expressed with Equation (6),
where the output of each computational unit is noted as output:(

datai → boti → modelboti

)
⇒ outputi (6)

The final result (denoted as Result) is obtained by integrating the outputs of the com-
putational units of each node, and the corresponding computational strategy is adopted
according to the type of neural network: for a CNN, the confidence level of the current
output is first judged, and if it is higher than the set value, it is directly used as Result,
and if it is lower than the set value, it is submitted to the upper layer network for further
processing. For an RNN, each output is part of the final result, so the output is directly
spliced to get the Result. Equation (7) gives a simple formal representation of the above
process, and the specific details are discussed in Section 4.3:

ModelBotnet ⇒ Result =

{

directly output, if confident
further calculations, if not confident

, (CNN)

output1 + output2 + output3 + · · · , (RNN)
(7)

4.2. Framework of AIBot

Before presenting the overall operational framework of AIBot, definitions and descrip-
tions of the important processes in it are given.

Definition 1 (neural network decomposition). The neural network model is decomposed using
a single layer neural network that can be executed independently as a computational unit and,
thus, deployed in a distributed manner. The formal division of the neural network model is given
in Equation (4) in Section 4.1, and the specific decomposition strategy is specified here. The deep
neural network model can be regarded as composed of the serialized connections of each single-layer
neural network. The original model is denoted as Model, the sub-model is denoted as model, and
each layer network can be represented as l1. Taking the division into three sub-models as an example,
each sub-model contains several network layers, and the decomposition of the neural network model
can be further expressed as Equation (8):

Model ⇔

model1
↓

model2
↓

model3

(l1)
↓

(l2 → l3)
↓

(l4 → l5 → l6)

 (8)

Definition 2 (node state identification). Based on the node’s hardware performance H (h1,
h2, . . .), system configuration S (s1, s2, . . .) and network environment N (n1, n2, . . .), the state
of the node is identified comprehensively so as to determine the role positioning of the node and
the quantity of computation undertaken by the node in the subsequent attack tasks. Equation (9)
gives the quantitative calculation method for node state identification, where α, β, and χ denote the
weighting parameters of each influencing factor, respectively. AIBot gets the node state at the node
side and feeds it to the server.

Electronics 2022, 11, 3241 9 of 25

state(n) = αH + βS + χN = ∑
i

αihi + ∑
i

βisi + ∑
i

χini (9)

Definition 3 (adaptive network structure). The organization of multiple nodes for intelligent
computing requires the support of different network structures, such as “parallel” and “tandem”
structures. Denoting the node as n, the connection relationship between any two points can be
expressed as Equation (10), then the different network structures can be expressed as Equations
(11) and (12), A and B represent the multi-node “parallel” and “tandem”, respectively. AIBot
achieves adaptive transformation of the network structure by changing the connection relationship
between nodes.

link
(
ni, nj

)
=

{
1, connected
0, unconnected

, i 6= j (10)

networkA =
{[

link
(
ni, nj

)
= 1, j = m

]
∪
[
link

(
ni, nj

)
= 0, j 6= m

]}
(11)

networkB =
{[

link
(
ni, nj

)
= 1, j = i + 1

]
∪
[
link

(
ni, nj

)
= 0, j 6= i + 1

]}
(12)

Combining the definitions and descriptions of the main processes described above,
Algorithm 1 gives the algorithm for distributed deployment of neural networks in AIBot:

Algorithm 1 Distributed deployment of neural networks in AIBot

Input: node set ZOMBIE, neural network model Model, initial network structure network
Output: AIBot that can perform intelligent computation in a distributed manner

1. n← Size(ZOMBIE); // Get the scale of zombie nodes
2. Recognition(ZOMBIE); // Node state identification
3. FOR i = 1→ n DO // Sorting by node state value
4. FOR j = 1→ n DO
5. IF (zombie[j].state > zombie[j + 1].state) THEN
6. swap(zombie[j], zombie[j + 1]);
7. END IF
8. END FOR
9. END FOR
10. {model [1→ n]}← Decompose(Model.layer, n) // Neural network decomposition
11. FOR i = 1→ n DO // Sorting by sub-model computation
12. FOR j = 1→ n DO
13. IF (C(model[j] > C(model[j + 1])) THEN
14. swap(model[j], model[j + 1]);
15. END IF
16. END FOR
17. END FOR
18. FOR i = 1→ n DO
19. Mapping(zombie[i], model[i]); // Deploy sub-models to the corresponding zombie
20. END FOR
21. network’← Reorganize(Model.type, network); // Adaptive network structure

Figure 3 illustrates the overall operation of AIBot, and the steps are as follows:

I. The botmaster controls a large number of network devices as node resources for
performing large-scale distributed computing;

II. The nodes are classified by obtaining various attributes through the Node state
identification mechanism;

III. The botmaster launches the attack campaign and determines the type of neural
network to be run based on the type of task;

IV. Neural network models are decomposed into distributable deployable form by applying
neural network decomposition mechanisms according to the type of neural network;

V. The adaptive network structure mechanism is used to transform the interconnection
relationship between nodes according to the neural network type;

Electronics 2022, 11, 3241 10 of 25

VI. The distributed deployment of neural networks in the botnets is completed based on
steps II and IV;

VII. Distributed intelligent computing tasks based on neural network models are per-
formed on the basis of steps V and VI.

Electronics 2022, 11, 3241 11 of 26

Figure 3. AIBot operational framework.

4.3. Two Implementations of AIBot
The AIBot botnet can theoretically meet the execution requirements of multiple in-

telligent computational models through automated computational quantity allocation
and adaptive transformation of network structure. Although AIBot is a generalized
model, there are still some implementation-level differences in performing different
types of neural network computations. In this paper, we take a CNN and an RNN as
examples to study the distributed deployment and operation of neural network models
in AIBot. For convenience, the two bot models are abbreviated as C-AIBot and R-AIBot
below, denoting the deployment and application of a CNN and an RNN in AIBot, re-
spectively.

4.3.1. C-AIBot
It has been found that the convolutional neural network VGGNet (19 layers) was

only about 4% more accurate (from 89% to 93%) than AlexNet (8 layers) when perform-
ing feed-forward inference calculations under the same conditions but with a 20-fold in-
crease in running time and power consumption [25]. This disproportionate increase be-
tween resource usage and prediction accuracy is also evident for ResNet (152 layers); i.e.,
increasing the number of layers of the neural network up to a certain level results in a
very small improvement in accuracy, which is not proportional to the operating cost. The
above observations show that shallow neural networks already perform quite well in
handling classification tasks, and the gap with deep neural networks is not too large.
Based on the above facts, the central idea of designing a distributed deployment model of
CNN in AIBot is to map the convolutional neural network hierarchically to the physical
nodes of the botnet and to build a hierarchical distributed computing network according
to the device type and performance configuration of the nodes, so as to achieve the pur-
pose of performing artificial intelligence computing tasks.

In order to adapt the architecture for distributed deployment, the structure of the
convolutional neural network needs to be adjusted and optimized first. The structure of a
convolutional neural network can be viewed as a linear sequence of multiple convolu-
tional layers and fully connected layers. Given that the shallow network can also obtain
good inference results in most cases, multiple branches are considered to be added to the
original structure of the neural network, and the computational results of the early stages

Figure 3. AIBot operational framework.

4.3. Two Implementations of AIBot

The AIBot botnet can theoretically meet the execution requirements of multiple intel-
ligent computational models through automated computational quantity allocation and
adaptive transformation of network structure. Although AIBot is a generalized model,
there are still some implementation-level differences in performing different types of neural
network computations. In this paper, we take a CNN and an RNN as examples to study
the distributed deployment and operation of neural network models in AIBot. For conve-
nience, the two bot models are abbreviated as C-AIBot and R-AIBot below, denoting the
deployment and application of a CNN and an RNN in AIBot, respectively.

4.3.1. C-AIBot

It has been found that the convolutional neural network VGGNet (19 layers) was
only about 4% more accurate (from 89% to 93%) than AlexNet (8 layers) when performing
feed-forward inference calculations under the same conditions but with a 20-fold increase
in running time and power consumption [25]. This disproportionate increase between
resource usage and prediction accuracy is also evident for ResNet (152 layers); i.e., in-
creasing the number of layers of the neural network up to a certain level results in a very
small improvement in accuracy, which is not proportional to the operating cost. The above
observations show that shallow neural networks already perform quite well in handling
classification tasks, and the gap with deep neural networks is not too large. Based on
the above facts, the central idea of designing a distributed deployment model of CNN
in AIBot is to map the convolutional neural network hierarchically to the physical nodes
of the botnet and to build a hierarchical distributed computing network according to the
device type and performance configuration of the nodes, so as to achieve the purpose of
performing artificial intelligence computing tasks.

