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Abstract: Direction-of-arrival (DoA) estimation of electromagnetic (EM) waves impinging on a
spherical antenna array in short time windows is examined in this paper. Reflected EM signals due to
non-line-of-sight propagation measured with a spherical antenna array can be coherent and/or highly
correlated in a snapshot. This makes spectral-based methods inefficient. Spectral methods, such
as maximum likelihood (ML) methods, multiple signal classification (MUSIC), and beamforming
methods, are theoretically and systematically investigated in this study. MUSIC is an approach
used for frequency estimation and radio direction finding, ML is a technique used for estimating
the parameters of an assumed probability distribution for given observed data, and PWD applies a
Fourier transform to the capture response and produces them in the frequency domain. Although
they have been previously adapted and used to estimate DoA of EM signals impinging on linear
and planar antenna array configurations, this paper investigates their suitability and effectiveness
for a spherical antenna array. Various computer simulations were conducted, and plots of root-
mean-square error (RMSE) against the square root of the Cramér–Rao lower bound (CRLB) were
generated and used to evaluate the performance of each method. Numerical experiments and
results from measured data show the degree of appropriateness and efficiency of each method. For
instance, the techniques exhibit identical performance to that in the wideband scenario when the
frequency f = 8 GHz, f = 16 GHz, and f = 32 GHz, but f = 16 GHz performs best. This indicates that
the difference between the covariance matrix of the signal is coherent and that the steering vectors
of signals impinging from that angle are small. MUSIC and PWD share the same problems in the
single-frequency scenario as in the wideband scenario when the delay sample d = 0. Consequently,
the DoA estimation obtained with ML techniques is more suitable, less biased, and more robust
against noise than beamforming and MUSIC techniques. In addition, deterministic ML (DML) and
weighted subspace fitting (WSF) techniques show better DoA estimation performance than the
stochastic ML (SML) technique. For a large number of snapshots, WSF is a better choice because
it is more computationally efficient than DML. Finally, the results obtained indicate that WSF and
ML methods perform better than MUSIC and PWD for the coherent or partially correlated signals
studied.

Keywords: Cramér–Rao lower bound (CRLB); direction-of-arrival (DoA) estimation; maximum
likelihood (ML); spherical antenna array (SAA); root-mean-square error (RMSE)

1. Introduction

Direction-of-arrival estimation is a popular topic in various electromagnetic-related
fields of study, finding applications in military surveillance, radar, sonar, and mobile com-
munication systems [1–9]. Understanding the directions-of-arrival (DoAs) of incoming
signals on receiving antenna can be effectively used to localize the positions of the corre-
sponding sources. It facilitates adaptive beamforming of the receiving pattern to improve
the sensitivity of the system towards the desired directions of signals and mitigates un-
desirable interferences. Invariably, it ensures that the array provides the maximum beam
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towards the desired users and nulls in the directions of interferences, and it improves the
performance of mobile and base stations. Therefore, DoA estimation of electromagnetic
(EM) waves impinging on an antenna array is very important.

A spherical antenna array (SAA) configuration is useful in obtaining an array with
isotropic characteristics. There is also the spherical phased antenna array, which is widely
used in spacecraft and satellite communication. Electronic beam scanning by the phased
antenna array remains a better choice because it provides a hemispherical scan and almost
uniformly distributed gain [3,10]. Another major advantage of the SAA configuration is
its three-dimensional symmetry, which is an advantage in the spatial analysis of signals.
The geometry and size usually provide the directivity and degree of beam scanning in
the elevation and azimuth needed from the array. A linear array, which scans in one axis,
and a planar array, which scans in the x- and y-axes, are acceptable for a bounded scan
demand of 60–70◦ [10]. The projected apertures of these arrays drop by the cosine factor of
the scan angle. The array directivity is reduced for a large scan angle. For larger steerability,
a multifold planar configuration or, in a general form, an SAA is preferred [10–12]. The
directivity of an SAA remains almost the same when an active source is moved over the
surface of the SAA. Since signals measured with an SAA can be coherent and highly
correlated, it becomes important to investigate the effectiveness of the available DoA
estimation methods with an SAA.

Various DoA estimation methods have been reported in the literature. The most
commonly used methods are: the multiple signal classification (MUSIC) algorithm [13,14],
estimation of signal parameters through rotational invariance technique (ESPRIT) [15,16],
beamforming, and the maximum likelihood (ML) DoA estimator [17,18]. They have been
deployed and applied to antenna arrays with arbitrary geometries and provide an appro-
priate estimate of DoA. Recently, the use of phased-array-based sub-Nyquist sampling [19]
was proposed. The temporal properties of the impinging signals were explored to improve
the detection capabilities. To date, linear and planar antenna array configurations have
been considered in most DoA estimations. However, recent publications emphasize the
importance and rapid development of SAAs, particularly in satellite communication [3,10].

Multipath signals can be coherent or highly correlated in a narrow band of frequency.
Coherent signals can cause spectral-based methods to fail in DoA estimation in linear
or planar arrays [1,11], and hence, these methods are generally employed with spherical
arrays [11,20,21]. The performance of MUSIC and ESPRIT for the estimation of correlated
signals can be improved by using spatial smoothing techniques [22–24]. In addition, differ-
ent smoothing techniques have been proposed for general SAAs [21,25]. The smoothing
techniques preprocess the array output covariance matrix over time [26], space [21,24], or
frequency [25] before the estimation of DoA. In SAA processing, the array is usually divided
into subarrays by transforming the SAA into a uniform linear array [21,27]. Another spatial
smoothing approach is the formation of a subarray using eigenbeam space rotation [28,29].
The free space response may be different over time (i.e., DoA, amplitude, and phase) due
to refractivity and absorption. The frequency resolution is reduced by averaging over the
frequency, while averaging over time reduces the temporal resolution of the estimate. The
spatial resolution is reduced by averaging over space because the number of elements for
each subarray is less than the number of elements in the entire array.

Contrary to MUSIC and other similar methods, ML methods [30,31] with no smoothing
can handle coherent signals. The coherent signal model can be U-dimensional (where U
is the number of signals due to multipath) when each signal is differently modeled. If
a spatial spectrum is computed with a grid size D, where the correct size and sampling
are user-defined, then the DoA estimation using the ML function has a dimensionality of
U × D, but spectral-based techniques have 1 × D dimensionality. Therefore, the search
space quickly becomes very large as the number of signals increases. For ML methods [31],
high dimensionality gives rise to the deployment of nonlinear optimization algorithms for
reduced computational time. The general limitation of all methods is that the estimable
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number of signals must be less than the number of elements I, i.e., I > U [30]. Moreover, in
practice, the free space response is always time- and frequency-dependent.

