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Abstract: This study developed a virtual reality interactive game with smart wireless wearable
technology for healthcare of elderly users. The proposed wearable system uses its intelligent and
wireless features to collect electromyography signals and upload them to a cloud database for further
analysis. The electromyography signals are then analyzed for the users’ muscle fatigue, health,
strength, and other physiological conditions. The average slope maximum So and Chan (ASM S & C)
algorithm is integrated in the proposed system to effectively detect the quantity of electromyography
peaks, and the accuracy is as high as 95%. The proposed system can promote the health conditions of
elderly users, and motivate them to acquire new knowledge of science and technology.
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1. Introduction

With the advances of modern medicine, people’s average lifespan has prolonged;
hence, the aging of population structures has become a global issue. Moreover, the changes
of lifestyles have induced various chronic diseases, increasing the demand for medical
care. As routine health information can enhance disease prevention and medical care,
the application of telecare in routine health care can promote people’s quality of life.
In telecare, the first-aid devices can also collect personal physiological information for
ambulances or relevant medical units, so that the patients under care can receive instant
and effective assistance.

Literatures [1,2] used electrocardiography (ECG) combined with the Internet of Things
(IoT) to design a remote monitoring and telemetry system that can improve the accuracy
and reliability of heart health monitoring. Literatures [3,4] used electroencephalography
(EEG) to design a sleep monitoring system and an epilepsy prediction system. Bhowmick
used photoplethysmography (PPG) to design a PPG monitoring system and stored the PPG
model parameters in the cloud for clinical diagnosis [5]. Huang used electromyography
(EMG) to design a diet monitoring system, which receives EMGs of the mastication muscles
through glasses to detect intake-related events [6].

This study combined physiological signal modules (namely, ECG, EEG, PPG, and
EMG) with innovative educational technologies, such as the Internet, IoT [7,8], and virtual
reality (VR) [9,10], to develop a cloud system with telecare services [11,12]. Using the VR
and open-source software (OSS), this study developed an interesting VR digital game that
could stimulate the elderly users to utilize the application for health management [13–15].
The usage scenario of the proposed VR health game is shown in Figure 1.
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Figure 1. Schematic diagram of a system usage scenario. 

Artificial intelligence (AI) has been widely used in the identification and analysis of 
physiological signals in recent years. Recent common EMG analyses and studies focused 
on AI application. For example, Sugiarto [15] analyzed the surface EMG (sEMG) and high-
density EMG (HD-EMG) of the neck muscle (designated muscle) and used Convolutional 
Neural Network (CNN) for training to correct the end-to-end delay of the VR system and 
alleviate negative effects such as motion sickness. Sugiarto [15] also employed three pairs 
of wireless sEMG sensors from Delsys Trigno (Delsys, MA, USA) as the software. Pancholi 
[16] analyzed the peak average power (PAP) of EMG and adopted Linear Discriminant 
Analysis (LDA) and Quadratic Discriminant Analysis (QDA) for training and prosthetics. 
The analysis of Pancholi [16] has been done using MATLAB 2015a on an i7 core. Raurale 
[17] employed subsequently classified to classify and identify eight kinds of EMG actions. 
The system is also shown to operate in real-time on an ARM Cortex A-53 embedded pro-
cessor suitable for housing in an EMG wearable device. Additionally, Wang [18] modified 
the So and Chan algorithm to increase the accuracy of ECG peak detection to 99.16% from 
94.61% and used FPGA for verification. However, it is complicated and not applicable to 
biomedical VR games, which are characterized by low complexity [19,20]. Therefore, this 
study aims to develop an innovative realization architecture with low complexity. The 
proposed system specifically targets the irregularities of EMG peaks, in order to improve 
the operational accuracy and smoothness of VR games. To verify the EMG peak detection 
accuracy, this study first used the automatic calibration detection (ACD) to capture the 
EMC signals, and set a threshold parameter to assess the captured signals. To further im-
prove the EMG peak detection accuracy, this study applied the average slope maximum 
So and Chan (ASM S & C) algorithm [21–25]. The comparison of recent studies on physi-
ological signal detection systems is as shown in Table 1. The operation sensitivity was 
thus enhanced in the proposed VR game. 