In order to adapt the architecture for distributed deployment, the structure of the
convolutional neural network needs to be adjusted and optimized first. The structure of a

Electronics 2022, 11, 3241 11 of 25

convolutional neural network can be viewed as a linear sequence of multiple convolutional
layers and fully connected layers. Given that the shallow network can also obtain good
inference results in most cases, multiple branches are considered to be added to the original
structure of the neural network, and the computational results of the early stages are used
as the outputs of the corresponding branches. Specifically, the structure of the convolutional
neural network is modified as follows: the shallow part of the neural network is reused to
derive multiple branches of the neural network, thus adapting to bot nodes with varying
hardware performance. As shown in Figure 4 (which simplifies the neural network layers
except the convolutional layer), three branches are added to the original neural network and
the outputs are expanded from one to four, forming four neural network models (branches
1~4) with increasing computational power, which can be deployed on four terminal nodes
with low to high performance, respectively.

Con f idence(y) = ∑
l∈L

yl log yl (13)

Electronics 2022, 11, 3241 12 of 26

are used as the outputs of the corresponding branches. Specifically, the structure of the
convolutional neural network is modified as follows: the shallow part of the neural net-
work is reused to derive multiple branches of the neural network, thus adapting to bot
nodes with varying hardware performance. As shown in Figure 4 (which simplifies the
neural network layers except the convolutional layer), three branches are added to the
original neural network and the outputs are expanded from one to four, forming four
neural network models (branches 1~4) with increasing computational power, which can
be deployed on four terminal nodes with low to high performance, respectively.

() log l l
l L

Confidence y y y
∈

= (13)

Shallow neural networks are usually less accurate in prediction than deeper ones,
and the output of early branches is not always reliable. Therefore, this paper introduces
the confidence index (denoted as Confidence) to measure the credibility of the output,
using SoftMax as the regression function and borrowing the calculation method for the
loss function to give the definition of Confidence, as in Equation (13) where y denotes the
probability vector of all possible labels after SoftMax calculation and L is the set of all
labels. To determine the confidence level of the results, the corresponding Confidence of
each output is calculated and compared with the threshold Th obtained by prior training:
if the classification result is credible, the neural network is withdrawn from the compu-
tation in that branch; if the classification result is not credible, it is submitted to the upper
neural network layer to continue the computation.

Figure 4. CNN with branches.

The distributed deployment scheme of the CNN in AIBot after completing the ad-
aptation modification is given below. The distributed nodes are first hierarchically di-
vided into edge nodes, intermediate nodes and cloud nodes according to the device
properties, and then the trained neural network models are mapped to the corresponding
physical devices. From the edge to the cloud, the computing capability of the device is
sequentially enhanced to support deeper neural network operations. As shown in Figure
5, nodes at different levels divide the network into three layers, with the output of the
neural network existing at each layer, and the confidence level of the classification result
is judged to determine whether to submit the upper layer of the network for further op-
erations.

Convolution Layer

Convolution Layer

Convolution Layer

Convolution Layer

Convolution Layer

Full Connection Layer

Output4

Output1

Output2

Output3

……

……

……

……

branch4
branch3
branch2
branch1

Figure 4. CNN with branches.

Shallow neural networks are usually less accurate in prediction than deeper ones,
and the output of early branches is not always reliable. Therefore, this paper introduces
the confidence index (denoted as Confidence) to measure the credibility of the output,
using SoftMax as the regression function and borrowing the calculation method for the
loss function to give the definition of Confidence, as in Equation (13) where y denotes the
probability vector of all possible labels after SoftMax calculation and L is the set of all
labels. To determine the confidence level of the results, the corresponding Confidence of
each output is calculated and compared with the threshold Th obtained by prior training: if
the classification result is credible, the neural network is withdrawn from the computation
in that branch; if the classification result is not credible, it is submitted to the upper neural
network layer to continue the computation.

The distributed deployment scheme of the CNN in AIBot after completing the adapta-
tion modification is given below. The distributed nodes are first hierarchically divided into
edge nodes, intermediate nodes and cloud nodes according to the device properties, and
then the trained neural network models are mapped to the corresponding physical devices.
From the edge to the cloud, the computing capability of the device is sequentially enhanced

Electronics 2022, 11, 3241 12 of 25

to support deeper neural network operations. As shown in Figure 5, nodes at different
levels divide the network into three layers, with the output of the neural network existing
at each layer, and the confidence level of the classification result is judged to determine
whether to submit the upper layer of the network for further operations.

Electronics 2022, 11, 3241 13 of 26

Figure 5. Distributed deployment of CNN in AIBot.

4.3.2. R-AIBot
An RNN takes sequence data as input and recurses in the direction of sequence

evolution, and all recurrent units are connected in a chain-like manner. LSTM [26], as a
type of recurrent neural network, solves the long-term dependency problem in general
RNN networks through a conveyor belt mechanism and performs well in natural lan-
guage processing problems, such as text generation. As shown in Figure 6, a recurrent
neural network can be regarded as a chain computational network with each identical
computational unit cyclically connected in series, and the output of the previous com-
putational unit serves as the input of the next computational unit. In this paper, the re-
petitive computation units in RNN are represented as cells, and the parameters in the
cells are uniquely determined after the neural network has completed being trained.
Another major feature of RNN is sequential input and output: the first n − 1 data points
are sequentially serialized input and, after performing forward computation, the nth data
point is inferred from the output result. The above analysis shows that an RNN cannot
perform distributed parallel computation in the traditional sense but, based on the char-
acteristics of its recurrent computation structure, it can distribute the overall computation
quantity to multiple nodes and reduce the computation quantities of individual nodes,
thus adapting to the needs of botnets.

Figure 6. Chain structure of an RNN.

For distributed deployment of RNNs, the central idea is to distribute the computa-
tion according to the performance of the nodes; i.e., high-performance nodes take up
more cycles of computation and low-performance nodes take up fewer cycles of compu-

Conv

Conv

Conv

Conv

Conv

Conv

Conv

Conv

Conv

Conv

Conv

Conv

Conv

Conv

Confidence？

Confidence？

Conv

Conv

Conv

Edge Output

Middle Output

Cloud Output

…… …… ……

…… Edge layer

Middle layer

Cloud layer

RNN-Cell

X0

h0

RNN-Cell

X1

h1

RNN-Cell

X2

h2

RNN-Cell

Xt

ht

RNN-Cell

Xt

ht

…

Figure 5. Distributed deployment of CNN in AIBot.

4.3.2. R-AIBot

An RNN takes sequence data as input and recurses in the direction of sequence evo-
lution, and all recurrent units are connected in a chain-like manner. LSTM [26], as a type
of recurrent neural network, solves the long-term dependency problem in general RNN
networks through a conveyor belt mechanism and performs well in natural language pro-
cessing problems, such as text generation. As shown in Figure 6, a recurrent neural network
can be regarded as a chain computational network with each identical computational unit
cyclically connected in series, and the output of the previous computational unit serves as
the input of the next computational unit. In this paper, the repetitive computation units
in RNN are represented as cells, and the parameters in the cells are uniquely determined
after the neural network has completed being trained. Another major feature of RNN is
sequential input and output: the first n − 1 data points are sequentially serialized input
and, after performing forward computation, the nth data point is inferred from the output
result. The above analysis shows that an RNN cannot perform distributed parallel compu-
tation in the traditional sense but, based on the characteristics of its recurrent computation
structure, it can distribute the overall computation quantity to multiple nodes and reduce
the computation quantities of individual nodes, thus adapting to the needs of botnets.

Electronics 2022, 11, 3241 13 of 25

Electronics 2022, 11, 3241 13 of 26

Figure 5. Distributed deployment of CNN in AIBot.

4.3.2. R-AIBot
An RNN takes sequence data as input and recurses in the direction of sequence

evolution, and all recurrent units are connected in a chain-like manner. LSTM [26], as a
type of recurrent neural network, solves the long-term dependency problem in general
RNN networks through a conveyor belt mechanism and performs well in natural lan-
guage processing problems, such as text generation. As shown in Figure 6, a recurrent
neural network can be regarded as a chain computational network with each identical
computational unit cyclically connected in series, and the output of the previous com-
putational unit serves as the input of the next computational unit. In this paper, the re-
petitive computation units in RNN are represented as cells, and the parameters in the
cells are uniquely determined after the neural network has completed being trained.
Another major feature of RNN is sequential input and output: the first n − 1 data points
are sequentially serialized input and, after performing forward computation, the nth data
point is inferred from the output result. The above analysis shows that an RNN cannot
perform distributed parallel computation in the traditional sense but, based on the char-
acteristics of its recurrent computation structure, it can distribute the overall computation
quantity to multiple nodes and reduce the computation quantities of individual nodes,
thus adapting to the needs of botnets.

Figure 6. Chain structure of an RNN.

