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Abstract: In the development of radiofrequency fingerprinting (RFF), one of the major challenges
is to extract subtle and robust features from transmitted signals of wireless devices to be used in
accurate identification of possible threats to the wireless network. To overcome this challenge, the
use of the transient region of the transmitted signals could be one of the best options. For an efficient
transient-based RFF, it is also necessary to accurately and precisely estimate the transient region of the
signal. Here, the most important difficulty can be attributed to the detection of the transient starting
point. Thus, several methods have been developed to detect transient start in the literature. Among
them, the energy criterion method based on the instantaneous amplitude characteristics (EC-a) was
shown to be superior in a recent study. The study reported the performance of the EC-a method for
a set of Wi-Fi signals captured from a particular Wi-Fi device brand. However, since the transient
pattern varies according to the type of wireless device, the device diversity needs to be increased to
achieve more reliable results. Therefore, this study is aimed at assessing the efficiency of the EC-a
method across a large set of Wi-Fi signals captured from various Wi-Fi devices for the first time. To
this end, Wi-Fi signals are first captured from smartphones of five brands, for a wide range of signal-
to-noise ratio (SNR) values defined as low (—3 to 5 dB), medium (5 to 15 dB), and high (15 to 30 dB).
Then, the performance of the EC-a method and well-known methods was comparatively assessed,
and the efficiency of the EC-a method was verified in terms of detection accuracy.

Keywords: RF fingerprinting; transient detection; energy criterion; Wi-Fi

1. Introduction

Today, several efficient wireless technologies have emerged to provide reliable com-
munication in wireless networks. One of the important concerns in such networks is to
prevent users within the network from conducting malicious attacks. Traditionally, this
concern can be addressed by using upper-layer security mechanisms in wireless networks.
However, due to the limitations in their implementation, physical-layer security methods
provide an alternative and efficient means of improving the security of the networks [1].

Radiofrequency fingerprinting (RFF) was recently proposed as a promising physical-
layer security method used in wireless networks. Basically, it identifies wireless devices
in the network through their unique or distinctive features (so-called RF fingerprints)
extracted from their analog signal waveform. Here, the uniqueness of the feature is related
to the imperfection in the analog components of a device [2]. Several methods in RFF have
subsequently been developed in the literature, as comprehensively presented in [3].

Typically, a system based on RFF consists of three main stages, namely, signal capturing
and preprocessing, feature extraction, and device classification. However, there are some
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major challenges in the development of RFF that need to be addressed. The first is related
to device diversity and the number of signals captured per device [4]. The second is related
to the data acquisition system where high- or low-end receivers are used. These types of re-
ceivers are complex, expensive, and memory-intensive because of the higher sampling rates
while recording signals [5]. The third major challenge is to extract the subtle and robust
features of the signals transmitted from wireless devices, as this directly affects the perfor-
mance of device classification. To address this challenge, researchers have mainly used two
different regions of the transmitted signals over the course of many years: (a) the steady-
state/preamble region of the signals emitted from 802.11a OFDM Ethernet devices [6,7],
UMTS user equipment (UE) devices [8,9], USRP transmitters/devices [10-12], the source
network interface card (NIC) [13], Cisco devices [14,15], RFID transponders [16], and MIMO
radios [17]; (b) the transient region of the signals emitted from radio transmitters [18-23],
Bluetooth transceivers [24], wireless sensor nodes [25,26], and smartphones [27-29].

In practice, the steady-state region of a transmitted signal depends on the transmitter
type. However, the instability in the steady-state region presents a significant drawback
for extracting robust features. On the other hand, the transient region commonly appears
in a wireless transmission of all transmitter types. When compared to the steady-state-
based RFF, the transient-based RFF offers higher performance only if the transient region
(signal) is precisely extracted. However, there are serious difficulties in extracting the
transient signal from the transmission because of the channel noise and short duration of
the transient signal. Consequently, the most important challenge in transient-based RFF can
be attributed to detection of the transient starting point. In the literature, several methods
have been proposed in order to efficiently detect the transient starting point [30-36].

