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Abstract: In this paper, we proposed an image inpainting algorithm, including an interpolation step
and a non-local tensor completion step based on a weighted tensor nuclear norm. Specifically, the
proposed algorithm adopts the triangular based linear interpolation algorithm firstly to preform
the observation image. Second, we extract the non-local similar patches in the image using the
patch match algorithm and rearrange them to a similar tensor. Then, we use the tensor completion
algorithm based on the weighted tensor nuclear norm to recover the similar tensors. Finally, we
regroup all these recovered tensors to obtain the final recovered image. From the image inpainting
experiments on color RGB images, we can see that the performance of the proposed algorithm on the
peak signal-to-noise ratio (PSNR) and the relative standard error (RSE) are significantly better than
other image inpainting methods.

Keywords: computer vision; image restoration; low-rank recovery; non-local denoising; tensor
completion

1. Introduction

With the improvement of science and technology, more and more high-dimensional,
data such as color images, videos and hyper-spectral images, are widely used. In practice,
these high-dimensional data are usually stored as tensors [1]. For example, a color image
can be represented as a third-order tensor, where the three dimensions are height, width
and color channel. Unfortunately, it is unavoidable for images to be contaminated by noise
during the process of storage and transmission. There are two main kinds of approaches
to recover the incomplete image: the first kind is low-rank recovery, which mainly deals
with small scratches or random missing pixels in incomplete images [2]; the second kind is
based on deep learning, which is divided into convolutional neural network (CNNs)-based
approaches and GAN-based approaches [3], where the goal is trying to use the known
background of the image to fill in a big missing hole [4]. In this paper, we focus on the first
kind of method that is recovering a degraded image with random missing pixels.

Recently, low-rank tensor recovery has been widely applied in image inpainting [2,5],
background modeling [6], images and videos denoising [7,8], and other fields. Among the
existing low-rank tensor recovery methods, tensor completion has been proposed to deal
with the case of tensor data with missing entries. Tensor completion algorithm aims to
recover a tensor from its incomplete or disturbed observations [2], formulated as follows.

arg min
X

rank(X )s.t.PΩ(M) = PΩ(X ), (1)

where X ∈ Rn1×n2×n3 , rank(·) denotes the tensor rank, and PΩ(X ) denotes the projection
of X on the observed set Ω.

Unlike the matrix rank, the definition of the tensor rank is still ambiguous and nonuni-
form. Depending on different tensor ranks, there are various tensor completion methods
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that can be derived. Traditionally, there are three types definitions of tensor rank, including
the CP (CANDECOMP/PARAFAC) rank [9,10] based on the CP decomposition, the Tucker
rank [10,11] based on Tucker decomposition, and the tensor tubal rank [12] based on tensor
products. The CP rank is defined as the smallest number of the rank-one decomposition of
the given tensor. Unfortunately, the minimization problem is NP-hard, which restricts the
application of the CP rank [13]. The Tucker rank is a multi-linear rank formed by matrix
rank, which is defined as a vector whose ith element equals the rank of the tensor’s mode-i
unfolding matrix [14]. Since nuclear norm minimization is the most popular method for
low-rank matrix completion. There are several notions of the tensor nuclear norm proposed.
Liu et al. [15] proposed the sum of the unclear norm (SNN) as the convex surrogate of the
Tucker rank. The proposal of SNN significantly improves the development of tensor recov-
ery problems. Based on SNN, Zhang et al. [16,17] proposed a general framework merging
the features of rectification and alignment for robust tensor recovery. Unfortunately, SNN
is not a tight convex relaxation of the Tucker rank, and the balanced matricization strategy
fails to exploit the structure information completely [18]. In recent years, Kilmer et al. [12]
proposed the tensor tubal rank based on the tensor product, which is defined as the number
of non-zero tensor singular tubes of the singular value tensor. As tensor tubal rank is
discrete, Zhang et al. [2] proposed the tensor nuclear norm (TNN) as a convex relaxation of
the tensor tube rank and applied it to the tensor completion algorithm.

However, since the singular values of natural images present a heavy-tailed distri-
bution [19] in most cases, the tensor completion algorithm based on TNN minimization
usually results in the over-penalty problem [20]. This problem will affect the effect of
image recovery. To balance the effectiveness and solubility resulting from the algorithm
based on TNN, Wang et al. [21] proposed a generalized non-convex approach for low-rank
tensor recovery. This approach contains many non-convex relaxation strategies (such as Lp
norm [22], ETP [23], Geman [24], etc.) and converts the non-convex tubal rank minimization
into the weighted tensor nuclear norm minimization. This method solved the over-penalty
problem caused by the tensor nuclear norm, and achieved a stronger recovery capacity in
recovery than TNN.