For distributed deployment of RNNs, the central idea is to distribute the computa-
tion according to the performance of the nodes; i.e., high-performance nodes take up
more cycles of computation and low-performance nodes take up fewer cycles of compu-

Conv

Conv

Conv

Conv

Conv

Conv

Conv

Conv

Conv

Conv

Conv

Conv

Conv

Conv

Confidence？

Confidence？

Conv

Conv

Conv

Edge Output

Middle Output

Cloud Output

…… …… ……

…… Edge layer

Middle layer

Cloud layer

RNN-Cell

X0

h0

RNN-Cell

X1

h1

RNN-Cell

X2

h2

RNN-Cell

Xt

ht

RNN-Cell

Xt

ht

…

Figure 6. Chain structure of an RNN.

For distributed deployment of RNNs, the central idea is to distribute the computation
according to the performance of the nodes; i.e., high-performance nodes take up more
cycles of computation and low-performance nodes take up fewer cycles of computation.
Figure 7 illustrates the distributed deployment scheme of an RNN with three nodes as an
example: the nodes are written as i, j and k in order, and the operations are performed from
node i, nodes j and k perform subsequent operations in turn and each node performs mi, mj
and mk cycles of computation respectively; the node performance is written as P. Then, the
relationship between the node performance and the quantity of computation (in terms of
the number of cycles) satisfies Equation (14):

P(i)
mi

=
P(j)
mj

=
P(k)
mk

(14)

Electronics 2022, 11, 3241 14 of 26

tation. Figure 7 illustrates the distributed deployment scheme of an RNN with three
nodes as an example: the nodes are written as i, j and k in order, and the operations are
performed from node i, nodes j and k perform subsequent operations in turn and each
node performs mi, mj and mk cycles of computation respectively; the node performance is
written as P. Then, the relationship between the node performance and the quantity of
computation (in terms of the number of cycles) satisfies Equation (14):

() () ()
i j k

P i P j P k
m m m

= = (14)

Compared with CNNs, the decomposition and deployment of tRNN neural net-
works are more concise. However, the special serialized input and one-by-one generated
output of RNNs need to be discussed and analyzed in the context of the distributed en-
vironment characteristics of botnets. When a trained RNN model performs computa-
tional tasks such as text generation, it needs an initial input, called the seed. The seed in
AIBot is obtained locally at the node, and this approach is taken based on two main con-
siderations: firstly, the seed text is obtained from the node where the target user is lo-
cated, so that the generated text is more targeted; secondly, the computation task is
started locally, which is in line with the principle of reducing the communication traffic
between nodes. As shown in Figure 8, the controller in the cloud selects the target node
and sends an attack command; node 1 receives the command, obtains the seed text locally
and performs intelligent computation to generate output1; then, nodes 2, 3 and 4 generate
output2, output3 and output4 according to the input data sent by the previous node in
turn; finally, the generated complete text is returned to the controller. Each node deter-
mines the quantity of computation to be undertaken based on its own computational
performance and, therefore, the length of the generated outputs varies.

Figure 7. Distributed deployment of an RNN in AIBot.

Figure 8. Task execution process.

Cell ×mi

Cell ×mj

Cell ×mk

seed ouput1

seed ouput1 ouput2

ouput3seed ouput1 ouput2

output3seed ouput1 ouput2 output4

node1

node2

node3

node4

Controller

Figure 7. Distributed deployment of an RNN in AIBot.

Compared with CNNs, the decomposition and deployment of tRNN neural networks
are more concise. However, the special serialized input and one-by-one generated output
of RNNs need to be discussed and analyzed in the context of the distributed environment
characteristics of botnets. When a trained RNN model performs computational tasks such
as text generation, it needs an initial input, called the seed. The seed in AIBot is obtained
locally at the node, and this approach is taken based on two main considerations: firstly, the
seed text is obtained from the node where the target user is located, so that the generated
text is more targeted; secondly, the computation task is started locally, which is in line with
the principle of reducing the communication traffic between nodes. As shown in Figure 8,
the controller in the cloud selects the target node and sends an attack command; node 1
receives the command, obtains the seed text locally and performs intelligent computation
to generate output1; then, nodes 2, 3 and 4 generate output2, output3 and output4 according
to the input data sent by the previous node in turn; finally, the generated complete text
is returned to the controller. Each node determines the quantity of computation to be
undertaken based on its own computational performance and, therefore, the length of the
generated outputs varies.

Electronics 2022, 11, 3241 14 of 25

Electronics 2022, 11, 3241 14 of 26

tation. Figure 7 illustrates the distributed deployment scheme of an RNN with three
nodes as an example: the nodes are written as i, j and k in order, and the operations are
performed from node i, nodes j and k perform subsequent operations in turn and each
node performs mi, mj and mk cycles of computation respectively; the node performance is
written as P. Then, the relationship between the node performance and the quantity of
computation (in terms of the number of cycles) satisfies Equation (14):

() () ()
i j k

P i P j P k
m m m

= = (14)

Compared with CNNs, the decomposition and deployment of tRNN neural net-
works are more concise. However, the special serialized input and one-by-one generated
output of RNNs need to be discussed and analyzed in the context of the distributed en-
vironment characteristics of botnets. When a trained RNN model performs computa-
tional tasks such as text generation, it needs an initial input, called the seed. The seed in
AIBot is obtained locally at the node, and this approach is taken based on two main con-
siderations: firstly, the seed text is obtained from the node where the target user is lo-
cated, so that the generated text is more targeted; secondly, the computation task is
started locally, which is in line with the principle of reducing the communication traffic
between nodes. As shown in Figure 8, the controller in the cloud selects the target node
and sends an attack command; node 1 receives the command, obtains the seed text locally
and performs intelligent computation to generate output1; then, nodes 2, 3 and 4 generate
output2, output3 and output4 according to the input data sent by the previous node in
turn; finally, the generated complete text is returned to the controller. Each node deter-
mines the quantity of computation to be undertaken based on its own computational
performance and, therefore, the length of the generated outputs varies.

Figure 7. Distributed deployment of an RNN in AIBot.

Figure 8. Task execution process.

Cell ×mi

Cell ×mj

Cell ×mk

seed ouput1

seed ouput1 ouput2

ouput3seed ouput1 ouput2

output3seed ouput1 ouput2 output4

node1

node2

node3

node4

Controller

Figure 8. Task execution process.

4.3.3. Bot Design

Combining the above analyses, Algorithm 2 gives the overall design of the bot program
in AIBot. AIBot in both modes is identical in terms of the overall operation flow but differs
in the specific execution level due to the different types of neural network models.

Algorithm 2 AIBot-bot

1. n_state← Identify(); // Get node state information
2. Send(n_state, Server) // Return node state to Server
3. WHILE(TRUE) DO
4. cmd← Listen(); // Listen for incoming attack commands
5. IF(cmd.type = C) THEN // Prepare to perform C-AIBot
6. model_C← download(cmd.file);
7. Connect(cmd.link); // Change the connection with other nodes
8. output← Calculate(input, model_C); // Perform computing tasks
9. IF(Confidence(output) < Th) THEN
10. Send(output, Server); // Return the results to the server
11. ELSE THEN
12. Send(output’, upper_node);
13. END IF
14. ELSE IF(cmd.type = R) THEN // Prepare to perform R-AIBot
15. model_R← download(cmd.file);
16. Connect(cmd.link);
17. output← [input + Calculate(input, model_R)];
18. IF(Length(output) < L) THEN
19. Send(output, next_node);
20. ELSE THEN
21. Send(output, Server);
22. END IF
23. END IF
24. END WHILE

4.4. Architecture of AIBot

AIBot adopts a hybrid layered architecture that is divided into a cloud controlling
layer, an intermediate processing layer and an edge computing layer from top to bottom
according to the properties of the bot nodes and the network environment characteristics,
which take up the corresponding management and computing tasks, respectively. As
shown in Figure 9, the functional layers in the AIBot architecture are as follows:

• Cloud controlling layer: This layer is where the botmaster is located and has the high-
est authority over the control and management of the entire botnet, communicating
with the intermediate processing layer through covert means, such as anonymous
networks and blockchain protocols, to give orders and receive feedback. The botmaster
is responsible for the state monitoring and daily maintenance of the botnet, releasing

Electronics 2022, 11, 3241 15 of 25

version updates and plug-in tools and specifying attack targets and methods. In AIBot,
the botmaster adjusts the intelligent computing model according to the actual effect
and updates the relevant parameters and thresholds;

• Intermediate processing layer: This layer mainly consists of high-performance nodes
in the botnet, including server nodes with high credibility and reliability, and adopts
a backup redundancy mechanism to avoid “single point of failure”. The intermedi-
ate processing layer acts as the equivalent of a C&C server in a traditional botnet,
connecting directly with the underlying botnet nodes to receive commands from the
higher-level controllers and to direct the lower-level edge nodes to perform specific
tasks. In AIBot, the intermediate processing layer takes up part of the computational
tasks of the deep neural network with an advantage in hardware performance, thus
improving the accuracy of the computational results. Since AIBot needs to run multi-
ple intelligent computational models, the intermediate processing layer is responsible
for making the lower nodes adjust to the corresponding network structure;

• Edge computing layer: This layer concentrates most of the nodes in the botnet, in-
cluding low-profile PCs, home routers and various lightweight connected endpoints,
such as IoT devices. The inherent security flaws of such devices make them vulner-
able to be captured as bot nodes, which, in turn, can serve as massively distributed
computing resources under the control of botnets. The nodes in the edge computing
layer can form different subnets of the botnet according to their network location to
perform intelligent computing tasks, and the reachable public nodes are responsible
for the communication with the upper layer network. As the target task and computa-
tional model change, the network structure of the edge computing layer is adjusted
accordingly under the control of the intermediate processing layer.