This paper studies the DoA estimation of EM signals in free space trapped with an
SAA. Specifically, we consider the case where more than one signal (i.e., in a multipath
scenario) is present in a single analysis window. The number of signal points or responses
due to multipath at the receiving antenna within a short time window rises with the
square of time t. This impact is usually termed the density of reflection [20]. Therefore,
with time, it results in a situation where a single analysis window encompasses multiple
signals. There is a complete overlap of signals if the distance between the generating source
and the receiving antenna is the same for one or more signals. This usually occurs for
first-order signals in a symmetric source-receiver. We examined the ML DoA estimation
methods within the context of the SAA’s spatial response and large sample approximation
(LSA), known as weighted subspace fitting (WSF). LSA assumes that the available number
of measurements is large. Because of the aforementioned characteristics, the conditions
in which one or more signals are present in one analysis window for narrowband and
wideband frequencies are considered in this work. The key innovations and contributions
of this study are as follow:

I. Five DoA estimation techniques are presented and investigated in this study. MU-
SIC, plane-wave decomposition (PWD), weighted subspace fitting (WSF), and both
deterministic (D) and stochastic (S) ML techniques were applied in the analysis of
EM waves using SAA processing for the first time in this study. WSF is the large
sample approximation of SML.

II. We adopted ML techniques in the spatial signal analysis with SAA and confirmed
their suitability in DoA estimation using an SAA. It is numerically demonstrated
how ML techniques outweighed MUSIC and beamforming methods and how WSF
produces the best DoA estimation among the ML techniques.

III. The results obtained from ML techniques are compared to beamforming and
MUSIC methods throughout the simulation and analysis section. The ML-based
DoA estimation is more appropriate, less biased, and more robust against noise
than beamforming and MUSIC techniques. In addition, the WSF technique exhibits
lower computational complexity than DML and SML.

IV. We explain how DoA estimation performance with a rigid sphere is expressed as a
function of frequency. In addition, the radius of the sphere affects the estimation
accuracy at a particular frequency. For instance, for a given SAA with a radius
of 8.4 cm, the most accurate performance was achieved at 16 GHz. If similar
performance were required, for example, at about 8 GHz, then a larger radius of
SAA would be required.

The major novelty of our work as compared with Tervo and Politis [11] is that we
particularly extended the DoA methods to the antenna array rather than the microphone
array, backed with experimental data in electromagnetics vis-à-vis a spherical antenna
array, which is, in the end, the ground truth to test and evaluate any method. This is the
major contribution of our work.

The rest of this paper is organized as follows. Section 2 present a general description
of the SAA configuration. In Section 3, mathematical formulations for EM signals in free
space, the space domain, spherical harmonic decomposition, and SAA with spherical
harmonic decomposition (SHD) are derived. In Section 4, five DoA estimation methods are
analyzed: MUSIC, PWD, WSF, and deterministic (D) ML and stochastic (S) ML methods.
The numerical experimental tests, results, and discussion are presented in Section 5, and
finally, conclusions based on the findings are given in Section 6.

2. General Configuration of SAA

The basic configuration and geometry of the SAA are presented in Figure 1, where
θi and φi represent the elevation and azimuth of the ith element, respectively. θd and φd
denote the elevation and azimuth of the incident plane wave, respectively, while sd is the
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source signal. The radiating antenna elements are evenly distributed over a sphere of
radius r. There is a conventional distribution for an antenna array on a geodesic sphere
depending on 1 of the 13 Archimedean solids or the 5 platonic solids [3,11]. Here, the
fundamental merit is that all elements encounter the same neighborhood. Conversely, other
various distributions could be determined based on the beam-scanning requirement and
the number of antenna elements in use. For an icosahedron distribution along the elevation
axis, the elements are organized in circular bands. In each circular band, the locations in
azimuth are clearly estimated. Furthermore, any far-field observation point can be defined
as p(r, θ, φ).
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Figure 1. Spherical array geometry system for localization. θi and φi represent the elevation and
azimuth of the ith element, respectively. θd and φd denote the elevation and azimuth of the incident
plane wave, respectively, while sd is the source signal.

The SAA is in active mode, where each element is supplied with an amplifier. To
receive a beam pattern in a specific direction (θ0, φ0), the elements lying within the predeter-
mined cone angle along the beam direction are in active mode. These elements are activated
using accurate phases estimated from the equations in [10,32,33]. Furthermore, the SAA
configuration (as in Figure 2) is 3-D symmetrical, which is an advantage in the analysis of
the spatial signal. Both its size and geometry produce the directivity and beam-scanning
level in the azimuth and elevation angles needed from the array. For more steerability, a
multifold planar configuration or, in a more general form, an SAA is preferred [3–7]. The
directivity of an SAA is almost the same when an active source is moved over the surface
of the SAA.
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3. Mathematical Formulations
3.1. EM Waves in Free Space

The behavior of EM waves in free space can be described as the measured response
from a particular signal source to antenna i within a particular space. The plane wave
propagates through free space and is trapped at the receiver by multipath. While propagat-
ing in free space, the plane wave is affected by various environmental phenomena, such
as absorption, diffraction, and reflection [20]. These environmental phenomena alter the
phase and amplitude of the propagating plane wave, possibly differently per incidence
angle and per frequency.

In addition, the plane wave is altered by the travel distance and attenuated by the
channel. Specifically, the absorption rate depends on the composition of the air, distance
traveled by the plane wave, and operating frequency [19,20]. Therefore, the absorption
by air alone suggests that the signal response varies with time and with frequency and is
hence the basis for analysis in the frequency domain. Furthermore, if the signal source is
considered a point source, the amplitude of the signal experiences attenuation because the
plane wave is spherically spread out. The total number of signals or snapshots U due to
multipath per time interval ∆t can be expressed asymptotically as [20]

U
∆t

= 4π
c3t2

V
(1)

where c is the speed of light, and V is the enclosure volume. This is applicable and correct
for all geometries with a homogeneous medium. To reduce the total number of signals
within a particular analysis window, a shorter time interval ∆t is usually used. Furthermore,
when investigating the response of a signal with a single frequency, the time window length
is given as ∆t > 2π/ω to ensure that one period of the wavelength can be obtained within
the analysis window. Hence, the time instant tU where U or a smaller number exists in an
analysis window of a single frequency can be expressed as

tU = t(ω) ≤
√

UVω

8π2c3 (2)

where ω denotes the angular frequency.

3.2. Analysis of the Space Domain

The position of the antenna’s ith element is presented in the 3-D Cartesian coordinate
form as

mi = ri[sin(θi) cos(φi), sin(θi) sin(φi), cos(θi)]
T (3)

where Φi = (θi, φi) and ri are the general spherical coordinates, azimuth φi ∈ [−180, 180)◦,
radius ri ∈ [0, ∞), and elevation θi ∈ [0, 180]◦. Each signal event u arriving at the antenna
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has propagated a distance du from the source to the antenna with a DoA Ωu = (θu, φu)
w.r.t. the array origin and can be expressed in Cartesian coordinates as

ru = du[sin(θu) cos(φu), sin(θu) sin(φu), cos(θu)]
T (4)

Each signal is considered a plane wave affected by the free space phenomena men-
tioned above.