Table 1. Comparison of Recent Studies on Physiological Signal Detection Systems. 

Refrence Algorithm Complexity Equipment 

Sugiarto [15] CNN High 
Delsys Trigno 

IMU 
Pancholi [16] LDA High I7 core 
Raurale [17] Subsequently classified Medium ARM Cortex A-53 
Wang [18] Enhanced So and Chan Low FPGA 

Our propose ASM S&C Low nRF52840 

Figure 1. Schematic diagram of a system usage scenario.

Artificial intelligence (AI) has been widely used in the identification and analysis of
physiological signals in recent years. Recent common EMG analyses and studies focused
on AI application. For example, Sugiarto [15] analyzed the surface EMG (sEMG) and high-
density EMG (HD-EMG) of the neck muscle (designated muscle) and used Convolutional
Neural Network (CNN) for training to correct the end-to-end delay of the VR system and
alleviate negative effects such as motion sickness. Sugiarto [15] also employed three pairs of
wireless sEMG sensors from Delsys Trigno (Delsys, MA, USA) as the software. Pancholi [16]
analyzed the peak average power (PAP) of EMG and adopted Linear Discriminant Analysis
(LDA) and Quadratic Discriminant Analysis (QDA) for training and prosthetics. The
analysis of Pancholi [16] has been done using MATLAB 2015a on an i7 core. Raurale [17]
employed subsequently classified to classify and identify eight kinds of EMG actions. The
system is also shown to operate in real-time on an ARM Cortex A-53 embedded processor
suitable for housing in an EMG wearable device. Additionally, Wang [18] modified the
So and Chan algorithm to increase the accuracy of ECG peak detection to 99.16% from
94.61% and used FPGA for verification. However, it is complicated and not applicable to
biomedical VR games, which are characterized by low complexity [19,20]. Therefore, this
study aims to develop an innovative realization architecture with low complexity. The
proposed system specifically targets the irregularities of EMG peaks, in order to improve
the operational accuracy and smoothness of VR games. To verify the EMG peak detection
accuracy, this study first used the automatic calibration detection (ACD) to capture the EMC
signals, and set a threshold parameter to assess the captured signals. To further improve the
EMG peak detection accuracy, this study applied the average slope maximum So and Chan
(ASM S & C) algorithm [21–25]. The comparison of recent studies on physiological signal
detection systems is as shown in Table 1. The operation sensitivity was thus enhanced in
the proposed VR game.

Table 1. Comparison of Recent Studies on Physiological Signal Detection Systems.

Refrence Algorithm Complexity Equipment

Sugiarto [15] CNN High Delsys Trigno
IMU

Pancholi [16] LDA High I7 core

Raurale [17] Subsequently classified Medium ARM Cortex A-53

Wang [18] Enhanced So and Chan Low FPGA

Our propose ASM S&C Low nRF52840
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The remainder of the paper is organized as follows. Section 2 describes the system
architecture design and its specifications. Section 3 discusses the detailed design methodol-
ogy for EMG peak detection. Section 4 presents the analysis of the experimental results.
Finally, conclusions are drawn in Section 5.

2. System Architecture
Hardware Architecture

Figure 2 shows the hardware architecture of the smart wearable biomedical sensing
system developed in this study. The sensing end uses the Tri-BLE, an IoT development
platform, as the main body, and is provided with a Tri-EMG sensor, a button, and an
indicator light. The human EMG signal is sent via a disposable electrode to the Tri-EMG
sensor, and subsequently exported. The Tri-BLE platform filters the received EMG data,
and the threshold of the EMG signal is judged according to the relationship between the
EMG signal and the threshold. The output state is transferred to the central controller and
processed. Furthermore, the button controls a calibration mechanism. The threshold of the
EMG signal varies with the human body and the electrode position, and this threshold can
be adjusted according to the indicated action after the button is pressed. The indicator light
displays the state of the sensing end—the light is red during calibration, and the light turns
green if the EMG signal exceeds the threshold. The central controller integrates the states of
the left- and right-hand sensing ends, and communicates with the VR device to control the
action in the game. Additionally, the system has a mobile app that is linked via Bluetooth.
The muscle conditions of the left and right hands can be recorded, and accessed by doctors
for future diagnoses.
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Figure 2. Hardware architecture of the smart wearable biomedical sensing system.