Electronics 2022, 11, 3241 16 of 26

putational tasks of the deep neural network with an advantage in hardware per-
formance, thus improving the accuracy of the computational results. Since AIBot
needs to run multiple intelligent computational models, the intermediate processing
layer is responsible for making the lower nodes adjust to the corresponding network
structure;

• Edge computing layer: This layer concentrates most of the nodes in the botnet, in-
cluding low-profile PCs, home routers and various lightweight connected end-
points, such as IoT devices. The inherent security flaws of such devices make them
vulnerable to be captured as bot nodes, which, in turn, can serve as massively dis-
tributed computing resources under the control of botnets. The nodes in the edge
computing layer can form different subnets of the botnet according to their network
location to perform intelligent computing tasks, and the reachable public nodes are
responsible for the communication with the upper layer network. As the target task
and computational model change, the network structure of the edge computing
layer is adjusted accordingly under the control of the intermediate processing layer.

Figure 9. AIBot architecture.

5. Experiments and Evaluation
In this paper, we study the distributed deployment of two neural network models in

botnets, the CNN and RNN; propose corresponding strategies and schemes; and perform
experimental validation and performance evaluation, respectively. After the neural
network model is constructed, it needs to be trained and optimized with a large number
of samples before it can be used for forward inference, and the training of the model in-
cludes complex computational processes, such as back propagation. In contrast, this pa-
per focuses on the deployment and execution of the neural network model in the botnet,
so the parameters of the model were determined by offline (joint) training, and then the
trained model was deployed in the experimental network according to the scheme in
Section 4.2. At the same time, the effectiveness of AIBot as a botnet model had to be
evaluated in terms of its efficiency in performing attack tasks and other aspects. We
simulated real nodes through Docker instances using the Ubuntu desktop system with
version 18.04.5 and Docker 20.10.7. The base image loaded was the official Ubuntu image
(latest), and the image with the embedded bot program was created and packaged for
unified deployment.

Figure 9. AIBot architecture.

5. Experiments and Evaluation

In this paper, we study the distributed deployment of two neural network models in
botnets, the CNN and RNN; propose corresponding strategies and schemes; and perform
experimental validation and performance evaluation, respectively. After the neural network

Electronics 2022, 11, 3241 16 of 25

model is constructed, it needs to be trained and optimized with a large number of samples
before it can be used for forward inference, and the training of the model includes complex
computational processes, such as back propagation. In contrast, this paper focuses on the
deployment and execution of the neural network model in the botnet, so the parameters
of the model were determined by offline (joint) training, and then the trained model was
deployed in the experimental network according to the scheme in Section 4.2. At the
same time, the effectiveness of AIBot as a botnet model had to be evaluated in terms of its
efficiency in performing attack tasks and other aspects. We simulated real nodes through
Docker instances using the Ubuntu desktop system with version 18.04.5 and Docker 20.10.7.
The base image loaded was the official Ubuntu image (latest), and the image with the
embedded bot program was created and packaged for unified deployment.

5.1. C-AIBot Evaluation
5.1.1. Experimental Setup

Botnets obtain key information, such as user attributes, physical environment and
social relationships, through comprehensive identification and analysis of data, such as
pictures collected or documents and emails stored in similar nodes; e.g., comprehensive
determination of target network attributes and types based on document data from multiple
nodes. The experimental network was constructed as shown in Figure 10, consisting of
six edge nodes and one cloud node in a distributed network architecture. The neural
network deployed on the edge node contained only one convolutional layer, and the cloud
node added two convolutional layers on top of reusing that convolutional layer. The
hyperparameters of the CNN used in the experiments were as follows: the convolutional
layer kernel size was 3 × 3, with stride of 1 and the padding of 1, and the pooling layer
kernel size was 3 × 3, with stride of 1 and padding of 1. The experimental dataset was
the classical CIFAR-10 [27], which contains 10 categories of image samples. The input of
C-AIBot was a set of samples of the same category, and only the unique correct output
existed after inference by the distributed neural network. Each output was essentially a
probability vector used for classification, so we obtained the common output of the edge
nodes by taking the maximum value of the corresponding position element. If it was to
be handed over to the cloud for further processing, the output of the convolutional layer
of each edge node was stitched together as the initial input of the neural network in the
cloud, and the computational power of the cloud was used to maximize the use of sample
information, thus improving the classification accuracy.

5.1.2. Performance Evaluation

Samples were exited from the calculation at the edge and in the cloud in a certain
proportion, and accuracy refers to the proportion of all samples that were correctly classified,
as given by Equation (15). Equation (13) in Section 4.3.1 gives the confidence calculation
method, which determines whether the sample exited the calculation at the edge layer
from the result of the comparison between the confidence Confidence and the threshold Th.
The edge output rate—i.e., the proportion of samples that dropped out of the calculation
right at the edge layer, is given by Equation (16). As shown in Figure 11, when increasing
the value of Th in turn, the proportion of samples that drop out of the calculation at the
edge gradually increases, while the overall accuracy changes more smoothly, reaching a
maximum in the range of 7–8 for Th.

AccuracyC−AIBot =
Accuracyedge ∗ Sampleedge + Accuracycloud ∗ Samplecloud

Sampleedge + Samplecloud
(15)

Edge Output rate =
Sampleedge

Sampleedge + Samplecloud
(16)

Electronics 2022, 11, 3241 17 of 25

Electronics 2022, 11, 3241 17 of 26

5.1. C-AIBot Evaluation
5.1.1. Experimental Setup

Botnets obtain key information, such as user attributes, physical environment and
social relationships, through comprehensive identification and analysis of data, such as
pictures collected or documents and emails stored in similar nodes; e.g., comprehensive
determination of target network attributes and types based on document data from mul-
tiple nodes. The experimental network was constructed as shown in Figure 10, consisting
of six edge nodes and one cloud node in a distributed network architecture. The neural
network deployed on the edge node contained only one convolutional layer, and the
cloud node added two convolutional layers on top of reusing that convolutional layer.
The hyperparameters of the CNN used in the experiments were as follows: the convolu-
tional layer kernel size was 3 × 3, with stride of 1 and the padding of 1, and the pooling
layer kernel size was 3 × 3, with stride of 1 and padding of 1. The experimental dataset
was the classical CIFAR-10 [27], which contains 10 categories of image samples. The in-
put of C-AIBot was a set of samples of the same category, and only the unique correct
output existed after inference by the distributed neural network. Each output was essen-
tially a probability vector used for classification, so we obtained the common output of
the edge nodes by taking the maximum value of the corresponding position element. If it
was to be handed over to the cloud for further processing, the output of the convolutional
layer of each edge node was stitched together as the initial input of the neural network in
the cloud, and the computational power of the cloud was used to maximize the use of
sample information, thus improving the classification accuracy.

Figure 10. C-AIBot experimental network.

5.1.2. Performance Evaluation
Samples were exited from the calculation at the edge and in the cloud in a certain

proportion, and accuracy refers to the proportion of all samples that were correctly clas-
sified, as given by Equation (15). Equation (13) in Section 4.3.1 gives the confidence cal-
culation method, which determines whether the sample exited the calculation at the edge
layer from the result of the comparison between the confidence Confidence and the
threshold Th. The edge output rate—i.e., the proportion of samples that dropped out of
the calculation right at the edge layer, is given by Equation (16). As shown in Figure 11,

Conv ……

Conv ……

Conv ……

Conv ……

Conv ……

Conv ……

Aggregate and judge Edge Output

Conv

Conv

Cloud Output

Splice

Edge Node

Cloud Node

Input
（3×32×32）

Input
（3×32×32）

Input
（3×32×32）

Input
（3×32×32）

Input
（3×32×32）

Input
（3×32×32）

Figure 10. C-AIBot experimental network.

Electronics 2022, 11, 3241 18 of 26

when increasing the value of Th in turn, the proportion of samples that drop out of the
calculation at the edge gradually increases, while the overall accuracy changes more
smoothly, reaching a maximum in the range of 7–8 for Th.

-
edge edge cloud cloud

C AIBot
edge cloud

Accuracy Sample Accuracy Sample
Accuracy

Sample Sample
∗ + ∗

=
+

 (15)

 edge

edge cloud

Sample
Edge Output rate

Sample Sample
=

+
 (16)

Figure 11. Impact of Th.