Unfortunately, the natural images usually do not satisfy the low-rank property. Since
natural images have a high self-similarity property [25], the non-local means (NLM) al-
gorithm [26] was proposed for solving the problem of natural image recovery. The NLM
exploits the self-similarity inherent in images to estimate the pixels by weighted averaging
all similar pixels, which can effectively improve the effect of the tensor completion algo-
rithm. The self-similar property of the images has been widely used in the field of color
images processing [27–29]. In addition, for medical images, such as MRI, the self-similarity
also exists in each slices, and several studies [30] have utilized NLM to improve the effect
of the medical image recovery. The recovered images or videos can be used in object
detection [31] and object tracking [32].

Based on the above discussion, this paper proposed a non-local tensor completion
algorithm based on weighted tensor nuclear norm (WNTC). Firstly, the WNTC algorithm
pre-processes the images by interpolation to obtain better similar patches from a tensor
and then stores these similar patches as tensors, called similar tensors. Then, we adopt the
tensor completion algorithm based on the weighted tensor nuclear norm to recover all the
similar tensors. Finally, regroup all completed tensors to obtain the image recovery result.
Compared with other algorithms such as TNN [33], HaLRTC [15], FBCP [34] and Song [25],
the proposed algorithm achieves better PSNR and RSE results and has better visual effects.

2. Notations and Preliminaries
2.1. Notations

In this paper, the fields of real numbers and complex numbers are denoted as R and
C, respectively, and we denote tensors by Euler script letters, e.g., A; matrices are denoted
by capital letters, e.g., A; sets are denoted by boldface capital letters, e.g., A; vectors are



Electronics 2022, 11, 3250 3 of 10

denoted by boldface lowercase letters, e.g., a, and scalars are denoted by lowercase letters
e.g., a.

More definitions and symbols are given as follows: We denote a 3-order tensor as
A ∈ Cn1×n2×n3 , where nk (k = 1, 2, 3) is a positive integer. We denote Frobenius norm,

l1 norm, infinity norm and l0 norm as ‖A‖F =
√

∑i1,i2,i3 A
2
i1i2i3

, ‖A‖1 = ∑i1,i2,i3 |Ai1i2i3 |,
‖A‖∞ = maxi1,i2,i3 |Ai1i2i3 | and the number of nonzero entries of A, respectively. For
A, B ∈ Cn1×n2×n3 , the inner product of A and B is denoted as 〈A,B〉 = ∑n1

i1=1 ∑n2
i2=1 ∑n3

i3=1
Ai1i2i3Conj(Bi1i2i3).

In addition, we follow the definitions in [35]: Use the Matlab notationA(i, :, :),A(:, i, :)
and A(:, :, i) to denote, respectively, the i-th horizontal, lateral and frontal slice, and the
frontal slice A(:, :, i) is denoted compactly as A(i). In addition, bcirc(·) and bdiag(·) are
defined as

bcirc(A) =


A(1) A(n3) · · · A(2)

A(2) A(1) · · · A(3)

...
...

. . .
...

A(n3) A(n3−1) · · · A(1)

,

bdiag(A) =


A(1) 0 · · · 0

0 A(2) · · · 0
...

...
. . .

...
0 0 · · · A(n3)

.

2.2. Preliminary Definitions and Results

Definition 1. (T-product) [36] Let A ∈ Rn1×n2×n3 and B ∈ Rn2×l×n3 . Then the t-product
A ∗t B is defined to be a tensor of size n1 × l × n3,

A ∗t B = fold(bcirc(A) · unfold(B)). (2)

Definition 2. (F-diagonal tensor) [36] Tensor A is called f-diagonal if each of its frontal slices is a
diagonal matrix.

Definition 3. (Identity tensor) [36] The tensor I ∈ Rn×n×n3 is the tensor with the first frontal
slice being the identity matrix, and other frontal slices being all zeros.

Definition 4. (Conjugate transpose) [35] The conjugate transpose of a tensorA ∈ Cn1×n2×n3 was
the tensor A∗ ∈ Cn2×n1×n3 obtained by conjugate transposing each of the frontal slice and then
reversing the order of transposed frontal slice from positions 2 through to n3.