A wideband pressure signal pi in the ith antenna for a particular signal source s is de-
picted in the frequency domain as the addition of all snapshots or EM signals u = 1, . . . , U:

pi(k) =
U

∑
u=1

.
hiu(k)

.
su(k) + ni(k) ∈ C (5)

where
.
hiu(k) is the frequency response of a snapshot (an event consists of multiple waves),

while ni(k) is a noise variable, which is assumed to be identically distributed and inde-
pendent for each antenna element. In addition, wave number k = ω/c = 2π f /c. The
signal source

.
su(k) characterizes the frequency response of the source, which is originally

transmitted in a few directions, arriving at the receiving antenna array from direction ru.
For a snapshot with multiple signals, the frequency response depends on the time

delay τiu(k), which defines the travel time of the signal to the antenna and the complex
amplitude of each event ciu, i.e.,

.
hiu(k) = ciu(k) exp(−iτiu(k)) (6)

For a plane-wave model to be applied, it is assumed that both signals and sources
are in the far field w.r.t. the receiving array. Thus, in line with the plane-wave model, the
complex amplitude is expressed as

ciu(k) =
.
ciu(k)

−
cu(k) ∀ i (7)

where
.
ciu is the response of receiving antenna i in the Ωu direction and is assumed to be

known a priori, and cu denotes the complex amplitude of the plane wave u, which factors
all signal phenomena experienced before reaching the receiving array. In addition, due to
the assumption of a short time window analysis and a homogeneous medium, the pathway
distance du is therefore neglected in the directional analysis. As a result, the time delay of
the plane wave can be represented with respect to the origin (that is, the mid-point of the
sphere in the SAA) as

τiu(k) = krT
u mi (8)

where ru = [sin(θu) cos(φu), sin(θu) sin(φu), cos(θu)]
T is the normal to the wavefront. The

SAA response and corresponding delay term is presented as

.
hiu(k) =

.
ciu(k) exp

{
−ikrT

u mi

}
(9)

and referred to as the steering vector. For instance,
.
ciu = 1 for an ideal antenna array. The

source response and amplitude of the plane wave are given as the product

su(k) = cu(k)
.
su(k) (10)
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and regarded as the actual signal. For brevity, the array measurements are presented in
matrix form. The impulse responses of array elements i = 1, . . . I, i.e., their inputs, are a
vector [31]:

p(k) =

 p1(k)
...

pI(k)

 =
U
∑

u=1

 h1,u(k)
...

hI,u(k)

su(k) +

 n1(k)
...

nI(k)


= [h(Ω1), . . . , h(ΩU)][s1(k), . . . , sU(k)]

T + n(k)
= H(Ω)s(k) + n(k)

(11)

Ω = [Ω1, . . . , ΩU ] is the set of all unknown DoAs.
The signals and noise are assumed to be zero-mean complex Gaussian processes,

i.e., [25]
E
{

s(k)sH(k)
}
= Rss(k) and E

{
n(k)nH(k)

}
= σ2I (12)

where E{·} is the expectation, and (·)H is a Hermitian matrix transpose. This results in the
following covariance matrix of the array [31]:

Rpp(k) = E
{

p(k)pH(k)
}
= H(Ω)Rss(k)HH(Ω) + σ2I (13)

The assumption of a Gaussian signal in free space is not necessarily true. That is,
a signal with a single frequency in a short time window can possibly be deterministic
in nature instead of random. The deterministic model of the array covariance matrix is
presented in Section 4.5.

3.3. Spherical Harmonic Decomposition

Using an SAA, the array covariance matrix and pressure are analyzed within the con-
text of spherical harmonic decomposition (SHD). In this section, the presented formulation
follows those given in [26,32–35]. The SHD model of the pressure signal p(k, r, Ω) for an
antenna array with harmonic order Nh and radius r is expressed using spherical Fourier
transform (SFT) approximation and the corresponding inverse [26]:

pnm(k, r) =
I

∑
i=1

αi p(k, r, Φi)[Ym
n (Φi)]

∗ (14)

and

p(k, r, Ω) =
Nh

∑
n=0

n

∑
m=−n

pnm(k, r)Ym
n (Ω), respectively (15)

where Ym
n (·) is the SH of degree m and order n [34,35]:

Ym
n (Ω) =

√
2n + 1

4π

(n−m)!
(n + m)!

Pm
n cos(cosθ)eiωφ (16)

pnm is the spherical harmonic domain coefficient, Φi is the coordinates of the antenna,
Ω = (θ, φ) is the direction of steering where the inverse SFT is formulated, and αi is a
sampling weight used to correct errors due to orthonormality. Moreover, Pm

n is associated
with Legendre polynomials, while (·)∗ represents the complex conjugate. The sampling
scheme defines the sampling weights, with the order defined by the number of elements
(check [25] for details). Uniform sampling is assumed throughout this paper; therefore, the
weight is reduced to αi = 4π/I. We also adopt harmonic coefficients (Nh + 1)2 = 16, where
the array harmonic order is Nh = 3, and radius r = 8.4 cm, depending on the antenna array
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under consideration. In spherical arrays, whenever kr > Nh, spatial sampling occurs [25].
The noiseless pressure in the spherical harmonic domain is expressed in matrix form as [26]

Pnm(kr) = YH(Φ)ΓY(Φ)B(kr)YH(Ω)s(k) = B(kr)YH(Ω)s(k), (17)

where Γ = diag{[α1, α2, . . . , αI ]} is the sampling weights, YH(Φ)ΓY(Φ) = I, and
Φ = [Φ1, . . . , ΦI] is the position of the element within the angular coordinates. The left-
hand side of Equation (17) is the vectorized form of SH coefficients, i.e.,

Pnm(kr) = [p0,0, p1,−1, p1,0, p1,1, ..., pNh, Nh ]T , (18)

k and r are not included for brevity’s sake, and SH are presented in matrix form as

Y(Ω) =



Y0
0(Ω1), Y0

0(Ω2) · · · Y0
0(Ωu),

Y−1
1 (Ω1), Y−1

1 (Ω2) · · · Y−1
1 (Ωu),

Y0
1(Ω1), Y0

1(Ω2) · · · Y0
1(Ωu),

Y1
1(Ω1), Y1

1(Ω2) · · · Y1
1(Ωu),

...
...

...
...

YNh
Nh
(Ω1), YNh

Nh
(Ω2) · · · YNh

Nh
(Ωu),



T

(19)

Hence, antenna-array-dependent coefficients are described using a diagonal matrix:

B(kr) = diag{[b0(kr), b1(kr), b2(kr), b3(kr), . . . , bN(kr)]} (20)

where each array-dependent coefficient in the case of a rigid sphere is [19]

bn(kr) = 4πin
(

jn(kr)− j′n(kr)hn(kr)
hn′(kr)

)
(21)

hn, jn, hn′ , and jn′ represent the Hankel and Bessel functions and the corresponding
derivatives with respect to kr, respectively.