The communication traffic in C-AIBot consists of two main components: the traffic
generated by sending inference results from the edge nodes to the sink, and the traffic
generated by the edge nodes by uploading the output of the underlying neural network
to the cloud. Figure 12 gives the variation in communication traffic (in bytes) and accu-
racy with the Edge Output rate. It can be seen that the communication traffic gradually
decreased as the Edge Output rate increased, which is consistent with the fact that a large
number of samples dropped out of the computation right at the edge. The communica-
tion traffic in the network was minimized when the Edge Output rate reached 100%, but
the accuracy rate was relatively low at this point. Overall, the Edge Output rate was
within a reasonable range of traffic and accuracy at between 60% and 80%.

80

85

90

95

100

0

20

40

60

80

100

0 2 4 6 7 8 9 10

A
cc

ur
ac

y（
%
）

Ed
ge

 O
ut

pu
t（

%
）

Th

Edge Output（%）

Accuracy（%）

80

85

90

95

100

0

500

1000

1500

0 20 40 60 80 100

A
cc

ur
ac

y（
%
）

Tr
af

fic
（

by
te
）

Edge Output（%）

Traffic（byte）
Accuracy（%）

Figure 11. Impact of Th.

The communication traffic in C-AIBot consists of two main components: the traffic
generated by sending inference results from the edge nodes to the sink, and the traffic
generated by the edge nodes by uploading the output of the underlying neural network to
the cloud. Figure 12 gives the variation in communication traffic (in bytes) and accuracy
with the Edge Output rate. It can be seen that the communication traffic gradually decreased
as the Edge Output rate increased, which is consistent with the fact that a large number of
samples dropped out of the computation right at the edge. The communication traffic in
the network was minimized when the Edge Output rate reached 100%, but the accuracy
rate was relatively low at this point. Overall, the Edge Output rate was within a reasonable
range of traffic and accuracy at between 60% and 80%.

Electronics 2022, 11, 3241 18 of 25

Electronics 2022, 11, 3241 18 of 26

when increasing the value of Th in turn, the proportion of samples that drop out of the
calculation at the edge gradually increases, while the overall accuracy changes more
smoothly, reaching a maximum in the range of 7–8 for Th.

-
edge edge cloud cloud

C AIBot
edge cloud

Accuracy Sample Accuracy Sample
Accuracy

Sample Sample
∗ + ∗

=
+

 (15)

 edge

edge cloud

Sample
Edge Output rate

Sample Sample
=

+
 (16)

Figure 11. Impact of Th.

The communication traffic in C-AIBot consists of two main components: the traffic
generated by sending inference results from the edge nodes to the sink, and the traffic
generated by the edge nodes by uploading the output of the underlying neural network
to the cloud. Figure 12 gives the variation in communication traffic (in bytes) and accu-
racy with the Edge Output rate. It can be seen that the communication traffic gradually
decreased as the Edge Output rate increased, which is consistent with the fact that a large
number of samples dropped out of the computation right at the edge. The communica-
tion traffic in the network was minimized when the Edge Output rate reached 100%, but
the accuracy rate was relatively low at this point. Overall, the Edge Output rate was
within a reasonable range of traffic and accuracy at between 60% and 80%.

80

85

90

95

100

0

20

40

60

80

100

0 2 4 6 7 8 9 10

A
cc

ur
ac

y（
%
）

Ed
ge

 O
ut

pu
t（

%
）

Th

Edge Output（%）

Accuracy（%）

80

85

90

95

100

0

500

1000

1500

0 20 40 60 80 100

A
cc

ur
ac

y（
%
）

Tr
af

fic
（

by
te
）

Edge Output（%）

Traffic（byte）
Accuracy（%）

Figure 12. Variation in traffic and accuracy with edge output rate.

The impact of the number of edge nodes on the overall accuracy is an important aspect
of evaluating C-AIBot. The state of individual nodes in a real botnet is not stable, so the
random removal of edge nodes was chosen to simulate the real scenario. As shown in
Figure 13, the accuracy decreased gradually as the edge nodes were removed sequentially,
but the decreasing trend was not obvious in the first period, and the accuracy was still
maintained at about 90% when two nodes were removed. The accuracy only started to
show a significant downward trend when the number of nodes removed reached half. This
indicates that the loss of a few nodes has a limited impact on the overall accuracy as long
as most of the nodes are working properly.

Electronics 2022, 11, 3241 19 of 26

Figure 12. Variation in traffic and accuracy with edge output rate.

The impact of the number of edge nodes on the overall accuracy is an important
aspect of evaluating C-AIBot. The state of individual nodes in a real botnet is not stable,
so the random removal of edge nodes was chosen to simulate the real scenario. As shown
in Figure 13, the accuracy decreased gradually as the edge nodes were removed sequen-
tially, but the decreasing trend was not obvious in the first period, and the accuracy was
still maintained at about 90% when two nodes were removed. The accuracy only started
to show a significant downward trend when the number of nodes removed reached half.
This indicates that the loss of a few nodes has a limited impact on the overall accuracy as
long as most of the nodes are working properly.

Figure 13. Variation in accuracy with the number of edge nodes.

5.2. R-AIBot Evaluation
5.2.1. Experimental Setup

Phishing attacks are one of the main forms of botnet attacks. Spear-phishing attacks,
on the other hand, are more targeted towards launching phishing attacks at specific tar-
gets. R-AIBot precisely exploits the advantages of RNNs in text generation for distributed
automated spear phishing. First, the cloud node selects the attack target, and then it ob-
tains the seed data locally at the target, followed by each node executing the intelligent
computing text-generation task one after another. The experimental network was con-
structed as shown in Figure 14, consisting of six edge nodes and one cloud node in a
distributed network architecture. The LSTM text generation model was deployed on each
node, and the experimental dataset came from a publicly available corpus of tweets on
the Internet [28] containing tens of thousands of real tweets. The LSTM model requires
serialized inputs and outputs; i.e., subsequent text generation requires generated text as
input. Therefore, all output data from the previous node were sent to the next node until
a complete tweet was generated at the final node. In order to simulate the situation of
nodes using local data for model training online, this paper used different subsets of the
dataset as training sets to train multiple LSTM models, respectively, and deploy them to
the corresponding edge nodes. The LSTM in the experiments was set up with a segment
length of 20 and a state vector dimension of 32. The experiments used a specified amount
of computation for each node to simulate the performance difference among nodes in the
real network, and the cloud nodes were allowed to complete the computation process of
text generation independently as a comparison.

0

20

40

60

80

100

6 5 4 3 2 1

A
cc

ur
ac

y（
%
）

Number of Edge Nodes

Figure 13. Variation in accuracy with the number of edge nodes.

5.2. R-AIBot Evaluation
5.2.1. Experimental Setup

Phishing attacks are one of the main forms of botnet attacks. Spear-phishing attacks,
on the other hand, are more targeted towards launching phishing attacks at specific targets.
R-AIBot precisely exploits the advantages of RNNs in text generation for distributed auto-
mated spear phishing. First, the cloud node selects the attack target, and then it obtains the
seed data locally at the target, followed by each node executing the intelligent computing
text-generation task one after another. The experimental network was constructed as shown
in Figure 14, consisting of six edge nodes and one cloud node in a distributed network
architecture. The LSTM text generation model was deployed on each node, and the ex-
perimental dataset came from a publicly available corpus of tweets on the Internet [28]

Electronics 2022, 11, 3241 19 of 25

containing tens of thousands of real tweets. The LSTM model requires serialized inputs
and outputs; i.e., subsequent text generation requires generated text as input. Therefore,
all output data from the previous node were sent to the next node until a complete tweet
was generated at the final node. In order to simulate the situation of nodes using local
data for model training online, this paper used different subsets of the dataset as training
sets to train multiple LSTM models, respectively, and deploy them to the corresponding
edge nodes. The LSTM in the experiments was set up with a segment length of 20 and a
state vector dimension of 32. The experiments used a specified amount of computation
for each node to simulate the performance difference among nodes in the real network,
and the cloud nodes were allowed to complete the computation process of text generation
independently as a comparison.

Electronics 2022, 11, 3241 20 of 26

Figure 14. R-AIBot experimental network.

5.2.2. Performance Evaluation
The models deployed on each node were trained based on different subsets of data,

so their validity had to be tested and verified first. A random sample of 20% from each
data subset formed the test set for each node and the obtained results were compared
with the accuracy of each node with their respective training sets. As shown in Figure 15,
the LSTM models deployed on each node achieved high accuracy with their respective
training sets, while their performances with the test set all declined but still managed to
stay above 80%. In fact, methods such as increasing the number of neural network layers
and adding a bidirectional LSTM can improve the performance of text generation mod-
els, but this is contrary to the principle of reducing the amount of node computation.

Figure 15. Accuracy of each node in the training set and test set.