1.1. Related Works

In order to detect the transient starting point, one of the earliest methods, known
as variance fractal dimension threshold detection (VFDTD), was proposed in [30]. In the
study, the efficiency of the method was tested by radio signals collected from eight different
radio transmitters. Mainly, the method is based on the idea that the transient signal can
be detected by means of the fractal dimension. In the first stage of the method, the fractal
dimension is calculated for each part of the signal segmented by a sliding window. In the
second stage, the transient starting point is detected by defining a threshold experimentally.
The threshold value here corresponds to the mean of the fractal dimension of channel noise.
In general, although the VFDTD method offers a high detection rate, it is computationally
complex, and it requires a thresholding mechanism.

Another transient detection method, known as the Bayesian step change detection
(BSCD), detects the transients by using a posterior probability distribution function as
presented in [31]. In the study, radio transmissions captured from 30 different transmitters
were used in order to test the efficiency of the method. Basically, the approach proposed
in the method is based on the use of Higuchi’s method [37] for calculating the variance
of fractal dimension for successive portions of the signal. Since the variance of fractal
dimension between two consecutive sequences is correlated to the probability density
function, the maximum value of the function is defined as the transient starting point. In
general, the method has a poor detection rate, and it is computationally complex. On the
other hand, as an advantage, it does not need a thresholding mechanism.

Another existing method is phase detection (PD) presented in [32], where the in-
stantaneous phase characteristics of the signal are calculated to detect the start point of
the transient. In the study, Bluetooth signals collected from three different Bluetooth
transceivers were used to evaluate the detection performance of the PD method. In the
first step of the PD method, the instantaneous phase of the signal is calculated. In the
following step, the calculated signal is unwrapped to remove the discontinuities. Then,
the absolute value of each element in the unwrapped vector is calculated, and, for each
successive portion, the variance of the phase characteristics is calculated. In the last step,
the fractal trajectory is created by obtaining the difference of the phase variance. In order
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to detect the start point of the transient, the first five elements in the fractal trajectory are
typically compared with a threshold value. The transient starting point is determined
when the considered elements of the fractal trajectory approach the threshold value. From
a general perspective, the method is simple, and it has a high detection rate. Yet, an accurate
threshold value is required in its proper implementation.

The Bayesian ramp change detection (BRCD) method, which is an improved version of
the BSCD method, also provides a means of transient starting point detection as presented
in [33]. In the study, 802.11b Wi-Fi signals collected from nine Wi-Fi radios were used
in order to verify the detection accuracy of the BRCD method. Fundamentally, the start
point of the transient is detected by a Bayesian change detector that estimates the time
instant when the power of the transmission signal is increased. Although it can be a better
option for transient starting point detection when compared to BSCD method, it still has
computational complexity, which leads to a significant drawback.

Moreover, the study presented in [34] proposed the mean change point detection
(MCPD) method to detect the transient starting point. In the study, Wi-Fi signals were
collected at different SNR levels (6 to 30 dB) from six different wireless network cards,
and the detection accuracy of the method was examined. Basically, the MCPD method
calculates the difference between the statistics of the signal samples. The maximum value of
the calculated differences then yields the starting point of the transient. Overall, it is simple
but accurate, and it does not need a thresholding mechanism. However, its computational
speed is an important concern.

Furthermore, the study presented in [35] proposed the permutation entropy (PE) and
generalized likelihood ratio test (GLRT) detector for detecting the start point of the transient.
In the study, GSM signals were collected from a mobile phone at different SNRs (0 to 25 dB)
to test the detection accuracy of the method. Essentially, in its initial stage, the difference
between the complexity of noise and signals is measured by utilizing the PE algorithm. In
order to obtain the PE trajectory of the timeseries, a sliding window is used. Hence, the
change point in the PE trajectory gives the start point of the transient which is determined
by means of a GLRT detector. From a general point of view, the method has a high detection
rate, especially at low SNRs. However, as a drawback, it has computational complexity.