3.4. Spherical Antenna Array (SAA) with Spherical Harmonic Decomposition (SHD)

The application of theoretical discrete spherical harmonic transformation (SHT) to the
receptions of a real antenna array as in Equation (15) leads to serious loss of accuracy in the
transformed coefficients, as compared to the theoretical result of the antenna array of equal
specifications to the actual one [11,12,25]. This is because of the differences between the real
antenna array and the theoretical antenna array model, such as calibration errors between
antenna elements and antenna mutual coupling effects and positioning error. Conversely,
the SHT performance approximates the theoretical counterpart using real array calibration
measurements in an anechoic chamber.

The SHT of Equation (15) is expressed as an array of encoding filters, and the equal-
ization with inverse modal weights B−1 can be optimally obtained within the context of
least-squares. This is the same as the challenge faced when trying to obtain the spherical
steering vector that is optimal w.r.t. the measured properties of the array. In this work,
such a measurement-dependent steering vector is adapted. Section 5.3 presents the SAA
measurement procedure under consideration.

Let Ŷ(Ω) represent the measurement steering vector. In an ideal scenario, by approxi-
mation, the steering vector is equal to the theoretical steering vector for a plane wave in the
transform domain

ŶH
(Ω) ≈ YH(Ω) (22)
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Equation (17) is the response of a theoretically transformed antenna array, and after
equalization, it can be incorporated into the components

ŶH
(Ω) =

(
B−1YH(Φ)Γφ

)(
Y(Φ)BYH(Ω)

)
= Wench(Ω) (23)

where h(Ω) represents the array response vector to the Ω direction or the steering vec-
tor, and Wenc is the encoding matrix that implements the equalization and SHT. Ideally,
B−1YH(Φ)ΓφY(Φ)B = I, and Equation (22) holds correctly. In a practical situation, both
the interpolated array response for an arbitrary Ω and encoding filters can be calculated
from response measurements in L directions Ψ = [Ψ1, . . . , ΨL] arranged uniformly in a
grid. We can then compute the encoding filters using the solution of regularized weighted
least-squares from measurements [34–36]:

Ŵenc(k) = YH(Ψ)ΓψĤH
(k)
(

Ĥ(k)ΓψĤH
(k) + β(k)I

)−1
(24)

where Γψ is the correct weight for the measurement grid, and Ĥ(k) =
[
ĥ1, . . . , ĥL

]
is the

set of array-measured snapshots at frequency k in the direction Ψ, while β is a set of
regularization parameters. In this study, we computed the weights of Γψ via the areas of
spherical Voronoi cells of the measurement grid.

In order to acquire the steering vector h(Ω) of the antenna array with high accuracy in
any direction, spherical interpolation was conducted through the expansion of the steering
vector as a function of its measured spherical harmonic coefficients, as the SH matrices Y
are computed up to an order driven by the measurement number. It is discovered that an
accurate truncation order Ntr is accurately described by (Ntr + 1)2 = L/4 for a regular grid.
By visual inspection of the energy of spherical harmonic coefficients, it can be deduced that
coefficients above this truncation order approach the noise level. Combining Equations (24)
and (25), the final interpolated spherical harmonic coefficients arrived at are

ĥ(k, Ω) =
(

YH(Ψ)ΓψĤT
(k)
)T

YH(Ω) (25)

ŶH
(k, Ω) = Ŵenc(k)ĥ(k, Ω). (26)

4. DoA Estimation

Five DoA estimation methods are presented in this section. MUSIC, PWD, WSF, and
both deterministic (D) and stochastic (S) ML techniques were adapted in the analysis of
signals using an SAA for the first time in this work. WSF is the large sample approximation
of the SML technique, as mentioned earlier.

There exist major differences between WSF, MUSIC, PWD, and ML techniques. Apart
from the fact that PWD and MUSIC are not ML techniques, an advantage is that in WSF
and ML, one can freely choose both the noise and signal model. In MUSIC, PWD, and
other related techniques, we have to look for U maxima from a spatial spectrum of D
size, while in maximum likelihood techniques, we only look for a single minimum (or
equivalent maximum) from an estimation function of U × D size. It then emerges that ML
techniques suffer from the dimensionality curse very quickly as U rises. An extensive search
in this greater-dimensional space is computationally forbidden, but nonlinear optimization
algorithms are often used to evaluate the minimum within a considerable period. The
nonlinear optimization algorithms for WSF and ML techniques are presented in Section 5.1.

Two scenarios are of interest: analysis of signals in a single frequency and wideband
analysis of signals. In the case of wideband analysis, a time-domain smoothing algorithm is
applied, as in [26,35], which is briefly reviewed in this section. In narrowband analysis, the
smoothing algorithm does not provide any advantages, because the signals are coherent.
Hence, analysis is conducted for spherical harmonic coefficients in the frequency domain.
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4.1. Smoothing in Time Domain

The formulations in [26] are followed in the processing of SH domain coefficients. The
normalized spherical harmonic coefficients are achieved by multiplication of the left-hand
side of Equation (17) by B−1(kr), which results in

qnm(k) = YH(Ω)s(k) + z(k), (27)

where z(k) = B−1YH(Φ)Γn(k). The covariance matrix of the array in this scenario is
expressed as

Raa(k) = YH(Ω)Rss(k)Y(Ω) + Rzz(k) (28)

while the covariance matrix of the noise is

Rzz(k) = σ2I
∣∣∣∣∣∣B−1(kr)YH(Φ)Γ||2 (29)

which depends on k, and ||·|| is the Frobenius norm. The corresponding time-domain
representation of qnm(k) is obtained through the inverse Fourier transform F−1{·} as
qnm(t) = F−1{qnm(k)}. Nevertheless, multiplying by B−1 results in unwanted noise
amplification in some frequencies [26]. Hence, the same equalization is used in time-
domain smoothing, as given in [26]:

Heq(k) =

[
σ2

γ

Nh

∑
n=0

n

∑
m=−n

||B−1(kr)Y(Φ)Γ||2
]− 1

2

(30)

where σ2

γ is the constant normalization factor that is the same for all frequencies. In the case
of the antenna array considered in this work, the Heq(k) magnitude response has the shape
of a high-pass filter. As a result of equalization, the frequency-domain covariance matrix of
the array is

R̃aa(k) = YH(Ω)R̃ss(k)Y(Ω) + R̃zz(k) (31)

where
R̃zz(k) = ||H eq(k) ||

2Rzz(k) (32)

R̃ss(k) = R
{

s(k)sH(k) = ||H eq(k) ||
2Rss(k) (33)

and it represents the equalized forms of variables possessing ·̃. In our estimation, it
is assumed that the noise matrix in the time-domain form is spatially white and time-
independent (i.e., Rzz(t) = R̃zz = σ̃2

a I, and σ̃2
a is the equalized variance).

The covariance matrix estimate of the array for N snapshots (time instant t1, . . . , tN) is

R̂aa = 1/N
N

∑
i=1

q̃(ti)q̃
H(ti), (34)

q̃nm(t) = F−1{Heq(k)q̃nm(k)
}

denotes the equalized time-domain spherical harmonic
coefficients.