Table 2 lists the equipment specifications. Tri-BLE and Tri-EMG of TriAnswer series
are used for the biomedical development platform, Arduino Uno is used as the central
controller, and the monitor set includes an HTC VIVE VR headset and an app, with the
associated equipment of HTC-VIVE and Android smartphone, respectively.

Table 2. Equipment specifications.

System Requirement Equipment

Biomedical
Development Platform

TriAnswer
(Tri-BLE, Tri-EMG)

Central controller Arduino UNO

Monitor Virtual reality HTC-VIVE Cosmos
Android Smartphones
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3. EMG Peak Detection
3.1. System Flow

Figure 3 presents the moving average system flowchart. Notably, the human EMG
signals are complicated and susceptible to external influences. This study thus employed
the moving average and ACD methods to reduce the number of signal judgment errors.
For the moving average, the EMG signals are imported at 500 Hz. The length of each data
is 8 bits, and the system output is the average of 20 data points. Therefore, the first in first
out (FIFO) buffer which can store 20 data points was used. When the buffer was filled with
20 data points, the average value was calculated as the output Y(n).

Electronics 2022, 11, x FOR PEER REVIEW 4 of 17 
 

 

3. EMG Peak Detection 
3.1. System Flow 

Figure 3 presents the moving average system flowchart. Notably, the human EMG 
signals are complicated and susceptible to external influences. This study thus employed 
the moving average and ACD methods to reduce the number of signal judgment errors. 
For the moving average, the EMG signals are imported at 500 Hz. The length of each data 
is 8 bits, and the system output is the average of 20 data points. Therefore, the first in first 
out (FIFO) buffer which can store 20 data points was used. When the buffer was filled 
with 20 data points, the average value was calculated as the output Y(n). 

X(n)

Yes

Y(n)

FIFO
Buffer

Average
FIFO Buffer

No
n>20

 
Figure 3. Moving average system flowchart. 

Figure 4 is the ACD system flowchart. The ACD system adopts 10,000 EMG signals 
as the threshold calibration criteria. First, the input data are compared with the eight data 
in the buffer. When the input is larger than the buffer, the minimum value in the buffer is 
replaced by the new input data. After the system compares the 10,000 data points, the 
three largest data points are removed from the buffer to avoid the signal errors resulting 
in a high threshold. After five data points are averaged, this value is subtracted by the 
initial value (Oini) and multiplied by the scale factor of D to obtain the threshold after cal-
ibration. 

Figure 3. Moving average system flowchart.

Figure 4 is the ACD system flowchart. The ACD system adopts 10,000 EMG signals as
the threshold calibration criteria. First, the input data are compared with the eight data
in the buffer. When the input is larger than the buffer, the minimum value in the buffer
is replaced by the new input data. After the system compares the 10,000 data points, the
three largest data points are removed from the buffer to avoid the signal errors resulting in
a high threshold. After five data points are averaged, this value is subtracted by the initial
value (Oini) and multiplied by the scale factor of D to obtain the threshold after calibration.

Figure 5 is the average slope maximum So and Chan (ASM S & C) system flowchart.
The initial_value is calculated first, and if the EMG signal exceeds the initial_value, the ini-
tial_slope_maxi is being searched. The slope_threshold is then obtained by the initial_slope_maxi.
If two consecutive EMG slopes exceeds the slope_threshold, the current signal is recorded
as the starting point of the waveform characteristics, and the peak could be determined.
Finally, the peak and starting points are used for updating the maxi. The ASM S & C
algorithm is described in Section 3.2.