A novel method that utilizes the energy criterion (EC) technique was recently proposed
in [36]. The idea of the method is to characterize the arrival of a signal by a variation of
its energy content. In this context, two methods are offered, namely, the instantaneous
amplitude characteristics-based energy criterion method (EC-4) and the instantaneous
phase characteristics-based energy criterion method (EC-@). In order to test the detection
accuracy of the methods, a dataset consisting of Wi-Fi signals collected from a smartphone
at different SNR levels (—3 to 25 dB) was created. Although both methods are simple and
provide a significant improvement in the detection accuracy and computational speed
when compared to other well-known methods, the EC-a2 method offers slightly better
performance than the EC-@ method under different noise conditions. Nevertheless, its
performance depends on the ¢ factor that enables reducing the delaying effect of the
negative trend in separating the signal from the noise part. For this reason, it needs to be
properly selected according to the SNR levels.

As a summary, the existing transient starting point detection methods are listed in
Table 1, where signal types along with the SNR levels, number of transmitters (devices),
and advantages and disadvantages of the methods are listed.
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Table 1. A summary of existing transient detection methods.
Method Signal Type Number of Devices SNR Advantages Disadvantages
Computationally
. 8 . . complex
FDTD [30 R . . A
\% [30] adio (Radio transmitter) N. Detection rate is high Needs a thresholding
mechanism
Detection rate is poor
. 30 Does not need a .
BSCD [31] Radio (Radio transmitter) NA threshold value Computationally
Complex
10 Detection rate is high Needs a threshold
PD[52] Bluetooth (Radio transmitter) NA Simple value
— 9 Does not need a Computationall
BRCD [33 2.11b Wi-F N NA p Y
CD [33] 80 - (Wi-Fi radio) threshold value complex
Detection rate is high
p— 6 Does not need a Computational time
MCPD [34 Wi-F 6 to 30 dB
[34] -t (WLAN card) 0 threshold value is moderate
Simple
1 Detection rate is high Ie tationall
PE & GLRT [35] GSM (Smartphone) 0to25dB Does not need a NN
P threshold value complex
Detection rate is high
- 1 Does not need a .
EC-a [36] Wi-Fi (Smartphone) —3to25dB threshold value Sensitive to ¢ factor
[ Simple

1.2. Aim of the Study and Contributions

Fundamentally, the transient pattern varies according to the type of wireless device.
Therefore, in order to reliably analyze the detection accuracy of transient starting point, it
is necessary to increase the device diversity. Otherwise, unreliable results are expected to
be obtained because of insufficient size and the limited variety of the data. This, in fact,
constitutes an important concern that needs to be addressed.

As can be deduced from the discussion of the previous subsection, the EC-2 method
has a significant advantage in terms of computational complexity and the detection per-
formance over the well-known methods. However, in [36], its performance was examined
for a set of Wi-Fi signals captured from a particular Wi-Fi device. Therefore, a serious
concern can arise regarding its performance when the device diversity is increased. In this
context, this study is devoted to resolving this concern by assessing the efficiency of the
EC-a method across a large set of Wi-Fi signals captured from various Wi-Fi devices. To this
end, the sets including Wi-Fi signals captured from the smartphones of five brands were
created. SNR levels between —3 to 30 dB were then added to the Wi-Fi signals in each set to
evaluate the effect of SNR on the transient start detection performance of the well-known
methods [30-32,34] in comparison with the EC-a method. Next, the performance of the
considered methods was comparatively assessed using the created datasets. According to
the comparison results, the efficiency of the EC-a method was verified. The block diagram
shown in Figure 1 depicts the overall process for the presented study.

Briefly, the contributions of this article are twofold:

(a) This is the first report that studies the validity of the EC-a method using large sets of
Wi-Fi signals captured from various Wi-Fi devices;

(b) By utilizing the large sets of Wi-Fi signals under different SNR levels, the transient
start detection performance of the well-known methods is comparatively assessed for
the first time in the literature.

