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Abstract: Many technological applications of our time rely on images captured by multiple cameras.
Such applications include the detection and recognition of objects in captured images, the tracking
of objects and analysis of their motion, and the detection of changes in appearance. The alignment
of images captured at different times and/or from different angles is a key processing step in these
applications. One of the most challenging tasks is to develop fast algorithms to accurately align
images perturbed by various types of transformations. The paper reports a new method used to
register images in the case of geometric perturbations that include rotations, translations, and non-
uniform scaling. The input images can be monochrome or colored, and they are preprocessed by a
noise-insensitive edge detector to obtain binarized versions. Isotropic scaling transformations are
used to compute multi-scale representations of the binarized inputs. The algorithm is of memetic type
and exploits the fact that the computation carried out in reduced representations usually produces
promising initial solutions very fast. The proposed method combines bio-inspired and evolutionary
computation techniques with clustered search and implements a procedure specially tailored to
address the premature convergence issue in various scaled representations. A long series of tests on
perturbed images were performed, evidencing the efficiency of our memetic multi-scale approach.
In addition, a comparative analysis has proved that the proposed algorithm outperforms some
well-known registration procedures both in terms of accuracy and runtime.

Keywords: image registration; multi-scale representation; isotropic scaling; memetic algorithms;
firefly algorithm; evolutionary strategies; Dice coefficient; mutual information

1. Introduction

The modern world uses a lot of digital imaging, both motion and static, captured
through a myriad of devices of all kinds, and the trend is rapidly growing. All these images
must be processed, implying understanding the content and making decisions. Most of
the digital content is, in the end, irrelevant for the decision-making process but must be
examined nevertheless in order to categorize it. While the human worker is still the best
choice for understanding an image, the sheer amount of digital content to be processed
is beyond their capabilities. Nobody can afford to hire and retain a huge army of people
to analyze the digital imagery that must be processed. Besides being a huge task, it is
also a repetitive and, after all, menial task, which makes it prone to errors. This is where
computers can step in to perform the menial, repetitive tasks that make up the bulk of
the processing and leave only final decision-making steps to humans. Even some simpler
decisions can be entrusted to computers.

The understanding of digital imagery content by computers is generally referred to as
“computer vision”, an umbrella term that covers all the research conducted in this field.

The processing power of computers constantly grows, but at the same time the amount
of processing needed also grows, which leads to an “arms race”. Time is a critical resource
and reducing the processing time is the main goal. Computers need better arms in this fight,
which are materialized in better algorithms. Technological advances translate into images
with higher resolution. More and more pixels are available for computers to process, but
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for many tasks, not all those pixels are relevant. One of the “weapons” in the arsenal is
the use of lower resolution images during processing and then applying the results to the
full-scale image. The lower resolution contains relevant information for the processing
algorithm and limits the consumption of computing power to what matters. However, it
cannot be said in advance which reduced scale is best suited for a given process. Finding a
perfect balance between consumed time and quality of results can be difficult or impossible,
taking too much time and thus defeating the initial goal of reducing the processing time. A
way around this conundrum is the use of several reduced-scale images with various scaling
factors. In the literature, this is called “multi-scale” or “pyramid strategy”, and researches
indicate that it can be successfully used in multiple tasks.

This paper is structured in sections as follows. Section 2 provides a brief review of state-
of-the-art works regarding multi-scale processing techniques. Section 3 summarizes the
memetic approach to image registration and the algorithm we introduced in [1]. Section 4
is the main part of this article, in which we describe in detail the new method that extends
the bio-inspired clustered technique presented in Section 3 to a multi-scale approach.
Computation is carried out in different reduced representations to obtain promising initial
solutions and identify search directions leading to the global optimum. The section also
includes the computation of the search space, a justification for using multi-scale images,
and the proposed methodology. The proposed algorithm was tested on various images, and
the experimental results are reported in Section 5. Conclusions derived from a comparative
analysis against some classical image registration methods proved the validity of the
proposed algorithm, outperforming those methods from an accuracy point of view. In
addition, the results show significant improvements regarding time consumption when
compared to the algorithm presented in Section 3. In the last section, we summarize our
conclusions and future development directions.