3.2. Algorithm

EMG signal shows the potential difference when a muscle contracts. According to the
state of motion, the amplitude and frequency of the electromyogram change accordingly.
Under ideal conditions, an electromyogram indicates no movement, while obvious fluc-
tuations occur when the muscles are contracted (as shown in Figure 6). However, EMG
signals are susceptible to random interference caused by radio waves, electrode noise, and
other factors [26–28].
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The two considerations of noise interference and hardware design allow the moving
average algorithm to effectively eliminate random interference in a large amount of data.
The moving average algorithm used in this paper adopted feedback control as the filtering
method. After a fixed period size is given, the output is the average of the input values
in the period size. Its operating principle is to remove the oldest element and add the
next input value before averaging the output. This output value divides the random noise
evenly and makes it smaller, thus making the overall data waveform smoother.

The moving average algorithm is expressed in the following equation:

Y =

[
∑P = T − 1

P = 0 X(n − P)
]

T
(1)

where Y is the output of the moving average; T is the period length; and X(n) is the current
input data.

Although the moving average can effectively remove random noise, EMG changes
can be easily read and compared with the threshold signal. However, factors such as
different users or patch positions can change the EMG amplitude and cause a large gap
in the threshold. Therefore, this paper designed an automatic calibration detection (ACD)
algorithm to solve the problem of threshold error. The ACD algorithm collects 10,000 pieces
of data to set the threshold. The ACD algorithm equation is as follows:

threshold =

[
1
k

n = k

∑
n = 1

S(n + 3)

]
× D + [(1 − D)× Oini] (2)

where S is the output after comparison, k = m − 3, D is the scale factor, and Oini is the
initial EMG value. A method similar to the sorting algorithm is used in the comparison.
As long as the input value of the ACD algorithm is greater than the value in the buffer, it
can be directly replaced. This method can find the largest m data and sort them from the
largest to the smallest. In order to prevent noise influence, the largest three pieces of data
are removed from the m data. There are signal bounces occasionally in the process of EMG
signal sensing; hence, the top three of the eight pieces of data are removed to prevent the
values of high signal bounces from affecting the average value.

The data averaged is multiplied by the scale factor D to improve the accuracy of
discrimination. Finally, Oini is added as the initial compensation of the threshold. The scale
factor D can obtain the best parameters after the numerical statistical analysis, as shown
in Figure 7. When the scale factor is 50%, the accuracy of the EMG peak detection can
reach 71%.
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The optimal scale factor in the ACD algorithm varies with the users; therefore, the
data from each individual user should be statistically analyzed, and the scale factor cannot
be corrected during real-time hardware variations. As a result, the accuracy varies by each
user. In order to enhance the accuracy in detection, this study detected the EMG peaks, and
used the transient peak when the muscle put forth strength as the reference frame for the
overall threshold. This study adopted the So and Chan (S & C) algorithm, which is the R
wave detection algorithm proposed by So and Chan in 1997 [22], and modified it into the
average slope maximum So and Chan (ASM S & C) algorithm.

The S & C algorithm is given below [22]:
Y(n) is the processed EMG amplitude, and the slope of each point can be found in the

time domain by Equation (3):

slope(n) = −2Y(n − 2)− Y(n − 1) + Y(n + 1) + 2Y(n + 2) (3)

The slope_threshold can be obtained by Equation (4):

slope_threshold =
threshold_paprameter

16
× maxi (4)

First, a sample quantity is set up according to the sample rate of signal reception
to find the initial_slope_maxi. The sample rate used in this paper is 500 Hz, as shown in
Algorithm 1: S & C algorithm.

Algorithm 1: S & C Algorithm.