Definition 5. (Orthogonal tensor) [36] A tensor Q ∈ Cn×n×n3 is orthogonal if it satisfies Q∗ ∗t
Q = Q ∗t Q∗ = I .

Theorem 1. (t-SVD) [35] Let A ∈ Rn1×n2×n3 . Then it can be factorized as A = U ∗t S ∗t V∗,
where U ∈ Rn1×n1×n3 , V ∈ Rn2×n2×n3 are orthogonal, and S ∈ Rn1×n2×n3 is an f-diagonal tensor,
see Algorithm 1 for details.

Definition 6. (Tensor tubal rank) [35] For A ∈ Rn1×n2×n3 , the tensor tubal rank, denoted by
rankt(A), is defined as the number of non-zero singular tubes of S , where S is from the t-SVD of
A = U ∗t S ∗t V∗. We can write rankt(A) = #{i,S(i, i, :) 6= 0} = #{i,S(i, i, 1) 6= 0}. Denote
σ(S) = (S(1, 1, 1),S(2, 2, 1), ...,S(r, r, 1))T , in which r = rankt(A).

Definition 7. (Tensor nuclear norm) [35] Let A = U ∗t S ∗t V∗ be the t-SVD of A ∈ Rn1×n2×n3 .
Tensor nuclear norm of the tensor tubal rank, is defined as ‖A‖∗ = 〈S , I〉 = ∑r

i=1 S(i, i, 1), where
r = rankt(A).
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Algorithm 1: t-SVD [35]
Input: Y ∈ Rn1×n2×n3 , λ > 0.
Output: U , S and V .
1. Compute Ȳ = fft(Y , [], 3).
2. Compute each frontal slice of Ū , S̄ and V̄ from Ȳ by

for i = 1, ..., b n3+1
2 c do

[Ū(i), S̄(i), V̄(i)] = SVD(Ȳ(i));
end for
for i = b n3+1

2 c+ 1, · · · , n3 do
Ū(i) = Conj(Ū(n3−i+2));
S̄(i) = S̄(n3−i+2);
V̄(i) = Conj(V̄(n3−i+2));

end for
3. U = ifft(Ū, [], 3), S = ifft(S̄, [], 3) and V = ifft(V̄, [], 3).

Tensor Completion Based on Weighted Tensor Nuclear Norm

To ensure the effectiveness of the tensor completion algorithm in image recovery, this
paper uses the weighted tensor nuclear norm to approximate the tensor tubal rank, which
is defined as:

Definition 8 ([21]). (Weighted tensor nuclear norm) For X ∈ Rn1×n2×n3 , its weighted tensor
nuclear norm is defined as the weighted sum of all singular values of all frontal slices in the Fourier

domain, that is ‖X ‖W,∗ := 1
n3

m
∑

i=1

n3
∑

j=1
ωijσij, where the m = min (n1, n2), the W= (ωij)m×n3 is a

weighted matrix that denotes the weight of each singular values of the tensor, σij denotes the singular
value of the tensor, ωij ∈ ∂ψ(σij(T )) where the ψ(·) is a non-convex surrogate function.

Using the weighted tensor nuclear norm denotes the tensor rank of X in Equation (1).
Then the tensor completion model is written as:

arg min
X
‖X ‖W,∗s.t.PΩ(M) = PΩ(X ). (3)

We call Equation (3) the weighted tensor nuclear norm-based tensor completion model,
which is usually solved by the alternating direction method of multipliers (ADMM) [37].
To facilitate solving the model, we first rewrite Equation (3) into the following form:

arg min
X
‖X ‖W,∗ + 1PΩ(X )=PΩ(M)(Z)s.t.X = Z , (4)

where 1PΩ(X )=PΩ(M)(Z) denotes the indicator function (if the subscript condition of the 1
is satisfied, the indicator function denotes 0, and if it is non satisfied, it denotes 1). Based
on Equation (4), an augmented Lagrangian function can be derived:

Lρ(X ,Z ,Q) = ||X ||W,∗ + 1PΩ(X )=PΩ(M)(Z)+
〈Q,X −Z〉+ 1

ρ ||X − Z +Q||2F, (5)

where the ρ is a parameter that controls the convergence, Q is the Lagrangian multiplier,
and 〈·, ·〉 denotes the inner product. Equation (5) can be updated iteratively by the following
steps. Step 1 Update X k+1 by