The performance in single-frequency bins is also of interest in this work. We introduce
spatial whitening to the steering vectors and covariance matrix estimate in the frequency-
domain estimate as in [26]. Therefore, other formulations in this section are provided for
time-domain smoothing and are equal to the frequency-domain smoothing equivalent
if each whitened form is a substitute for the steering vectors and the covariance matrix
estimate.
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4.2. Steering Vector

The Hermitian transpose of Equation (19) is the steering matrix or vector employed in
all of the estimation techniques. For instance, in WSF and ML techniques, the matrix form
of the three-signal scenario is the following:

Y(Ω) =

[
Y0

0 (Ω1), Y−1
1 (Ω1), Y0

1 (Ω1), Y1
1 (Ω1), · · · Y3

3 (Ω1)

Y0
0 (Ω2), Y−1

1 (Ω2), Y0
1 (Ω2), Y1

1 (Ω2), · · · Y3
3 (Ω2)

]
(35)

The number of harmonic components is (Nh + 1)2 = 16, because only two signals Ω1
and Ω2 are present, in contrast to PWD and MUSIC, whose steering is consistently 1-D
with the form

Y(Ω) =
[
Y0

0 (Ω), Y−1
1 (Ω), Y0

1 (Ω), Y1
1 (Ω), . . . , Y3

3 (Ω)
]
. (36)

The above matrices show the basic difference between the 2-D and 1-D search space
used for WSF, ML techniques, and spectral-based techniques, respectively.

For WSF and ML techniques, the localization function P(Ω) is 2U-dimensional because
Ω has U azimuth and elevation values. The localization function of the minimum argument
for WSF and ML techniques produces DoA estimates:

^
Ω = argmin

Ω
{P(Ω)}. (37)

The localization function P(Ω) for spectral-based techniques is 2-D, because Ω has
two dimensions: azimuth and elevation. Spectral-based techniques for DoA estimates are
the U highest local minima in P(Ω).

4.3. Beamforming

For many decades, beamforming has been a well-known technique for the estimation
of direction [30]. PWD is a frequently used beamformer [37]. PWD has a maximum rejection
characteristic of isotropic spatial noise and is expressed over frequencies k = 1, . . . , K as

ŷ(Ω) =
1
K

K

∑
k=1

W(k, Ω)p̂nm(k). (38)

where p̂nm(k) is the noisy form of Equation (18), and the weighting is

W(k, Ω) =
4π

(Nh + 1)2 Y(Ω)B−1(kr),

and the unity beamformer in the look direction is ensured by the first term. This given
PWD does not whiten the noise and hence exhibits poor performance in the wideband
scenario. However, noise whitening can be implemented as given in [19].

PWD can be implemented here using time-domain smoothing as

ŷ(Ω) =
1
N

N

∑
i=1

YH(Ω)q̃nm(ti), (39)

The output energy of the time-domain beamformer at Ω is

PPWD(Ω) = ||ŷ (Ω) ||2 = Y(Ω)R̂aaYH(Ω), (40)

where R̂aa is the estimated covariance matrix of the array defined in Equation (34).
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4.4. MUSIC

Another important DoA estimation method is MUSIC [11,16]. The MUSIC spatial
spectrum is computed as

PMUSIC(Ω) =
1∣∣∣∣∣∣EH

n YH(Ω) ||2
(41)

where En is the noise matrix of the array obtained from eigenvalue decomposition of
covariance matrix estimate R̂aa as

R̂aa = EλEH = EsλsEH
s + EnλnEH

n (42)

where λ represents the eigenvalue matrix, E incorporates the right eigenvectors, and
subscripts n and s are the noise and signal subspace, respectively. MUSIC needs a covariance
matrix with a full-rank signal. Hence, when we employ MUSIC in localizing U signals,
the covariance matrix of the estimated signal should have U eigenvalues that differ from
the noise. However, if there are few snapshots or coherent signals of the array covariance
matrix, this assumption does not hold. The snapshot refers to frequency- and time-domain
spherical harmonic coefficients.

4.5. ML Techniques

Generally, ML techniques are used in many estimation scenarios. Readers are referred
to [11] for a basic review of ML methods. The ML technique requires both noise and signal
models. These models depend on the parameters estimated by the ML technique. Finding
the parameters of the models that will mostly explain the observed data is the problem in
ML estimation. This paper applies two earlier developed ML techniques in the subspace
domain to SAA processing.

4.5.1. Stochastic ML Technique

Stochastic ML (SML) is the first ML technique with the assumption that signals are
stochastic in nature and are stochastically processed. In the case of time-domain smoothing,
the array covariance matrix is

R̃aa = YH(Ω)R̃ssY(Ω) + σ̃2
a I (43)

For time instant ti = t1, . . . , tN , the SML probability density function is given as

p
(

ÃN/Ω, R̃ss, σ̃2
a

)
=

N

∏
i=1

1

π(Nh+1)2
∣∣∣R̃aa

∣∣∣ exp(−q̃H(ti)R̃aa
−1q̃(ti) (44)

where R̃aa denotes the modeled covariance matrix of the antenna array, |·| is the matrix
determinant, and ÃN = [q̃(ti), . . . , q̃(tN)] are equalized SH coefficients in the time domain.

Usually, in ML techniques, we find the solution from the negative log-likelihood for
SML as

log
(

p
(

ÃN/Ω, R̃ss, σ̃2
a

))
= log

∣∣∣R̃aa

∣∣∣+ Tr
{

R̃aa
−1R̂aa

}
(45)

The negative log-likelihood solution with respect to S, σ2 ([31] provides the details),
results in

R̃ss(Ω) = Y†
(

R̂aa − σ̃2
a (Ω)I

)
Y†H(Ω) (46)

and
σ̃2

a (Ω) =
1

(Nh + 1)2 −U
Tr
{

PY(Ω)R̂aa
}

, (47)

respectively, where
PY(Ω) = I− YH(Ω)Y†(Ω) (48)
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and
Y†(Ω) =

(
Y(Ω)YH(Ω)

)−1
Y(Ω) (49)

are the orthogonal projector and the pseudo-inverse of Y(Ω) onto the null space of YH(Ω),
respectively. The SML localization function, as in [31], is

PSML(Ω) = log
{∣∣∣Y(Ω)Rss(Ω)YH(Ω) + σ̃2

a (Ω)I
∣∣∣} (50)

4.5.2. Deterministic ML Technique

There are no assumptions regarding signal waveforms for the deterministic ML (DML)
model (i.e., average signal waveforms have this form: E{q̃(ti)} = YH(Ω)s̃(ti)). The
covariance matrix of the array depends on the noise term

R = E
{
(q̃(ti)− E{q̃(ti)})

(
q̃
(
tj
)
− E

{
q̃
(
tj
)})H

}
= σ̃2

a I (51)

when the average signal waveform is derived from the signals. According to [31], the DML
likelihood function for different snapshots is expressed as

p

(
ÃN
Ω

, S̃N , σ̃2
a

)
=

N

∏
i=1

1
πσ̃2

a I
× exp

− q̃(ti)− YH(Ω)s̃(ti))
H
(

q̃(ti)− YH(Ω)s̃(ti)
)

σ̃2
a

 (52)

where S̃N = [̃s(ti), . . . , s̃(tN)] are signals due to multipath. Setting Ω and S̃N constant from
the negative log-likelihood, the variance can be computed as in [31]:

σ̂2
a =

1

(Nh + 1)2 Tr
{

PY(Ω)R̂aa
}

. (53)

The localization function and signal estimates can be deduced using the negative
log-likelihood, which gives rise to a nonlinear least-square problem [31]:

PDML(Ω) = Tr
{

PY(Ω)R̂aa
}

(54)

and
ŜN = Y†(Ω)ÃN (55)

respectively.
Asymptotically, MUSIC is equivalent to DML for large sizes of samples and uncorre-

lated signals [31] (i.e., in the incoherent case).