Input:
Y(n)

Output:
1: slope = 0
2: initial_slope_maxi = 0
3: for i: = 1 to 500 do
4: if i ≥ 3 then
5: slope = −2 × Y(i − 2) − Y(i − 1) + Y(i + 1) + 2 × Y(i + 2)
6: if slope > initial_slope_maxi then
7: initial_slope_maxi = slope
8: end if
9: end if
10: end for
11: maxi = initial_slope_maxi

The slope_threshold is determined by using the initial maximum slope. When two
consecutive slopes are larger than the slope_threshold, this point is marked as the starting
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point of the signature waveform, and then the peak point of waveform could be determined.
The maxi is then updated, as expressed in Equation (5):

maxi =
f irst_maxi − maxi
f iliter_parameter

+ maxi (5)

f irst_maxi = Height of p_point − Height of start_point (6)

For the filiter_parameter which can be set as 2, 4, 8, or 16, this paper selected 16. The peak
was recorded, and the peak detection accuracy of the algorithm was calculated [22]. There
were 100,000 EMG samples, the number of making a fist was 154, SP was the number of
correct peaks captured successfully, MP was the number of correct peaks that were missed,
and EP was the position of capture error. The accuracy can be computed by Equation (7).
The S & C algorithm captured 154 peaks successfully, but there were 54 capture errors, for
an accuracy of 74%.

Accuracy(%) =
SP

SP + MP + EP
× 100 (7)

Figure 8 simulates the peak detection of the S & C algorithm. It was observed that
the S & C algorithm had no obvious waveform characteristics in the first 500 samples,
indicating there were errors in capturing the initial_slope_maxi and leading to errors in the
subsequent slope_threshold and peak detection.
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Figure 8. Peak detection of the S & C algorithm.

The S & C algorithm is mainly used for ECG detection. The main difference between
EMG and ECG signals is that an EMG signal has obvious waveform characteristics only if
the muscle contracts, whereas an ECG signal always has waveform characteristics. Hence,
the initial_slope_maxi capture requirements of the S & C algorithm are not applicable to
EMG. The initial_slope_maxi in the S & C algorithm is captured in a preset period of cycle
time. In ECG with a cycle that changes slightly, accurate initial_slope_maxi can be obtained
from the S & C algorithm after adjusting the cycle based on the ECG signals of different
persons. However, for EMG signals with irregular changes, detection based on a fixed cycle
is not feasible. In order to solve this problem, the capture requirements of the maximum
slope were changed in this paper, as shown in Algorithm 2: ASM S & C algorithm.
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Algorithm 2: ASM S & C Algorithm.

Input:
Y(n)

Output:
1: initial_value = avg(sum(Y(1:n))) × (λ + 1)
2: slope = 0
3: initial_slope_maxi = 0
4: count = 0
5: en = 0
6: for i:= 1 to length(Y) do
7: if I ≥ 3 && Y(i) > initial_value then
8: initial_slope_maxi = −2 × Y(I — 2)−Y(I — 1)+Y(I + 1)+2 × Y(I + 2)
9: count = count + i
10: break
11: end if
12: end for
13: for i:= count to length(Y) do
14: slope = −2 × Y(I — 2) — Y(I — 1) + Y(I + 1) + 2 × Y(I + 2)
15: if slope > initial_slope_maxi then
16: en = 1
17: end if
18: if en == 1 then
19: if slope < initial_slope_maxi then
20: initial_slope_maxi = old_slope
21: break
22: end if
23: end if
24: end for
25: maxi = initial_slope_maxi

As the initial value of the EMG signal was not zero, the initial maximum slope capture
requirements were changed in this study by using the average of n data and multiplying it
by reduction ratio λ as the initial_value. The calculation approach could be expressed as
Equation (8) in which n is set as 1000 samples. Each sample was 3.3 ms, and 1000 pieces of
data (about 3.3 s) were captured for analysis during the initial setting of the initial_value, so
as to capture stable initial_value data. When the detected signal exceeds this initial_value,
it means that muscles have contracted and there are waveform characteristics. After
determining the initial_slope_maxi, the subsequent slope_threshold calculation and peak
detection can be performed.

initial_value =
(λ + 1)

n
×

n

∑
1

Y(n) (8)

λ in the initial_value calculation is the gathered statistics parameter. In order to avoid the
error signal exceeding the average initial value, the initial_value calculation was multiplied
by λ + 1 to evade the error signal. As only the error signal needed to be prevented, the
accuracy was enhanced and stabilized after increasing the initial_value by 1%. An excessive
λ value could increase the initial_value and result in the failure to capture the peak and
a reduction of accuracy. Λ was thus selected as 5% of the stable zone after the statistical
analysis, as shown in Figure 9.
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Figure 9. λ statistical analysis.