2. Literature Review

The idea of using multi-scaling is not new; the reasons behind it manifesting them-
selves early in the development of computers and computer vision. Key articles at the base
of multi-scaling [2–4] indicate two main reasons for using images with lower resolutions in
various processing stages of computer vision: first, the obvious reduction in processing
power needed; second, a lower resolution eliminates distracting pixels, and thus the context
of the image is better understood and can be applied on the high-resolution image.

Multi-scale images have been successfully used for various resource-intensive tasks.
The identification of elements in images is one such task intensively approached. One
direction looks into the identification of objects of interest in an image (salient objects), while
another direction looks to identify the same object in a set of images acquired by various
sources. In [5], the authors show that multi-scale images are related to the way biological
vision works for segmenting, identifying objects, and understanding the perceived image.

The detection of salient segments using adapted graph algorithms and numerical tech-
niques through multi-scale versions of an image is explored in [6]. In [7,8], Convolutional
Neural Networks (CNN) are used to create models for salient object detection (objects that
attract the attention of the eye) with the purpose of object detection. The CNN are trained
using reduced-scale images, which provide the needed information without wasting com-
puting time on irrelevant details. The trained network can be used to detect objects of
interest in high-resolution images for various purposes, including personal identification.
Multiple scale versions of an image are also used to identify targets of various sizes (both
big and small) in an image through the use of the YOLO (You Only Look Once) v3 CNN
in [9].

Re-identification (or identification of the same subject in multiple images) is an im-
portant task in processing images captured by various cameras. In [10], the potential of
meaningful information in reduced scale images is harnessed for vehicle re-identification
in images captured by non-overlapping security cameras. In [11,12], the same idea is used
for the re-identification of persons. Various reduced-scale images provide useful explicit
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information for the stated goal. The identification of objects in static or motion images is
also accomplished using multi-scale image processing in [13].

For a more engineering-based approach, multi-scale images have been used to detect
and classify specific elements of importance. In [14], reduced-scale images (scale 2 and
4) are used to train a CNN to identify and outline six types of possible damages in civil
infrastructure, thus relieving human inspectors of a huge workload, usually beyond their
physical capabilities. An improved image denoising method that uses multi-scaling in
combination with a Normalized Attention Neural Network is proposed in [15]. In [16], the
authors use multi-scaling to overcome the difficulties in the detection and identification of
very specific objects (ships) in single sensor images in infrared and visible spectra.

The biomedical field also benefits from the added information that can be found in
reduced scale images. In [17], authors show that machine learning technology performs
very well in image recognition, thus helping diagnosis, but not so well in prognosis. The
authors also discuss the integration of machine learning with multi-scale modelling to
improve prognosis performance.

3. Memetic Approach of Image Registration

Hybrid and memetic algorithms are among the most commonly used metaheuristics
for image alignment, as the evolutionary process is enhanced with local search techniques
that reduce the risk of premature convergence and speed up computation. In the following,
we present the basic method we proposed in [1]. The method will be further improved to
speed up computation, extending it to multi-scale processing and including specialized
mechanisms to avoid premature convergence.

The degradation model is of geometric type, consisting of translations, rotations, and
non-uniform scaling. We denote the target image by T and let S be the observed image, i.e.,
the perturbed version of T, where

S(x, y)= T
(
fp(x, y)

)
(1)

and

fp(x, y) =
[

a
b

]
+

[
sx 0
0 sy

]
·
[

cos θ − sin θ
sin θ cos θ

]
·
[

x
y

]
. (2)

The parameter vector defining (2) is p =
(
a, b, sx, sy, θ

)
, where (a, b) is the translation

vector, sx and sy are the scale factors, sx, sy > 0, and θ is the rotation angle. Note that the
rotation is relative to the upper left corner of the image. From a mathematical point of view,
aligning S to T means computing g, the transformation to reverse (2), that is:

T(x, y)= S
(

gp(x, y)
)

. (3)

The inverse transformation gp is computed as:

gp(x, y)= RT·S−1
xy

([
x
y

]
−
[

a
b

])
(4)

where S−1
xy =

[
1
sx

0
0 1

sy

]
and R =

[
cos θ − sin θ
sin θ cos θ

]
.