In the experimental validation of the multi-node text generation, the ratio of com-
putation assigned to each node was 1:1:2:2:3:3 in order, while the LSTM model (obtained
by training from the complete dataset) run independently by the cloud nodes was used
as a comparison. The test set continued to use equal proportions of samples from each
data subset, and the comparison experiment was repeated by adjusting the length of the
generated tweets. The accuracy of R-AIBot was obtained from the weighted average of
the accuracy of each node in proportion to the computation amount. As shown in Figure
16, R-AIBot did not perform as well as the local single-node-running LSTM model in
terms of accuracy, but it could maintain a high level. The average time for tweet genera-
tion with R-AIBot gradually increased as the length of tweets increased, but there was no

Seed LSTM …… LSTM …… LSTM ……

LSTM …… LSTM ……

LSTM ……

LSTM ……

Output

Edge Node

Cloud Node

60

70

80

90

100

node1 node2 node3 node4 node5 node6

A
cc

ur
ac

y（
%
）

Node

Accuracy in the train set（%） Accuracy in the test set（%）

Figure 14. R-AIBot experimental network.

5.2.2. Performance Evaluation

The models deployed on each node were trained based on different subsets of data,
so their validity had to be tested and verified first. A random sample of 20% from each
data subset formed the test set for each node and the obtained results were compared with
the accuracy of each node with their respective training sets. As shown in Figure 15, the
LSTM models deployed on each node achieved high accuracy with their respective training
sets, while their performances with the test set all declined but still managed to stay above
80%. In fact, methods such as increasing the number of neural network layers and adding
a bidirectional LSTM can improve the performance of text generation models, but this is
contrary to the principle of reducing the amount of node computation.

Electronics 2022, 11, 3241 20 of 26

Figure 14. R-AIBot experimental network.

5.2.2. Performance Evaluation
The models deployed on each node were trained based on different subsets of data,

so their validity had to be tested and verified first. A random sample of 20% from each
data subset formed the test set for each node and the obtained results were compared
with the accuracy of each node with their respective training sets. As shown in Figure 15,
the LSTM models deployed on each node achieved high accuracy with their respective
training sets, while their performances with the test set all declined but still managed to
stay above 80%. In fact, methods such as increasing the number of neural network layers
and adding a bidirectional LSTM can improve the performance of text generation mod-
els, but this is contrary to the principle of reducing the amount of node computation.

Figure 15. Accuracy of each node in the training set and test set.

In the experimental validation of the multi-node text generation, the ratio of com-
putation assigned to each node was 1:1:2:2:3:3 in order, while the LSTM model (obtained
by training from the complete dataset) run independently by the cloud nodes was used
as a comparison. The test set continued to use equal proportions of samples from each
data subset, and the comparison experiment was repeated by adjusting the length of the
generated tweets. The accuracy of R-AIBot was obtained from the weighted average of
the accuracy of each node in proportion to the computation amount. As shown in Figure
16, R-AIBot did not perform as well as the local single-node-running LSTM model in
terms of accuracy, but it could maintain a high level. The average time for tweet genera-
tion with R-AIBot gradually increased as the length of tweets increased, but there was no

Seed LSTM …… LSTM …… LSTM ……

LSTM …… LSTM ……

LSTM ……

LSTM ……

Output

Edge Node

Cloud Node

60

70

80

90

100

node1 node2 node3 node4 node5 node6

A
cc

ur
ac

y（
%
）

Node

Accuracy in the train set（%） Accuracy in the test set（%）

Figure 15. Accuracy of each node in the training set and test set.

Electronics 2022, 11, 3241 20 of 25

In the experimental validation of the multi-node text generation, the ratio of com-
putation assigned to each node was 1:1:2:2:3:3 in order, while the LSTM model (obtained
by training from the complete dataset) run independently by the cloud nodes was used
as a comparison. The test set continued to use equal proportions of samples from each
data subset, and the comparison experiment was repeated by adjusting the length of the
generated tweets. The accuracy of R-AIBot was obtained from the weighted average of the
accuracy of each node in proportion to the computation amount. As shown in Figure 16,
R-AIBot did not perform as well as the local single-node-running LSTM model in terms of
accuracy, but it could maintain a high level. The average time for tweet generation with
R-AIBot gradually increased as the length of tweets increased, but there was no significant
increase compared to the local LSTM model, so the delay due to inter-node communication
was not significant.

Average Tra f f ic =
Tra f f icR−AIBot

number o f nodes
(17)

Electronics 2022, 11, 3241 21 of 26

significant increase compared to the local LSTM model, so the delay due to inter-node
communication was not significant.

Figure 16. Variation in accuracy and execution time with text length.

R AIBotTrafficAverage Traffic number of nodes

−= (17)

The communication traffic in R-AIBot due to node co-computation was an im-
portant aspect of the performance evaluation. In this paper, we set different numbers of
nodes and text generation lengths for multiple replication experiments, recorded the
relevant data and calculated the average traffic of the nodes. The average traffic was ob-
tained by dividing the total traffic generated in the network by the number of nodes, as
given by Equation (17). To avoid interference from other factors, the same amount of
computation was specified for each node in the experiment. As shown in Figure 17, the
longer the length of the text generated, the more nodes were involved in the text genera-
tion and the higher the average inter-node traffic generated. Therefore, selecting an ap-
propriate length of text generated and assigning fewer nodes to participate in performing
intelligent computations were effective means to reduce communication traffic in
R-AIBot.

Figure 17. Variation in average traffic with the number of nodes for different text lengths.

2

3

4

5

6

7

75

80

85

90

95

100

12 24 36 48 60 72

Ti
m

e（
s）

A
cc

ur
ac

y（
%
）

Text Length（word）

Local Accuracy（%）
R-AIBot Accuracy（%）
Local Time（s）
R-AIBot Time（s）

0

50

100

150

200

2 3 4 6

A
ve

ra
ge

 T
ra

ffi
c（

by
te
）

Number of nodes

Text Length = 12
Text Length = 24
Text Length = 36
Text Length = 48

Figure 16. Variation in accuracy and execution time with text length.

The communication traffic in R-AIBot due to node co-computation was an important
aspect of the performance evaluation. In this paper, we set different numbers of nodes
and text generation lengths for multiple replication experiments, recorded the relevant
data and calculated the average traffic of the nodes. The average traffic was obtained by
dividing the total traffic generated in the network by the number of nodes, as given by
Equation (17). To avoid interference from other factors, the same amount of computation
was specified for each node in the experiment. As shown in Figure 17, the longer the length
of the text generated, the more nodes were involved in the text generation and the higher
the average inter-node traffic generated. Therefore, selecting an appropriate length of text
generated and assigning fewer nodes to participate in performing intelligent computations
were effective means to reduce communication traffic in R-AIBot.

5.3. AIBot Efficiency Evaluation

To evaluate AIBot as a botnet model, it was necessary to simulate and evaluate the
execution efficiency of its launching attack activities. The attack execution time was the
complete time from the initiation to the end of the attack, which, in AIBot, was equivalent
to the time elapsed from the receipt of the computation task to the return of the result. The
execution time of AIBot can be subdivided into command transmission time, program
loading time, network reorganization time, model calculation time and result return time,
which can be expressed as Equation (18). Program loading time is the time required for
nodes to load program files, such as neural network models; network reorganization time

Electronics 2022, 11, 3241 21 of 25

is the time required for the reorganization process of the network structure; and task
computation time is the time required for each node to perform intelligent computation
tasks. Table 1 lists four sets of scenarios for the experiments. C-AIBot classified only one set
of samples at a time, R-AIBot generated text of length 12 each time, each set of experiments
was repeated 20 times to take the average, and all were performed in the same experimental
network (consisting of six edge nodes and one cloud node).

TAIBot = tC + tP + tN + tM + tR (18)

Electronics 2022, 11, 3241 21 of 26

significant increase compared to the local LSTM model, so the delay due to inter-node
communication was not significant.

Figure 16. Variation in accuracy and execution time with text length.

R AIBotTrafficAverage Traffic number of nodes

−= (17)

The communication traffic in R-AIBot due to node co-computation was an im-
portant aspect of the performance evaluation. In this paper, we set different numbers of
nodes and text generation lengths for multiple replication experiments, recorded the
relevant data and calculated the average traffic of the nodes. The average traffic was ob-
tained by dividing the total traffic generated in the network by the number of nodes, as
given by Equation (17). To avoid interference from other factors, the same amount of
computation was specified for each node in the experiment. As shown in Figure 17, the
longer the length of the text generated, the more nodes were involved in the text genera-
tion and the higher the average inter-node traffic generated. Therefore, selecting an ap-
propriate length of text generated and assigning fewer nodes to participate in performing
intelligent computations were effective means to reduce communication traffic in
R-AIBot.

Figure 17. Variation in average traffic with the number of nodes for different text lengths.