4.6. Weighted Subspace Fitting Technique

Subspace fitting techniques are suboptimal approximations of the aforementioned
ML techniques. They are useful because they have less computational complexity than
maximum likelihood techniques. Furthermore, for larger sample sizes, if certain conditions
are met, they are asymptotically the same as ML techniques [31].

The WSF technique is a larger sample approximation of the SML technique, whose
localization function is presented as [31]

PWSF(Ω) = Tr
{

PY(Ω)ÊsWÊH
s

}
, W = λ̂2λ−1

s (56)

where λ̂ =
(
λs − σ̂2I

)
, λs denotes the signal eigenvalue matrix, and σ̂2 = 1

(Nh+1)2 ∑ diag{λn}

defines the average of the (Nh + 1)2 −U lowest eigenvalues. This weighting provides the
least asymptotic error variance, as depicted in [31].
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4.7. Estimation Accuracy: Cramér–Rao Lower Bound

Estimation theory provides performance metrics for techniques by comparing their
covariance estimation error against a theoretical lower bound. The Cramér–Rao lower
bound (CRLB) is a generally employed bound for the estimation of covariance matrix
error [16], [31].

For the scenarios considered in this paper, the error covariance of unbiased estimate

Ω̂, i.e., E
{

^
Ω

}
= Ω, is bound by

E
{(

Ω− Ω̂
)(

Ω− Ω̂
)T
}
=

−E

∂2 log
(

p
(

ÃN/Ω
))

∂Ω∂ΩT


−1

(57)

For compactness purposes, Ω and k are excluded from the notation in the following.
The above provides the stochastic CRLB by substituting the SML probability density
function into Equation (44):

{CRLBsto}ij =
σ̃2

a
2

[
<
{

Tr
{

YjPYYH
i R̃ssYR̃aa

−1YHR̃ss

}}]−1
(58)

where Yi is the partial derivative of Y with respect to the ith element in Ω and defined as

Yi =
∂Y

∂Ωi
(59)

Yi elements are the SH partial derivatives with respect to elevation angle θ and azimuth
angle φ and expressed as

∂Ym
n (Ω)
∂θ = −

√
(2n+1)(n−m)!

4π(n+m)! e−imφ csc(θ)

×
[
(n + 1) cos(θ)Pm

n (cos(θ)) + (m− n− 1)Pm
n+1(cos(θ))

] (60)

and
∂Ym

n (Ω)

∂φ
= imYm

n (Ω), (61)

respectively, and csc(·) denotes the cosecant trigonometric function. All of the partial
derivatives are presented in the literature (e.g., MATHEMATICA). The CRLB for a single
stochastic source in the spherical harmonic domain is given in [35]. The DML probability
density function in Equation (52) can be substituted into Equation (55) to provide the
deterministic CRLB [25]:

{CRLBdet}ij =
σ̃2

a
2

[
<
{

Tr
{

YjPYYH
i R̃ss

}}]−1
(62)

4.8. Signal Detection

Knowledge of the number of signals U is a requirement in DoA estimation. Various
techniques used for the computation of the number of signals (i.e., detection) have been
given; therefore, readers are encouraged to visit [30] for details. Certain signal detection
techniques estimate the subspace dimension from the eigenvalue matrix, for instance,
by statistically testing the number of eigenvalues belonging to the noise space [31]. For
partially correlated source signal detection, the best methods are model-based methods,
e.g., WSF detection and the generalized likelihood ratio test [31]. These methods estimate
the DoA and detect the number of U simultaneously. Furthermore, it is expected that these
approaches work very well for correlated or coherent signal detection. This paper does not
examine signal detection, but U is assumed to already exist as prior knowledge, just as in
previous works on this topic, such as [2,13,36–39].
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5. Numerical Experiments, Results, and Discussion

Simulations and experiments from measured data with an SAA configuration are
described in this section. We used a spherical array with 32 elements on the surface
of a rigid sphere in all cases considered. A well-detailed technical description, element
positions, etc., for the SAA are given in [3]. The results are examined on the basis of the
root-mean-square error (RMSE):

RMSE =

√√√√E
{
(Ω−

^
Ω

)(
Ω−

^
Ω

)T
}

, (63)

and consequently compared against the square root of CRLB. Furthermore, in all of the
simulations, we averaged the RMSE over 100 Monte Carlo samples.

The signal-to-noise ratio (SNR) is given in this paper as the space-domain SNR, which
implies SNR = 1/σ2 = σ−2. Nevertheless, a more defined SNR value is the effective
SNR, which can be computed as the relationship between the equalized noise variance and
equalized signal variance, i.e., SNRe =

∣∣∣∣∣∣s̃(k) ||2/σ̃2
a . In all cases considered in this paper,

we simulated the noise as space-domain i.i.d. complex Gaussian random variables with
variance σ2.

5.1. Using Nonlinear Optimization Techniques for Global Minimum/Maximum Search

The localization functions are nonlinear and consequently require the application of
nonlinear optimization techniques if simulation time is required. Similar to [31], this study
used a Newton-type search algorithm to find the minimum of WSF, DML, and SML localiza-
tion functions, where the LM (Levenberg–Marquardt) method is employed. Here, instead
of LM, we employed a quasi-Newton (QN) technique with the Broyden–Fletcher–Goldfarb–
Shanno (BFGS) algorithm, which performs a Hessian estimate by finite differences. The
QN technique was selected because it is available in MATLAB as the fminunc function.
The QN technique iteration is terminated if the change in estimated parameters and the
function value does not exceed 1× 10−10 between two or more successive iterations. In
addition, the allowable maximum iteration number is fixed at 30 for the QN technique.

The QN technique requires intelligent initial prediction for parameter estimation.
Thus, we initialized the parameters so that they were similar to true values by adopting
the estimate from the alternating projection (AP) algorithm. In practice, true values may
not be available; hence, we propose the approach in [31] as a suggestion. The DML, SML,
and WSF initial value was searched using the AP algorithm (i.e., a nonlinear optimization
algorithm) [17]. AP always converges to a local minimum and not the global minimum.
Moreover, here, we assumed the AP-based local minimum to be the global minimum of
the employed search grid. In addition, we used U + 2 iterations in the AP algorithm with
initialization and a grid of 50 resolution with respect to elevation and azimuth.