The article is organized as follows: in Section 2, the data acquisition system used in
this study is introduced, the system setup and signal capturing are presented, and then
the signal preprocessing which is a crucial stage before the experiments is described. In
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Section 3, the EC-a method is explained briefly. The experiments conducted to assess
the transient starting point detection performance of the EC-a method along with the
well-known methods [30-32,34] under different SNR levels are presented in Section 4.
Conclusions are provided in the last section.

Data Acquisition |
|
|

Signal Hilbert ) . :
Capturing Transform Downconversion ‘— LPF P Normalization :
|
|
T Tt ST T T T T T T s T T T s T T T 1
| 1
Performance ! Performing PYPTY 1 Creating
Assessment Methods ngiNvoise Datasets

Experiments

Figure 1. Overall process for the presented study.

2. Data Acquisition
2.1. System Setup and Wi-Fi Signal Capturing

Data acquisition was performed in an isolated laboratory environment located on the
second underground floor of a nine-story building. Before the signal capturing process,
the electronic devices around the acquisition system in the laboratory were switched off in
order to avoid possible interferers.

The system setup used for data acquisition is shown in Figure 2. In order to capture
Wi-Fi signals, a high-end receiver (Tektronix TDS7404 oscilloscope) was used in the system.
A commercial Wi-Fi antenna connected to the oscilloscope was also used to collect the
signals. The collected signals were then transferred to a computer for storage and further
processing. The smartphone(s) used in the system was deployed 30 cm away from the
antenna. During the process, the flight mode of the smartphone was activated to make sure
that the undesired signals were not generated from the smartphone.

Wi-Fi Antenna

Figure 2. Data acquisition system.
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The signals were captured at 20 Gsps sampling rate from five smartphones with
different brands (Apple—iPhone 5, Samsung—Galaxy S8, Huawei—P Smart, Xiaomi—Mi
Al, and LeEco—Le Max 2). In order to minimize the impairments on distinctive transient
characteristics, down conversion was not used in the system. For each smartphone, sets of
100 Wi-Fi signals were recorded.

2.2. Preprocessing

After recording Wi-Fi signals, the undesired (spur) signals generated by the oscilloscope
were removed. To do this, the captured intermediate frequency (IF) was first transformed
into an analytical signal by using Hilbert transform (HT). Typically, for a real-valued discrete
signal recorded in the time domain, s; (), an analytical signal is written as

s(n) = se(n) + jH{st(n)}, 1)

where H{s; (1) } denotes the Hilbert transform of the s;(1). The analytical signal can also
be represented in terms of in-phase (I) and quadrature (Q) components as

s(n) = si(n) +jsq(n). €

The analytical IF signal was then down-converted to baseband using a complex
exponential with wg = 2.5 GHz. Next, a low-pass filter (LPF) with 90 MHz cutoff frequency
was applied in order to remove undesired frequency components. In the last step, the
signal was normalized for scaling purposes.

As an example, Figure 3 shows the recordings of Wi-Fi signals obtained after the
signal preprocessing stage. As can be deduced from the recordings, the smartphones
had different signal characteristics in terms of two critical information such as “leading
response” and “sharpness of transients”. As shown in the figure, only the signals emitted
from the smartphones such as Apple—iPhone 5 and Samsung—Galaxy S8 had a leading
response. Leading response can be defined as a weak signal which is observed before
the transient start [38]. This might cause a serious challenge while detecting the starting
point of Wi-Fi transients. On the other hand, only the transients of the signals emitted
from Xiaomi—Mi A1, Huawei—P Smart, and LeEco—Le Max 2 had sharp rising edges.
As an advantage, this information is expected to increase the detectability of transient
starting points. As an illustration, Figure 4 compares the recordings of Wi-Fi signals from
Apple—iPhone 5 and Xiaomi—MIi Al in order to clearly visualize the difference in the
signal characteristics.
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Figure 3. The recordings of Wi-Fi signals: (a) Apple—iPhone 5, (b) Samsung—Galaxy S8,
(c) Xiaomi—Mi A1, (d) Huawei—P Smart, and (e) LeEco—Le Max 2.
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Figure 4. Comparison of Wi-Fi signals in terms of leading response and sharpness of transients.
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3. Energy Criterion Method Based on the Instantaneous Amplitude Characteristics

The energy criterion (EC) is a basic method that is commonly used to detect the arrival
times of the electrical signals. In this method, the arrival of an electrical signal is assumed
to be characterized by a variation of its energy [39,40]. Simply, in order to implement the
EC method, the energy of a sampled signal (x) needs to be defined as a cumulative sum of
amplitude values.