2

3

4

5

6

7

75

80

85

90

95

100

12 24 36 48 60 72

Ti
m

e（
s）

A
cc

ur
ac

y（
%
）

Text Length（word）

Local Accuracy（%）
R-AIBot Accuracy（%）
Local Time（s）
R-AIBot Time（s）

0

50

100

150

200

2 3 4 6

A
ve

ra
ge

 T
ra

ffi
c（

by
te
）

Number of nodes

Text Length = 12
Text Length = 24
Text Length = 36
Text Length = 48

Figure 17. Variation in average traffic with the number of nodes for different text lengths.

Table 1. Experimental scenarios.

Pre-Attack State Type of Attack

1
Initial state

C-AIBot
2 R-AIBot

3
C-AIBot

C-AIBot
4 R-AIBot

5
R-AIBot

C-AIBot
6 R-AIBot

The results of the experiment are shown in Figure 18, where all subgroups were
able to complete the assigned task within 15 s. The proportion of time spent on each of
these items to the total time is shown in Table 2. Relatively speaking, program loading,
network reorganization and model calculation accounted for a large proportion of the
overall running time. Network reorganization took some time because different neural
networks need the corresponding network organization to support distributed operations.
The change of attack task led to a state switch in AIBot, thus requiring program update
loading and network reorganization, and the execution time increased accordingly. R-AIBot
took significantly longer than C-AIBot in both program loading and model computation
because the LSTM model used in this paper was larger in size and computation than
the CNN model. Overall, the running time of AIBot was as expected and the execution
efficiency of C-AIBot was higher than that of R-AIBot.

Electronics 2022, 11, 3241 22 of 25Electronics 2022, 11, 3241 23 of 26

Figure 18. Execution time of AIBot.

6. Discussion
Based on the current network security situation, this paper proposes a botnet model

that can perform intelligent computing in a distributed manner from the attacker’s per-
spective and studies the construction mechanism and implementation methods. A new
type of botnet similar to AIBot is likely to emerge in future cyber attacks and pose a great
threat to cybersecurity. The purpose of this paper is to increase understanding of the new
botnet by conducting relevant research ahead of the attacker, so that effective defense
strategies can be better proposed. The following sections analyze the limitations of AIBot
and discuss possible means of defense.

6.1. Limitations
It should be noted that the work in this paper belongs to academic research, and the

proposed AIBot botnet, as a theoretical model, does not fully consider its applicability in
the actual cyber adversarial environment and has a large gap with realistic botnet cases.
The main purpose of this paper is to direct the attention of security researchers to this
type of potential cybersecurity threat.

AIBot has the following inherent limitations: (i) AIBot can only run deployed intel-
ligent computing models, and the training and optimization of the models are under-
taken offline, as distributed online training requires massive data support, generates a
large amount of communication traffic between nodes and continuously occupies node
computing resources. (ii) AIBot supports only two neural network models, the CNN and
RNN, while practical application scenarios have demands for all kinds of intelligent al-
gorithms, such as using reinforcement learning for decision making, and different intel-
ligent algorithms require different ways of network structure. (iii) The distributed intel-
ligent computing executed by AIBot has version requirements for hardware and soft-
ware, and the experiments in this paper were conducted on nodes with complete envi-
ronment dependencies installed, while an actual application would require custom de-
velopment and code rewriting of the program. In summary, we believe that AIBot is still
inadequate in terms of model optimization, function expansion and practical deploy-
ment, and is currently only at the proof-of-concept stage and not yet ready for large-scale
application.

0

5

10

15

20

Ti
m

e/
s

command transmission program loading

network reorganization model calculation

result return

Figure 18. Execution time of AIBot.

Table 2. Percentage of time spent on each item.

tC (%) tP (%) tN (%) tM (%) tR (%)

1 12.17 47.73 23.87 11.93 4.30
2 4.02 63.04 15.76 15.77 1.42
3 20.93 22.27 24.25 23.24 9.30
4 3.06 61.16 19.11 15.29 0.14
5 12.40 13.76 13.78 55.10 4.96
6 8.70 43.48 32.61 10.87 4.35

6. Discussion

Based on the current network security situation, this paper proposes a botnet model
that can perform intelligent computing in a distributed manner from the attacker’s perspec-
tive and studies the construction mechanism and implementation methods. A new type of
botnet similar to AIBot is likely to emerge in future cyber attacks and pose a great threat to
cybersecurity. The purpose of this paper is to increase understanding of the new botnet by
conducting relevant research ahead of the attacker, so that effective defense strategies can
be better proposed. The following sections analyze the limitations of AIBot and discuss
possible means of defense.

6.1. Limitations

It should be noted that the work in this paper belongs to academic research, and the
proposed AIBot botnet, as a theoretical model, does not fully consider its applicability in
the actual cyber adversarial environment and has a large gap with realistic botnet cases.
The main purpose of this paper is to direct the attention of security researchers to this type
of potential cybersecurity threat.

AIBot has the following inherent limitations: (i) AIBot can only run deployed intelli-
gent computing models, and the training and optimization of the models are undertaken
offline, as distributed online training requires massive data support, generates a large
amount of communication traffic between nodes and continuously occupies node com-
puting resources. (ii) AIBot supports only two neural network models, the CNN and
RNN, while practical application scenarios have demands for all kinds of intelligent algo-
rithms, such as using reinforcement learning for decision making, and different intelligent
algorithms require different ways of network structure. (iii) The distributed intelligent

Electronics 2022, 11, 3241 23 of 25

computing executed by AIBot has version requirements for hardware and software, and
the experiments in this paper were conducted on nodes with complete environment depen-
dencies installed, while an actual application would require custom development and code
rewriting of the program. In summary, we believe that AIBot is still inadequate in terms of
model optimization, function expansion and practical deployment, and is currently only at
the proof-of-concept stage and not yet ready for large-scale application.

6.2. Defense Analysis

This paper studies potential new attack patterns for botnets and provides insight into
their theoretical foundations and implementation mechanisms so that we can carry out
relevant proactive defense work ahead of attackers. Although the AIBot model proposed
in this paper enhances the adversarial properties in terms of program size, communication
traffic and resource consumption, it is still not completely immune to all defenses. Potential
defensive strategies are discussed in the following areas:

• Based on bot program: (i) Although AIBot simplifies and compresses the computa-
tional model, the bot program still contains a much larger number of parameters than
ordinary programs, which can be exploited by defenders for static identification of ma-
licious code. (ii) The computation process of CNNs and RNNs contains a large number
of matrix operations, and it is difficult to use similar large-scale parallel computation
in ordinary programs, which can be exploited by defenders for dynamic analysis of
malicious codes;

• Based on traffic analysis: (i) A large amount of interactive communication between
nodes occurs during the task execution in AIBot. The intermediate results of the
intelligent computation are mainly passed on in the network in the form of probability
vectors and text vectors, and the defender can characterize this abnormal commu-
nication traffic. (ii) AIBot performs intelligent computing in the form of a subnet
of the botnet, and the nodes communicate with each other with certain laws. The
defender can extract the network structure and, thus, infiltrate the botnet by mining
the connection relationship between the nodes;

• Based on terminal behavior: Although AIBot uses optimized node computation,
intelligent computation based on neural networks will inevitably generate transient
high-resource occupancy, so continuous monitoring of hardware resource occupancy,
detecting abnormalities and issuing alerts, is still a proven defense tool.

7. Conclusions

The security risks associated with artificial intelligence technologies are a hot topic of
research [29,30]. In this paper, we study a new botnet attack mode resulting from combining
the basic platform of cyber attacks with artificial intelligence technology, which, to some
extent, reflects the cyberspace security risk caused by the misuse of artificial intelligence
technology. In order to be prepared for future botnets, this paper predicts new botnet attack
techniques from the attacker’s perspective and proposes AIBot, a botnet model that can
perform intelligent computing tasks in a distributed manner. AIBot deploys the neural
network model in a distributed manner in the botnet and uses the idle computing resources
of large-scale zombie nodes to perform intelligent computing tasks. Compared with the
method of sending sensitive data obtained from end devices back to the cloud server and
then processing them, AIBot appears to be more advanced and efficient and can pose a
serious threat to cyberspace security. The next step is to explore the possibility of distributed
online training of neural network models in botnets from the attacker’s perspective and to
propose practical defense methods against such botnets from the defender’s perspective.

Author Contributions: Conceptualization, H.S. and H.Z.; methodology, H.Z.; software, H.Z. and J.Y.;
validation, H.Z., J.Y. and Y.H.; data curation, H.Z., J.Y. and Y.H.; writing—original draft preparation,
H.Z.; writing—review and editing, H.Z.; supervision, H.S.; funding acquisition, H.S. All authors have
read and agreed to the published version of the manuscript.

Electronics 2022, 11, 3241 24 of 25

Funding: This research was funded by the National Key R&D Program of China, grant number
2019QY1305.