X k+1 = arg min
X
‖X ‖W,∗ +

〈
Qk,X −Z k

〉
+ 1

ρk

∥∥∥X −Z k
∥∥∥2

F

= arg min
X

ρk||X ||W,∗ + ||X − Z k + ρk

2 Qk||2F.
(6)
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The Equation (6) is calculated by the weighted tensor singular value threshold algo-

rithm: X k+1 = DW,τ(Z k − ρk

2 Qk), where DW,τ(·) is the weighted tensor singular value
shrinking operator.

Step 2 Update Z k+1 by

Z k+1= arg min
Z
||X k+1 − (Z +

ρk

2
Qk)||2F+1PΩ(X )=PΩ(M)(Z). (7)

Calculate the above Equation (7) by the least squares projection with a constraint term.
Step 3 Update Lagrangian multiplier tensor Qk+1 by

Qk+1=Qk+ρk(X k+1 −Z k+1) (8)

Step 4 Update the weight matrix Wk+1 by

Wk+1 = (ωk+1
ij ∈ ∂ψ(σij(X (k+1))))m×n3 (9)

where the k denotes the number of iterations. The overall algorithm is summarized in
Algorithm 2.

Algorithm 2: Tensor completion based on weighted tensor nuclear norm

Input: Lagrangian multiplier tensor Q0, non-convex surrogate function ψ(·).
Initialize: X 0 = 0, Z0 = 0, ρ0 = 1E−4, ε=1E−5, µ=1.2, τ > 0, maxIter = 200.

Output: The image X ∗ after completion.
for k = 1 : maxIter do

Update X k+1 by Equation (6);
Update Z k+1 by Equation (7);
Update Lagrangian multiplier Qk+1 by Equation (8);
Compute ρk+1 = µρk;
Update weight matrix Wk+1 by Equation (9);
if
∥∥∥X k+1 −X k

∥∥∥
∞
≤ ε do

break;
end if

end for

3. Proposed Algorithm Scheme

In this section, based on the self-similarity property of natural images and the weighted
tensor nuclear norm, we establish the WNTC algorithm. This algorithm makes full use
of the low-rank property of the similar tensor in the image and can obtain better image
restoration results.

3.1. Image Pre-Processing

The result of the patch match algorithm will be affected by the missing elements
of the observed image. Thus, the missing elements also lead to poor image recovery
results. In this paper, we first pre-process [25] the observed image by channel, as shown
in Figure 1. Denote the t-th channel in the observed tensor X ∈ Rn1×n2×n3 as An1×n2

t , the
set of observed elements position is denoted as Ω, and the set of unobserved elements
position as Ω̄. We use a triangular-based linear interpolation algorithm [38] to interpolate
the missing positions in At. Specifically, we know the coordinates of the three vertices
P1, P2, P3 of one triangle. There must exist u and v such that we can calculate the color at
any point P inside the triangle. In our method, we extract three vertices from Ω denoted as

P1, P2, P3. First compute u, v by
{

Px = P1
x + uP2

x + vP3
x

Py = P1
y + uP2

y + vP3
y

where Px, Py are coordinates of

the point P. Then the color of P is determined by P = P1 + uP2 + vP3. Calculate the color
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of each point inside the Ω̄ and replace the color in the missing position. We denote the
image after interpolation as Ât. Figure 1c is the result obtained after pre-processing.

(a) Observed image (b) Process by channal (c) pre-processed image

Figure 1. Pre-process observed image by channel.

3.2. Patch Match Algorithm

After the pre-processing, we apply the patch match algorithm to extract similar tensors
from the Â. The main steps of the patch match algorithm are as follows. (1) For each point
Pi ∈ Ω̄, denote the MPi as the patch at the point Pi. If Pi is so close to the edge of Â that
it can not obtain the n× n patch, then just use the patch near the edge. For example, if
(Pi)x < n, n < (Pi)y < n2 − n, then use the patch centered at (n, (Pi)y). (2) Then traverse
in a N × N search window with a step size of s pixel, and extract all candidate patches
from the search window. (3) Then we find a set of similar patches of MPi in Â by Euclidean
distance (i.e., ||MPi −MQ||F where MQ is a candidate patch). (4) We select the T − 1 most
similar candidate patches. After the steps above, we obtain a set of patches from Â. Let
MPi be the first matrix in the group and we rearrange the matrices to a tensorMi, where
Mi(:, :, k)(k = 1, · · · , T) is the kth patch in the group. We call the tensorMi similar tensor.
We denote the set of observed elements position in the extracted similar tensor as Ω′i.
Figure 2 shows the process of the patch match algorithm.