E=Y! 2,i=1..,M, 3)

m=0 "M’
where M denotes the length of the signal. Here, the signal is then separated from its noise
part by

El=E-i6=Y (x; - ié), @)
where é denotes a negative trend, which is given as
Em

where ¢ is a factor that reduces the delaying effect of J, and the parameter ¢ varies according
to the total energy of the signal (Ejs). Hence, the arrival time of the signals is considered as
a global minimum of the calculated energy curve (E/).

Although the EC method has been applied for various applications so far, it was
recently proven that it could also be an efficient means of transient starting point detec-
tion [36]. The idea is based on the use of instantaneous amplitude characteristics of the
analytical signal to apply the EC method. In this context, a new method so called the EC-a
method is proposed. The implementation of the EC-a method is simple and straightforward.
In the first step, by referencing Equation (2), instantaneous amplitude characteristics of the
analytical signal (a(n)) are calculated [14].

a(n) = \/s1(n)* +sg(n)>. ©6)

In the second step, the calculated a(n) characteristics of the analytical signal are
utilized to determine the E! curve using Equations (3) and (4). In the curve, the global
minimum corresponds to the transient starting point. Nevertheless, the detection accuracy
is strictly dependent on the value of the ¢ factor. Specifically, when denoised data are used,
the global minimum value approaches the transient start if the ¢ factor is increased, such as
e A, where A = [1, 2, 3,...,100]. In other words, the value of the ¢ factor needs to be
selected as high as possible for better detection accuracy. On the other hand, when noisy
data are used, an optimum value of the @& factor needs to be defined by accounting for SNR
levels in order to improve the detection accuracy as discussed in [36].

4. Experimental Results and Discussion

The main motivation to conduct the experiments was to assess the transient starting
point detection performance of the EC-a2 method using sets of Wi-Fi signals captured from
five Wi-Fi devices under realistic noise conditions. It was also intended to evaluate the
effects of SNR on the transient detection performance of the EC-a method in comparison
with well-known methods [30-32,34]. To achieve these goals, the channel noise captured in
the data acquisition stage at different levels was randomly added into the Wi-Fi signals
collected for each smartphone. Three datasets with different SNR levels were then created
by varying SNR levels, which were defined as (a) low SNR (-3 to 5 dB), (b) medium SNR
(5to 15 dB), and (c) high SNR (15 to 30 dB). Next, the performance of the EC-a method and
well-known methods was comparatively assessed in terms of detection accuracy. In the
assessment, the absolute error metric was used as follows [36]:

Ap = |po—pl|/fy )
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where f; is the sampling frequency, p is the estimated start of the transient, and pg is
the actual start of the transient. The calculated transient starting point detection rates of
the methods for the datasets under low SNR, medium SNR, and high SNR are listed in
Tables 2—4, respectively.

Table 2. Transient starting point detection rates (%) at low SNR.

Method iPhone 5 Galaxy S8 P Smart Le Max 2 Mi A1
VEFDTD [30] 93.1 95.3 98.6 97.6 99.4
BSCD [31] 75.7 72.5 98.3 91.3 97.0
PD [32] 89.8 93.5 95.6 95.4 95.6
MCPD [34] 97.1 97.7 99.1 99.1 99.5
EC-a [36] 99.5 98.6 98.7 99.4 99.6

Table 3. Transient starting point detection rates (%) at medium SNR.

Method iPhone 5 Galaxy S8 P Smart Le Max 2 Mi A1
VEDTD [30] 97.0 97.6 99.6 99.1 98.9
BSCD [31] 85.8 77.4 98.2 97.0 97.3
PD [32] 94.6 96.4 97.8 98.2 98.7
MCPD [34] 95.8 93.2 98.5 98.9 98.6
EC-a [36] 99.5 99.4 98.6 99.4 99.5

Table 4. Transient starting point detection rates (%) at high SNR.