In all of the simulation scenarios, the QN technique and BFGS were used to estimate
the maxima of PWD together with MUSIC localization functions, and parameters were
initialized close to the true values. PWD and MUSIC can be initialized in practice from
individual spatial spectra by estimating the U highest local maxima. From the same
grid employed above in the alternating projection algorithm, these spatial spectra can be
computed.

5.2. Single Wideband Signal Scenario

A scenario where there is a single signal in a single time window was first simulated.
The length of the window N = 2048 and sampling frequency fs = 48 MHz. Furthermore,
the signal was simulated as a wideband plane wave s(t) = δ(t− 1024/ fs) with harmonic
order Nh = 3 and coming from Ω = (90, 0)◦. In addition, spherical harmonic coefficients
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in the time domain were computed as presented in Section 4.1 using an N-size discrete
Fourier transform. The signal covariance matrix for a plane wave is

R̃ss =
N

∑
k=1
||H u (k)||

2 , Eeq (64)

and Eeq ≈ 0.88 is the equalized signal energy in total.
The RMSE of an individual technique over 100 Monte Carlo samples for different

noise variances σ−2 is shown in Figure 3. Moreover, Figure 3 shows the theoretical CRLB
performance for the deterministic and stochastic cases. For one signal scenario, it can
be observed that both techniques have almost the same performance. The RMSE of the
techniques adheres to the CRLB when SNR ≤ −10 dB. The elevation angle estimation has
a smaller RMSE, just as in the CRLB prediction.
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5.3. Two Wideband Signals

Four cases were simulated in the second example, where two signals arrive during
the same time window. Likewise, as shown in [26], two wideband signals were simu-
lated with one signal delayed by d samples; i.e., the first and second delayed signals
are s1(t) = δ(t− 1024/ fs) and s2(t) = δ(t− (1024 + d)/ fs), respectively. When the delay
approaches zero, the signal covariance matrix is coherent, and when d is increased, the
covariance matrix of the signal is incoherent. The four delays considered here are d = 0,
d = 0.5, d = 1, and d = 8 samples, and the covariance matrices of the signals are

R̃ss = Eeq

[
1 1
1 1

]
, R̃ss = Eeq

[
1 0.85

0.85 1

]
, R̃ss = Eeq

[
1 0.5

0.5 1

]
, and R̃ss = Eeq

[
1 −0.04
−0.04 0.97

]
(65)

respectively.
The two signals were simulated as plane waves with DoAs Ω1 = (90, 0)◦ and

Ω2 = (90, φ2)
◦ and with harmonic order Nh = 3, and the second plane-wave direction

was changed with 21+nk×0.2, where nk = 0, 0.5, 1, . . . , 7(◦). The value of SNR was then
set at 20 dB. The SH coefficients in the time domain were computed as in the previous
section and windowed by Nw = 35 samples of a lengthy rectangular window. The window
was concentrated around the first signal at 1024/ fs. As a result, the covariance matrix
estimate of the array was averaged with the time domain Nw = 35 samples, as given in
Equation (34).
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The RMSEs for CRLB and all of the techniques over 100 Monte Carlo samples against
φ2 when SNR = 20 dB and the second signal is delayed by d samples are shown in Figure 4.
Firstly, it can be observed that PWD performs poorly in the estimation of DoA of multiple
signals because its φ2 increases as its RMSE increases. This can be interpreted as a bias
in estimation: the PWD global maximum is found in between the true values, and the
second maximum is 180◦ apart from the second one; the two signals generate a maximum
in the spatial spectrum of PWD in between the true values of φ1 and φ2. Due to the large
energy that this maximum has, RMSE is lower than CRLB, φ2 ≤ 3◦ with d = 0. In addition,
the next PWD spectrum maximum is generated by the steering vector’s conjugate value
that generated that global maximum. MUSIC has an identical profile to PWD, and its
estimation is identically biased when d = 0. Similarly, MUSIC and PWD performance
improves slightly when φ2 > 60◦. Consequently, the segregation is longer than the Rayleigh
resolution 180◦/Nh = 60◦, and the techniques segregate the two signals. Nonetheless,
estimates of PWD and MUSIC are also biased when φ2 > 60◦.

WSF and ML techniques result in smaller values than CRLB in the case of coherence
when φ2 ≤ 3◦, that is, at d = 0. This is because of the bias in estimation. All of the
techniques have their global minimum within the true values and showcase compelling
proof for a biased estimate, as in PWD. Hence, the information in second-order covariance
matrix moments is highly coherent for an estimation that is not biased when φ2 ≤ 3◦ and
d = 0. Firstly, the steering vectors are identical when signals come from various directions
that are close to each other. Secondly, the signals are coherent. Obtaining better and quality
performance when φ2 ≤ 3◦ would require more antenna elements. When d = 0, for φ2 > 3◦,
WSF and ML techniques clearly perform better than MUSIC or PWD and follow the CLRB.

WSF and ML techniques share the same performance in the partially correlated cases,
i.e., d = 0.5 and d = 1. WSF and ML techniques have slightly lower RMSE than MUSIC. This
means that, in partially correlated cases, WSF and ML techniques have better performance
than MUSIC. ML techniques, WSF, and MUSIC share the same performance in the almost-
incoherent scenario with d = 8. The performance of PWD when d = 0 is identical to that
when d = 0.5, d = 1, and d = 8.

Low variance is assumed by CRLB [26]. Based on [31], RMSE and CRLB agree by
approximation when the DoA theoretical standard deviation of the signals is less than the
half-angle of separation. This also holds for the cases studied. When φ2 = 3◦ and d = 0,
the CRLB is 2.1◦ for the first signal and 2.3◦ for the second signal, which is higher than half
of the separation angle 3/2 = 1.5◦.
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Figure 4. Monte Carlo samples against φ2 when SNR = 20 dB and the second signal is delayed
by d samples. (a) φ̂1, d = 0 (b) φ̂2, d = 0 (c) φ̂1 d = 0.5 (d) φ̂2, d = 0.5 (e) φ̂1, d = 1 (f) φ̂2, d = 1
(g) φ̂1, d = 8 (h) φ̂2, d = 8.
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5.4. Two Signals in One Frequency

Here, the techniques’ performance based on a single frequency is examined. The noise
is whitened, as stated above, because of the applied frequency-domain processing [25]. That
is, the steering vectors and whitened frequency-domain covariance matrix are employed
against the time-domain forms (Equation (27)). Spatial aliasing should be considered when
estimating DoA with an SAA in a single frequency. Typically, when kr > Nh, spatial
aliasing exists in high frequencies [36]. However, WSF and ML techniques are not affected
by spatial aliasing, because B(kr) does not have any zeros (i.e., continuous), and Y(Ω) and
Y(Φ) are the same for all of the frequencies.

When we conduct an analysis of signals in a single frequency, the resulting unavoid-
ably coherent covariance matrix is

R̃ss(k) = ||H eq(k) ||
2
[

1 1
1 1

]
, (66)

and the covariance matrix estimate of the array becomes

R̂aa(k) = q̃(k)q̃H(k). (67)

In this simulation, the frequencies chosen are the resonant frequencies that fall within
a band. It is worth mentioning that covariance matrices of the array are not averaged
over the chosen band, but we examined the performance in single frequencies, as given in
Equation (62).