(a) pre-processed image (b) Similar patch match (c) Similar tensor

Figure 2. Process of patch matching.

3.3. Wntc Algorithm

For eachMi, we recover it through the tensor completion algorithm based on the
weighted tensor nuclear norm. The Equation (3) can be written as follows.

X̂i = arg min
X
‖X ‖W,∗s.t.PΩ′ i (X ) = PΩ′ i (Mi), (10)

The tensor X̂i is obtained by solving Equation (10) through Algorithm 2.
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By regrouping the recovered tensor X̂i, we obtain the image recovery result A∗. See
Algorithm 3 for details of the WNTC algorithm.

Algorithm 3: WNTC Algorithm

Input: Color image A ∈ Rn1×n2×n3 , the set of observed element positions Ω, n, N,
number of similar patch T and step s.

Output: The color image X ∗ after completion.
for t = 1 : n3 do

At=A(:, :, t);
Pre-process the At by triangular-based linear interpolation to obtain Ât;
for each point Pi of Ω̄ do

Extract similar tensorMi ∈ Rn×n×T by patch match algorithm;
CompleteMi by Algorithm 2 to obtain X̂i;

end for
Regroup the tensor X̂i to obtain the recovered tensor A∗;

end for

Experiments

In this section, we apply the WNTC algorithm to image inpainting applications and
compare it with other methods, including three traditional low-rank tensor completion
models: TNN [33], HaLRTC [15], FBCP [34], and three non-local tensor completion models:
NL-HaLRTC, NL-FBCP, and Song [25]. In this paper, all the simulations were conducted
on a PC with an Intel Xeon E5-2630v4@2.2GHz CPU and 128 G memory.

3.4. Parameter Setting

In this experiment, we set the non-convex surrogate function ψ(·) as Lp norm, where
the parameter p is set to 0.4. Experiments show that the similar patch size n and similar
patch number T have a significant impact on the performance of the WNTC algorithm. If
n is set too large, it will be difficult to match a similar patch. A too large T will cause the
similar tensor to contain too much redundant information, thus affecting the effectiveness
of image recovery. Combining the accuracy of the results and time consumption, we set
the similar patch size as n = 20 and the number of similar patches as T = 5 in this experi-
ment. The image recovery performances are evaluated by the PSNR and RSE. Assuming
T ∈ Rn1×n2×n3 is the original image, T̂ is the recovered image. The PSNR is defined as:

PSNR =10log10

(
n1n2n3‖T ‖2

∞

‖T̂ −T ‖2
F

)
, The definition of RSE is: RSE =||T − T̂ ||F/||T ||F. Larger

values of PSNR and lower values of RSE indicate better image recovery performance.

3.5. Color Image Inpainting

In this experiment, under different sampling rates, the WNTC algorithm and the other
six tensor completion methods are, respectively, applied to recover the eight standard
color images with a size of 256× 256× 3. The eight color images are shown in Figure 3.
The experimental results over selected eight color images under different sampling rates
are shown in Table 1 (bold font indicates the best result). From this table, we can find
that the WNTC algorithm achieved the best RSE result under different sampling rates;
compared to the three non-local based methods, NL-HaLRTC, NL-FBCP, and Song, the
WNTC algorithm significantly achieves higher PSNR in most cases. In addition, the PSNR
of the WNTC algorithm is at least 4 db higher compared to the three methods that do not
use the non-local strategy (TNN, HaLRTC and FBCP).
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Figure 3. Eight color RGB pictures.

Table 1. PSNR and RSE results of different image recovery algorithm.