Figure 10 illustrates a simulation of the peak detection by the ASM S & C algorithm,
which employs the initial_value calculation to solve the initial detection error in this study.
The initial_slope_maxi was captured when the detected signal exceeded the EMG initial
value. The ASM S & C captured 154 peaks successfully and there were eight capture errors,
leading to an accuracy of 95.06%.
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Figure 10. Peak detection of the ASM S & C algorithm.

Table 3 compares the accuracy of the three algorithms. Equation (7) was used for the
calculation of accuracy. While the S & C and ASM S & C algorithms could capture all of the
correct peaks, incorrect values were captured as well. The ASM S & C algorithm improved
the accuracy of the S & C algorithm in capturing the EMG’s initial maximum slope, reduced
the subsequent error rate, and resulted in a final accuracy of 95.06%. Therefore, the accuracy
of the ASM S & C method proposed in this paper was higher than both the S & C and ACD
methods, by 20.98% and 23.71%, respectively.

Table 3. Algorithm accuracy comparison.

Algorithm SP (Data) EP (Data) MP (Data) Accuracy (%)

ACD 132 31 22 71.35

S & C [22] 154 54 0 74.08

ASM S & C 154 9 0 95.06
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4. Experimental Results
4.1. Electromyography

In muscle contractions, the signal generated by the potential difference between both
ends is called the EMG signal. Regarding the non-invasive measurement method used in
this paper, disposable electrodes were attached to the skin to observe muscle activities. The
experiment data were the muscle states of making a fist once per second within one minute,
and the experiment platform was the designed sensing end of this system. The disposable
electrodes were attached to the flexor digitorum superficialis muscle (FDS) and the flexor
digitorum profundus muscle (FDP), as shown in Figure 11.
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Figure 11. Electrode position stereogram.

The TriAnswer platform was strapped to the user’s wrist to capture EMG signals via a
patch. The captured EMG signals were transmitted to the cloud via the Bluetooth interface
and displayed in a smartphone app.

The original signal and the filtered signal are shown in Figure 12. Apparently, the
curve was smoothened after filtering. In Figure 12, EMG signals are obviously cleaner after
filtration, which could improve the detection ability of the ASM S & C algorithm.
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Figure 13 shows the spectrum analysis of Figure 12. Figure 13a presents the spectrum
distribution of the EMG signals captured. Figure 13b displays the spectrum distribution of
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the EMG signals after moving average. As seen, there are obviously fewer noises in the
spectrum distribution below 60 Hz after the moving average.
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Figure 13. Spectrum analysis of the EMG signals. (a) presents the spectrum distribution of the EMG
signals captured. (b) displays the spectrum distribution of the EMG signals after moving average

The proposed system controls the actions of the VR games by making a fist. When an
EMG peak is detected, the output is 1; otherwise, the peak detection is 0. The experiment
data are the same as the data for the moving average. The ASM S & C algorithm is used to
determine the initial_value first, which is then used to find the initial_slope_maxi, as well as
the slope_threshold. Whenever two consecutive EMG slopes exceed the slope_threshold, the
peak can be identified and the maxi can be updated. The peak pulse is generated based on
the peak, and the VR game is controlled by the peak pulse. Figure 14 shows the ASM S & C
algorithm detecting the EMG signal and generating the peak pulse. The blue line is the
EMG value, the pink dotted line is the initial value of the EMG, and the red dotted line is
the peak pulse generated after the peak is detected. The peak pulse is used for controlling
the actions of the VR figure.
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4.2. Virtual Reality