Method iPhone 5 Galaxy S8 P Smart Le Max 2 Mi A1
VEDTD [30] 98.0 98.4 99.7 99.1 98.7
BSCD [31] 87.8 73.5 98.3 97.6 97.4
PD [32] 96.6 97.0 98.0 99.0 99.1
MCPD [34] 94.8 88.9 89.0 89.0 96.4
EC-a [36] 99.5 99.4 98.6 99.3 99.5

The detection accuracy of the methods can be analyzed in two aspects of Wi-Fi signals:
the presence of leading response, and the sharpness of rising edge. For the signals emitted
from Apple—iPhone 5 and Samsung—Galaxy S8 which have a leading response, it can be
clearly observed from the results that the EC-a method had the highest detection accuracy
at all SNR levels.

When the rising edge sharpness of the signals was considered, the EC-a method had
the highest detection accuracy for the signals emitted from Xiaomi—Mi Al and LeEco—Le
Max 2 at all SNR levels. However, for the signals emitted from Huawei—P Smart, the
VEDTD method seemed to have better detection accuracy at both medium and low SNR
levels (99.6% and 99.7%, respectively), whereas the MCPD method had better detection
accuracy at a low SNR level (99.1%), when compared to the detection accuracy of the EC-a
method (98.7%). It is worth noting that the detection accuracy of the VFDTD method
depends on a threshold value which should be properly determined for its implementation.
Unless an optimum threshold value is properly determined, a significant reduction in
the detection accuracy is expected. As for the MCPD method, which seems to have
better detection accuracy at a low SNR level, its computational time could be a significant
drawback for RFF as discussed in [36]. Evidently, due to the mentioned drawbacks of
the VFDTD and MCPD methods, the EC-a method is still a strong candidate to detect the
transient starting point owing to its acceptable detection accuracy (98.6%).
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Transient starting point detection accuracies of the methods for Wi-Fi signals with
leading response and the signals with sharp rising edge at low and medium SNR levels are
shown in Figures 5 and 6, respectively. When the results are compared, the improvement in
the detection accuracy of well-known methods can be clearly observed. This suggests that
the sharp rising edge characteristics affect the detection accuracy of well-known methods,
especially at low and medium SNR levels.

Low SNR Medium SNR Low SNR Medium SNR

100

8

o

6

o

4

o

2

Detection Rate (%)
(S

o

iPhone 5 Galaxy S8
HVFDTD EBSCD MPD EMCPD MEC-a

Figure 5. Transient starting point detection accuracy of the methods for Wi-Fi signals with leading
response at low and medium SNR.

Low SNR Medium SNR Low SNR Medium SNR Low SNR Medium SNR

P Smart Le Max 2 Mi Al
M VFDTD WBSCD MPD EMCPD MEC-a

Figure 6. Transient starting point detection accuracy of the methods for Wi-Fi signals with sharp
rising edge at low and medium SNR.

Moreover, from a general perspective, the overall transient starting point detection
accuracies of the models at low, medium, and high SNR cases are also shown in Figures 7-9,
respectively. Using Tables 24, the mean value of transient starting point detection accuracy
for each method was calculated by

B L Ap()
=~

3
S

i=1,...N

where N denotes the number of devices used in the experiments.
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Figure 7. Overall transient starting point detection accuracy of the methods at low SNR.
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Figure 8. Overall transient starting point detection accuracy of the methods at medium SNR.
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Figure 9. Overall transient starting point detection accuracy of the methods at high SNR.