Sampling
Rate Image

FBCP HaLRTC TNN NL-FBCP NL-HaLRTC Song WNTC

RSE PSNR RSE PSNR RSE PSNR RSE PSNR RSE PSNR RSE PSNR RSE PSNR

0.2

Lena 0.200 19.26 0.396 13.86 0.131 23.04 0.099 25.29 0.115 24.42 0.077 27.43 0.076 27.55
A.ort 0.136 19.33 0.208 15.79 0.100 22.00 0.085 23.44 0.099 22.40 0.070 25.01 0.069 25.18
B.oon 0.232 18.29 0.369 14.66 0.198 19.81 0.167 20.49 0.186 20.69 0.145 22.27 0.145 22.23
B.ara 0.249 18.57 0.405 14.80 0.162 22.36 0.116 25.01 0.149 23.43 0.102 26.18 0.099 26.38

House 0.163 20.17 0.327 14.53 0.101 24.42 0.071 27.31 0.101 24.68 0.066 28.03 0.061 28.61
P.ers 0.271 16.84 0.510 12.13 0.197 19.79 0.109 24.58 0.132 23.39 0.088 26.41 0.086 26.62
S.oat 0.229 17.92 0.468 12.38 0.174 20.40 0.153 21.45 0.159 21.46 0.120 23.41 0.118 23.50

Woman 0.172 21.24 0.406 14.40 0.121 24.43 0.100 25.98 0.140 23.63 0.062 30.04 0.055 31.13

avg 0.207 18.95 0.386 14.07 0.148 22.03 0.112 24.19 0.135 23.01 0.091 26.10 0.089 26.40

0.3

Lena 0.195 19.49 0.365 14.48 0.094 25.82 0.075 27.70 0.086 26.80 0.063 29.24 0.061 29.40
A.ort 0.135 19.36 0.192 16.41 0.074 24.65 0.078 24.10 0.076 24.53 0.057 26.85 0.055 27.08
B.oon 0.223 18.60 0.340 15.27 0.160 21.54 0.150 21.95 0.158 21.96 0.128 23.33 0.128 23.28
B.ara 0.247 18.64 0.373 15.42 0.114 25.26 0.100 26.32 0.113 25.59 0.085 27.75 0.081 28.05

House 0.156 20.55 0.303 15.14 0.071 27.39 0.053 29.77 0.073 27.39 0.052 30.02 0.047 30.87
P.ers 0.282 16.52 0.467 12.73 0.135 22.84 0.084 26.75 0.100 25.57 0.071 28.25 0.069 28.49
S.oat 0.221 18.22 0.431 12.99 0.132 22.66 0.119 23.47 0.128 23.14 0.098 25.13 0.097 25.19

Woman 0.179 20.96 0.374 15.00 0.087 27.17 0.058 30.61 0.098 26.48 0.050 31.90 0.042 33.47

avg 0.205 19.04 0.356 14.68 0.108 24.67 0.090 26.33 0.104 25.18 0.075 27.81 0.073 28.23

To further illustrate the superiority of the WNTC algorithm, we take the color image
’house’ as an example. In Figure 4, we illustrate the comparison curves of PSNR obtained
by the WNTC algorithm and other methods at different sampling rates. We can see from
this figure that the WNTC algorithm achieves the best PSNR at five sampling rates from
0.1 to 0.5. In addition, the recovery performance of the non-local based tensor completion
algorithm improves significantly with the increase in the sampling rate.

0.1 0.2 0.3 0.4 0.5
sampling rate

15

20

25

30

35

PS
N

R WNTC
Song
NL-HaLRTC 

NL-FBCP
TNN
HaLRTC
FBCP

Figure 4. Curves of PSNR values of different algorithms.

In Figure 5, we present the visual results of image restoration for two images (Woman
and House) with different algorithms at a sampling rate of 0.2. This figure shows that
the WNTC algorithm can recover the edge and texture features of images well at a low
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sampling rate (e.g., the face of the person and the outline of the house). This is because the
non-local similar tensor has better low-rank property, which makes the tensor completion
algorithm more effective. Meanwhile, it is efficient to avoid the global distortion of an
image by using the non-local strategy.

(a) original (b) sampled (c) TNN (d) NL-FCPB (e)
NL-HaLRTC

(f) Song (g) WNTC

Figure 5. Recovery results of different algorithms on Woman and House images when sampling rate
is 0.3.

4. Conclusions

This paper proposed a non-local tensor completion algorithm based on the weighted
tensor nuclear norm and applied it to color image inpainting applications. This algorithm
replaces the TNN with the weighted tensor nuclear norm to approximate the tensor tubal
rank, which improves the efficiency of low-rank tensor recovery. Meanwhile, inspired
by the non-local similarity of images, we have improved the patch match algorithm.
Our WNTC algorithm pre-processes the observed image first in order to enhance the
performance of the match. The experimental results show that our WNTC algorithm has
good performance in color images inpainting at different sampling rates, with excellent
PSNR and RSE results and good visual effects.
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