Acknowledgments: We would like to thank the anonymous referees for their helpful comments
and suggestions.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Vormayr, G.; Zseby, T.; Fabini, J. Botnet communication patterns. IEEE Commun. Surv. Tutor. 2017, 19, 2768–2796. [CrossRef]
2. Fang, B.; Cui, X.; Wang, W. Survey of botnets. J. Comput. Res. Dev. 2011, 48, 1315.
3. Seymour, J.; Tully, P. Weaponizing data science for social engineering: Automated E2E spear phishing on Twitter. Black Hat USA

2016, 37, 1–39.
4. Antonakakis, M.; April, T.; Bailey, M.; Bernhard, M.; Bursztein, E.; Cochran, J.; Durumeric, Z.; Halderman, J.A.; Invernizzi, L.;

Kallitsis, M.; et al. Understanding the mirai botnet. In Proceedings of the 26th USENIX security symposium (USENIX Security
17), Vancouver, BC, Canada, 23 May 2017; pp. 1093–1110.

5. Dange, S.; Chatterjee, M. IoT Botnet: The largest threat to the IoT network. In Data Communication and Networks; Springer:
Singapore, 2020; pp. 137–157.

6. Zhang, J.; Zhang, R.; Zhang, Y.; Yan, G. The rise of social botnets: Attacks and countermeasures. IEEE Trans. Depend. Secur.
Comput. 2016, 15, 1068–1082. [CrossRef]

7. Ferrara, E. “Manipulation and abuse on social media” by Emilio Ferrara with Ching-man Au Yeung as coordinator. ACM SIGWEB
Newsl. 2015, (Spring), 1–9. [CrossRef]

8. Casenove, M.; Miraglia, A. Botnet over Tor: The illusion of hiding. In Proceedings of the 2014 6th International Conference on
Cyber Conflict (CyCon 2014) IEEE, Tallinn, Estonia, 3–6 June 2014; pp. 273–282.

9. Anagnostopoulos, M.; Kambourakis, G.; Drakatos, P.; Karavolos, M.; Kotsilitis, S.; Yau, D.K.Y. Botnet command and control
architectures revisited: Tor hidden services and fluxing. In Proceedings of the International Conference on Web Information
Systems Engineering, Puschino, Russia, 7–11 October 2017; Springer: Cham, Switzerland, 2017; pp. 517–527.

10. Fajana, O.; Owenson, G.; Cocea, M. Torbot stalker: Detecting tor botnets through intelligent circuit data analysis. In Proceedings
of the 2018 IEEE 17th International Symposium on Network Computing and Applications (NCA), Cambridge, MA, USA, 1–3
November 2018; pp. 1–8.

11. Li, K.; Fang, B.; Cui, X.; Liu, Q. Study of botnets trends. J. Comput. Res. Dev. 2016, 53, 2189.
12. Liu, W.; Wang, Z.; Liu, X.; Zeng, N.; Liu, Y.; Alsaad, F.E. A survey of deep neural network architectures and their applications.

Neurocomputing 2017, 234, 11–26. [CrossRef]
13. Zhang, Z.; Yin, L.; Peng, Y.; Li, D. A quick survey on large scale distributed deep learning systems. In Proceedings of the 2018 IEEE

24th International Conference on Parallel and Distributed Systems (ICPADS), Singapore, 11–13 December 2018; pp. 1052–1056.
14. Weaver, R. Visualizing and modeling the scanning behavior of the conficker botnet in the presence of user and network activity.

IEEE Trans. Inf. Secur. 2015, 10, 1039–1051. [CrossRef]
15. Xie, Y.; Yu, F.; Achan, K.; Panigrahy, R.; Hulten, G.; Osipko, I. Spamming botnets: Signatures and characteristics. ACM SIGCOMM

Comput. Commun. Rev. 2008, 38, 171–182. [CrossRef]
16. Plohmann, D.; Gerhards-Padilla, E. Case study of the miner botnet. In Proceedings of the 2012 4th International Conference on

Cyber Conflict (CYCON 2012) IEEE, Tallinn, Estonia, 5–8 June 2012; pp. 1–16.
17. Shah, N.; Farik, M. Ransomware-Threats Vulnerabilities and Recommendations. Int. J. Sci. Technol. Res. 2017, 6, 307–309.
18. Berman, D.S.; Buczak, A.L.; Chavis, J.S.; Corbett, C.L. A survey of deep learning methods for cyber security. Information 2019,

10, 122. [CrossRef]
19. McDermott, C.D.; Majdani, F.; Petrovski, A.V. Botnet detection in the internet of things using deep learning approaches. In

Proceedings of the 2018 International Joint Conference on Neural Networks (IJCNN) IEEE, Rio de Janeiro, Brazil, 8–13 July
2018; pp. 1–8.

20. Yi, S.; Li, C.; Li, Q. A survey of fog computing: Concepts, applications and issues. In Proceedings of the 2015 Workshop on Mobile
Big Data, Hangzhou, China, 21 June 2015; pp. 37–42.

21. Shi, W.; Cao, J.; Zhang, Q.; Li, Y.; Xu, L. Edge computing: Vision and challenges. IEEE Internet Things J. 2016, 3, 637–646. [CrossRef]
22. Verbraeken, J.; Wolting, M.; Katzy, J.; Kloppenburg, J.; Verbelen, T.; Rellermeyer, J.S. A survey on distributed machine learning.

ACM Comput. Surv. (CSUR) 2020, 53, 1–33. [CrossRef]
23. Teerapittayanon, S.; McDanel, B.; Kung, H.T. Branchynet: Fast inference via early exiting from deep neural networks. In

Proceedings of the 2016 23rd International Conference on Pattern Recognition (ICPR) IEEE, Cancun, Mexico, 4–8 December 2016;
pp. 2464–2469.

24. Teerapittayanon, S.; McDanel, B.; Kung, H.T. Distributed deep neural networks over the cloud, the edge and end devices. In
Proceedings of the 2017 IEEE 37th international conference on distributed computing systems (ICDCS), Atlanta, GA, USA, 5–8
June 2017; pp. 328–339, IEEE.

25. Kim, Y.D.; Park, E.; Yoo, S.; Choi, T.; Yang, L.; Shin, D. Compression of deep convolutional neural networks for fast and low
power mobile applications. arXiv 2015, arXiv:1511.06530.

http://doi.org/10.1109/COMST.2017.2749442
http://doi.org/10.1109/TDSC.2016.2641441
http://doi.org/10.1145/2749279.2749283
http://doi.org/10.1016/j.neucom.2016.12.038
http://doi.org/10.1109/TIFS.2015.2396478
http://doi.org/10.1145/1402946.1402979
http://doi.org/10.3390/info10040122
http://doi.org/10.1109/JIOT.2016.2579198
http://doi.org/10.1145/3377454

Electronics 2022, 11, 3241 25 of 25

26. Yu, Y.; Si, X.; Hu, C.; Zhang, J. A review of recurrent neural networks: LSTM cells and network architectures. Neural Comput.
2019, 31, 1235–1270. [CrossRef] [PubMed]

27. Krizhevsky, A.; Hinton, G. Learning Multiple Layers of Features from Tiny Images. In Handbook of Systemic Autoimmune Diseases;
Elsevier Ltd.: Amsterdam, The Netherlands, 2009; Volume 1.

28. Trump_tweet_dataset. Available online: http://chirag2796.pythonanywhere.com/trump_tweet_dataset (accessed on 20
June 2022).

29. Radanliev, P.; De Roure, D.; Maple, C.; Ani, U. Super-forecasting the ‘technological singularity’ risks from artificial intelligence.
Evol. Syst. 2022, 13, 747–757. [CrossRef]

30. Radanliev, P.; De Roure, D.; Maple, C.; Santos, O. Forecasts on Future Evolution of Artificial Intelligence and Intelligent Systems.
IEEE Access 2022, 10, 45280–45288. [CrossRef]

http://doi.org/10.1162/neco_a_01199
http://www.ncbi.nlm.nih.gov/pubmed/31113301
http://chirag2796.pythonanywhere.com/trump_tweet_dataset
http://doi.org/10.1007/s12530-022-09431-7
http://doi.org/10.1109/ACCESS.2022.3169580

	Introduction
	Botnet Evolution
	Motivation and Reason
	Contributions and Structure

	Background and Related Work
	Botnet Attack
	Deep Neural Network
	Distributed Artificial Intelligence

	Difficulties and Solutions
	Difficulties
	Solutions

	Proposed Botnet Model
	Formal Representation
	Framework of AIBot
	Two Implementations of AIBot
	C-AIBot
	R-AIBot
	Bot Design

	Architecture of AIBot

	Experiments and Evaluation
	C-AIBot Evaluation
	Experimental Setup
	Performance Evaluation

	R-AIBot Evaluation
	Experimental Setup
	Performance Evaluation

	AIBot Efficiency Evaluation

	Discussion
	Limitations
	Defense Analysis

	Conclusions
	References