As can be clearly seen from Figures 7-9, the EC-a method had the highest performance
at all SNR levels. On the other hand, the performance of the VFDTD method seemed to
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be consistent, as it provided similar mean detection rates at all SNR levels (about 98%).
Another significant result is related to the performance of the MCPD method providing
acceptable detection accuracy at low SNR (98.5%), while it had lower detection rates at
other SNR levels (97% and 91.6% at medium and high SNR, respectively). At high SNR,
it is worth noting that the PD method could be an option due to its acceptable detection
accuracy (97.9%). However, at other SNR levels, the performance degradation can be
explicitly observed (97.1% and 94% at medium and low SNR, respectively). From the
results, it is also evident that the BSCD method had the lowest detection accuracy at all
SNR levels, as expected.

Overall, the experimental results show the robustness of the EC-a method at all SNR
levels. Obviously, this method provided almost similar detection accuracy at each SNR
level. However, the transient detection performance of other methods was significantly
affected by the variation of SNR levels. Therefore, it can be stated that the results achieved
from this study are consistent with the results obtained in [36].

From the experimental results achieved in this study, Table 5 was created in order to
compare the methods in terms of their detection accuracy at different SNR levels. Surely,
the advantages and disadvantages of the methods that mentioned in Table 1 also need to be
considered while comparing methods in terms of their applicability and usability in practice.

Table 5. Comparison of the transient start detection methods based on the experimental results.

Method Pros

©  Its performance is relatively ®

stable when compared to other

It has lower detection accuracy
at low SNR when the signals

VEDTD well-known methods. having leading response
Could be a good candidate to characgteristicsgare fonsidered
the EC-a method in general. ’

. Its performance tends to

MCPD ggzﬂﬁiﬁgi:ﬁ) r;\c’hé:l;}’;g to the decrease when the SNR level

' is increased.
rccepiable performance itcan 1 performance fends o
PD be arI:1) al terr{)a tive to ’ decrease when the SNR level

VEDTD method is decreased.
Could be used for the signals In veneral. it has poor

BSCD with sharp rising edge general, P
characteristics. detection accuracy.
Overall, it has the highest Slight degradation in its

EC-a performance at all SNR levels. performance may be observed

Its performance is robust to
SNR levels.

for the signals with sharp rising
edge characteristics.

On the other hand, in this study, the measurements were only given for one type

of device (smartphone) manufactured by five different brands, and the performance of
the methods was comparatively assessed. It is believed that there are still opportunities
to assess the transient detection performance of the EC-a2 method and the well-known
methods so that a broader view of performance can be outlined. In this context, one
of the possible options is to vary the smartphone models of each brand. However, the
signals transmitted from different smartphone models of the same brand are expected
to have similar characteristics. In this case, only slight and ignorable differences can
be observed between the signal waveforms. Therefore, similar detection accuracies are
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expected to be obtained. Yet, further studies need to be conducted in order to support this
argument. Furthermore, another possible option is to extend the measurements using the
signals transmitted from different types of devices such as radio transmitters [30,31], Wi-Fi
radios [33], and WLAN cards [34]. In fact, all these research directions constitute future
works that will be carried out by the authors in the near future.

5. Conclusions

The experimental study presented in this article comparatively assessed the transient
starting point detection performance of the EC-a method and well-known methods by
using large sets of Wi-Fi signals captured from five Wi-Fi devices under different SNR
levels (—3 to 30 dB). The detection accuracy of the methods was analyzed in two aspects of
Wi-Fi signals: (a) presence of leading response, and (b) sharpness of rising edge. One of
the important findings is that the EC-2 method had the highest detection accuracy for the
signals having a leading response. Another finding is related to the rising edge sharpness of
the signals in which the EC-a2 method still provided acceptable detection rates although the
VFDTD method and the MCPD method could be alternatives to the EC-a method because
of their accuracy, especially at low and medium SNR. However, for an efficient RFF, it is
necessary to account for the drawbacks of the VFDTD and the MCPD methods such as the
required threshold mechanism and higher computational time.

It can be concluded that the EC-a method is robust and provides accurate detection
performance at all SNR levels. To the extent of our knowledge, the performance of the EC-a
method was herein validated for the first time using large sets of Wi-Fi signals captured
from various Wi-Fi devices. Furthermore, the assessment of transient start detection
performance of the well-known methods with large sets of Wi-Fi signals under different
SNR levels is another contribution of this study.
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