Wideband signals were simulated with d = 0, N = 2048, Nh = 3, and 20 dB SNR.
The SH coefficients in the frequency domain were estimated by Equation (27) through
the discrete Fourier transform (DFT), and frequency bins closest to frequencies f were
adopted in this analysis. The resolution of the frequency is fs/N, and the bandwidth of
each frequency analyzed is about 2 GHz due to windowing “spectral leakage” or aliasing.

Figure 5 shows the simulation results for different frequencies. The techniques exhibit
identical performance to that in the wideband scenario when = 8 GHz, f = 16 GHz,
and f = 32 GHz, but f = 16 GHz performs best. The reason why CRLB > RMSE when
f = 16 GHz, f = 32 GHz, f = 40 GHz, and f = 75 GHz is the same as in the aforemen-
tioned wideband scenario. This indicates that the difference between the covariance matrix
of signals is coherent, and the steering vectors of signals impinging from that angle are
small. MUSIC and PWD share the same problems in the single-frequency scenario as in the
wideband scenario when d = 0.

Furthermore, when = 900 MHz, f = 2 GHz, and f = 4 GHz, the estimations from
all of the techniques are biased, as RMSE has an average of around 2◦ for all φ2 values.
At these frequencies, half of the separation angle is lower than CRLB for all separation
angles studied. Therefore, we expect RMSE and CRLB not to meet when there is high
error variance. The poor effective SNR causes poor performance in these frequencies. The
effective SNR in low frequencies is smaller than in higher frequencies because of the array
geometry.

Figure 6 shows the simulation result for RMSE against SNR for MUSIC, PWD, DML,
SML, and WSF. WSF shows better performance in the low-SNR regime. DML and SML
show a high level of similarity to WSF. DML and WSF show greater performance than
SML. This is because SML converges to a local minimum but does not exhibit convergence
to the global minimum. MUSIC and PWD exhibit worse performance compared to other
techniques, as in other cases. WSF and DML exhibit identical behavior. Hence, they
are good choices in multiple signal analysis, especially in the single-frequency analysis.
Furthermore, WSF is more computationally efficient for large U than DML. In the wideband
scenario, there will be no wide gap in the performance of any of the techniques.
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Generally, in this paper, the results obtained reveal that all of the techniques studied
perform well for a single signal in the analysis window. However, if there are two highly
correlated signals, both MUSIC and PWD estimations are biased, and ML techniques are
better choices by far. All of the techniques improve when smoothing is utilized, which is
depicted in Figure 4. In addition, the performance of all techniques would be improved if
frequency-domain smoothing were applied in a manner similar to time-domain smoothing.
Furthermore, for lower frequencies (f ≤ 900 MHz), the DoA estimation performance is
poor. If correct windowing is used at the lowest frequencies, the estimate suffers the same
problems as that at low frequencies. Therefore, an SAA with a larger radius should be used
for multiple coherent signals in low frequencies.

As shown here, the DoA estimation performance of many electromagnetic waves with
a rigid sphere is a function of the frequency analyzed. In addition, the estimation accuracy
in a particular frequency is affected by the sphere radius, as depicted by CRLB. For the
present SAA radius of 8.4 cm, the most accurate performance was achieved at 16 GHz. If
similar performance is required, for example, at about 4 GHz, then a larger radius is needed.
Therefore, better performance is achieved in lower frequencies as the radius becomes larger.

Finally, in order to fulfill advancing technology standards, particular elements are
positioned in the systems. The distance between the elements becomes smaller, which
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leads to strong mutual coupling with poor impedance matching and radiation performance.
Incorporating the mutual coupling effect existing between elements, experimentally mea-
sured data, which are the ground truth to test any procedure, were used to evaluate all of
the methods. Hence, experimental measurement data were further used for performance
evaluation and analysis. The SAA was situated at the center of the anechoic chamber, and
the source was positioned at 74 DoAs, which were obtained from different combinations of
4 different elevations and 18 different azimuths. We chose the azimuths from 5 degrees to
365 degrees with 20 degrees as a step size. For detailed information on the measurement
architecture, readers are referred to the previous paper [40], where the measured data were
first published. Gross error (GE) performance evaluation metrics were equally employed to
evaluate the methods. The comparison of performance between MUSIC, PWD, DML, SML,
and WSF is shown in Figure 7. The WSF exhibits better performance. Both SML and DML
show a high degree of similarity to WSF, but WSF and DML perform better than SML. This
may be because SML converges to a local minimum but does not converge to the global
minimum. PWD and MUSIC have worse performance compared to the other methods.
Therefore, DML and WSF are good for the analysis of multiple signals, particularly in
single-frequency analysis.
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6. Conclusions

DoA estimation of electromagnetic waves impinging on an SAA with a small number
of snapshots was investigated. This paper studies DoA estimation of electromagnetic
(EM) waves impinging on an SAA in short time windows, which finds applications in
spacecraft and satellite communication. These techniques can avoid smoothing operations
and cope with coherent signals. Multipath signal analysis in a short time window is
of particular interest in this paper. Previously, ML techniques have been used within
linear and planar antenna array configurations, but this paper presents them within the
confines of an SAA configuration. Numerical computer simulations were conducted
using the RMSE versus the square root of CRLB to evaluate the performance of MUSIC,
PWD beamformer, stochastic and deterministic ML, and the subspace technique WSF (a
large sample stochastic ML approximation) in direction estimation using an SAA. The
results obtained indicate that the WSF and ML methods perform better than MUSIC and
PWD in the coherent or partially correlated signals studied. They correctly estimated
the DoA of various signals with adequate resolution, in contrast to PWD and MUSIC.
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Furthermore, deterministic ML or WSF performed better than stochastic ML because of
lower convergence probability. For example, when = 900 MHz, f = 2 GHz, and f = 4 GHz,
the estimation from all of the techniques was biased, as RMSE had an average of around 2◦

for all φ2 values. At these frequencies, half of the separation angle was lower than CRLB
for all the separation angles studied. Therefore, we expect RMSE and CRLB not to meet
when there is high error variance. The poor effective SNR causes poor performance in these
frequencies. The effective SNR in low frequencies is smaller than in higher frequencies
because of the array geometry. Therefore, ML techniques are good candidates for DoA
estimation of electromagnetic waves impinging on an SAA, while WSF is a better choice if
the computational complexity factor is of great importance.

In spite of the results presented in this study, there are a number of concerns that
should be investigated in the future. For instance, we hope to further extend this work to
the calibration and measurement of time delay in various applications, compare them to
the state-of-the-art in terms of computational complexity, and evaluate their robustness
to confounding factors that inevitably lead to alterations in practical SAA applications.
Therefore, ML techniques, particularly DML and/or WSF, may spur positive development
in SAA processing and its related applications, such as mobile communication systems,
aerospace, and radar systems.
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