VR can make the users feel like they are at the scene, making it feasible for training and
fitness uses. In this study, VR was combined with health care to make health management
more interesting. This system, which employs an HTC VIVE VR headset, differs from other
systems that it uses EMG for game control. As shown in Figure 15, the serial port needs
to be selected to connect with the control terminal before the game could start. When the
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game starts, the direction is controlled by the left and right hands to evade obstacles, and
the speed increases as the game progresses. The game ends when the player collides with
an obstacle. The front-viewing angle displays the current time and the best time. The game
picture is shown in Figure 16.
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Figure 16. Game picture.

Figure 17 is the VR system flowchart. The Bluetooth COM port needs to be connected
at the beginning of the game. When the game starts running, the EMG state is detected.
When the left-hand EMG signal trigger is detected, the game figure would walk to the left;
when the right-hand EMG signal trigger is detected, the figure would dodge to the right.
The screen is updated periodically. When the game figure encounters an obstacle, whether
the playtime exceeds the record is determined; if yes, the best time would be updated and
displayed; if not, the best time would remain and the game would end.
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4.3. The App

The proposed system employs MIT App Inventor to design a mobile app for con-
venient observation and recording of the user. The app communicates with the sensing
end via Bluetooth, and is workable without being connected to a VR headset. The start
menu displays the connection, settings, and related app information (see Figure 18A). The
user’s name, gender, and age are shown on the connection page. The user could choose
to connect the smartphone to either both hands or one hand. When the corresponding
sensing end is connected, the current EMG diagram is displayed instantly, so that the users
can check their muscle conditions. Figure 18B shows the app’s state after the right-hand
sensing end is connected. The data could be saved during the connection, and the EMG
signals could be automatically saved in the micro database by clicking the save button. On
the other hand, data saving could be stopped immediately by clicking the stop button or
the “Connection Off” button. The previously-accessed EMG data could be queried on the
“View Data” page. Figure 18C shows the EMG data found using “View Data”. The user
information could be modified in the setting interface (Figure 18D). In addition to EMG
signals, the app could collect biomedical data (ECG, EEG, and blood oxygen), making it
highly suitable for long-term collection and observation.

On the menu displayed when the users open the app, the main operation includes
the “Connect” and “Set” options. “View Data” or “Scan” could be selected in the connect
setting. “View Data” is for EMG signal record queries, by which the saved EMG signal
data could be observed. “Scan” is to view the list of nearby Bluetooth devices, through
which the wearable system with intelligent and wireless features could be selected and
the corresponding Bluetooth connection could be established. The current physiological
condition could be observed after the connection is verified, the data could be saved
by clicking “Save” while in the connected state, and the Bluetooth connection could be
disconnected by clicking “Disconnect”. The user data could be input in the Set part, and
“Enter” could then be chosen to complete the setting, or the user could choose “Clear” to
clear the user data.

The operation response time of this system is shown in Table 4. There are 320 pixels in
one EMG image and it takes 0.1 s for one pixel, so totaling 30 s to draw the whole EMG
image and the sample rate of the hardware capturing EMG signals is 300 Hz.

Table 4. The system operation response time.

Event Time

EMG image update 30 (s)

Hardware sampling 3.3 (ms)
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5. Conclusions

This study developed an intelligent wireless wearable system in combination with IoT
and VR interactive games in order to allow users to monitor their physiological conditions
anytime through wearable and IoT devices. This system combined EMG with VR, so as
to enhance users’ enjoyment during exercise and rehabilitation. The EMG peak detection
accuracy of the ASM S & C algorithm proposed in this paper was higher than that of the
S & C and ACD algorithms by 20.98% and 23.71%, respectively. A mobile app was also
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designed for long-term physiological signal collection and observation. In our future study,
more biomedical sensors will be integrated, and a fatigue test and ECG diagnosis functions
will be added so that users’ physiological conditions can be better visualized to achieve
health care purposes.
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