To solve the image alignment problem using evolutionary computing one has to define
the chromosome representation, the search space, and the fitness function. In our work,
the images are binarized by applying an edge detector. The chromosome space coincides
with the phenotype space, and it is defined by [amin, amax] × [bmin, bmax] × [−π, 0] ×
(0 , smaxx]× (0 , smaxy

]
. The boundaries of the translation parameters are evaluated based

on smaxx, smaxy, and the object pixels in T and S, respectively [1]. The quality of a
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chromosome corresponding to a parameter vector p1 is defined in our work by the Dice
similarity between the target and the result computed by (3):

fitness(p1) = DICE
(

S
(

gp1

)
, T
)

. (5)

The Dice coefficient of the binary images A and B is defined by [18]:

DICE(A, B) =
2·|A∩ B|
|A|+ |B| (6)

where |·| is the cardinal function.
The registration mechanism combines a version of Firefly Algorithm (FA) global

optimization [19,20] with the local search implemented by Two Membered Evolutionary
Strategy (2MES) [21] applied on clustered data. Let c0 be an input individual, and we
denote the initial step size by σ0. At each moment t, 2MES iteratively updates the point
ct−1 using,

ct =

{
ct−1+z, if fitness(ct−1+z) > fitness(ct−1)

ct−1, otherwise
(7)

where z is a random value drawn from N(0,σt−1). The step size parameter σt is updated
according to the celebrated 1/5 rule [21].

σt =


σt−1
ϑ , sr > 0.2
σt−1·ϑ, sr < 0.2
σt−1, sr = 0.2

, (8)

where ϑ ∈ [0.817, 1) and sr is the success rate, i.e., the displacement rate corresponding to
the last τ updates.

FA is a nature-inspired search that simulates the behavior of fireflies in terms of
bioluminescence evolution. The position of a firefly corresponds to a candidate solution of
(1), its fitness being measured by the corresponding light intensity. Each firefly j attracts
less bright fireflies i, i.e., j modifies the positions ci according to:

ci(t + 1)= ci(t)+βj(r) ·
(
cj(t)−ci(t)

)
+αr · ε, (9)

where αr is the randomness parameter, ε is a draw from U(0, 1), βj(r) is the attractiveness
of firefly j seen by firefly i. The attractiveness function is defined as:

βj(r)= β0 · e−γr2
(10)

where r is the distance between fireflies i and j, β0 indicates the brightness at r = 0, and γ
stands for the light absorption coefficient. In our work, we use αr, the updating rule, and
the border reflection mechanism introduced in [22].

The registration algorithm reported in [1] is summarized below as Algorithm 1, where
the FA parameters are β0, γ, the 2MES input arguments are σ0, ϑ, τ, and the size of the
sequence of individuals, MAX.
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Algorithm 1 Cluster-Based Memetic Algorithm

1. Input: the binarized versions of S and T, 2MES parameters, FA parameters, the number
of iterations NMax, K (K < Nmax), and the fitness value threshold τstop

2. Compute the boundaries of the search space
3. Compute the initial population, randomly generate the candidate solutions, and apply

the 2MES procedure to locally improve a small number of individuals
4. Evaluate the initial population and find the best; time = 0
5. while time < NMax and the highest fitness value < τstop do
6. Execute one FA iteration
7. Compute the best individual
8. if the best fitness value has not been improved
9. if the best fitness value has not been improved during the last K iterations, apply

the premature convergence avoidance mechanism:
10. Increase the step size of 2MES,
11. Increase the number of clusters
12. Replace a small number of individuals with randomly generated and locally

improved ones
13. end if
14. Apply k-means to split the population into clusters and locally improve the best

individual from each class using 2MES
15. Keep the best individual in the current population
16. end if
17. time = time + 1
18. end while
19. Output: The best individual corresponding to the perturbation parameter vector

4. The New Multi-Scale Methodology

The algorithm aligns an observed image S to the target T by extending the bio-inspired
cluster-based technique described in S3 to a multi-scale approach that includes mechanisms
especially tailored to avoid premature convergence. The ideas underlying the proposed
methodology are that the computation carried out in different reduced representations
can produce both promising initial solutions and individuals able to redirect the search
to the global optimum. Furthermore, multi-scale processing may significantly improve
registration accuracy and lead to faster algorithms.

4.1. The Geometric Degradation Model and the Search Space

The proposed approach aims to register images perturbed by translations, rota-
tions, and non-uniform scaling according to (1). The translation domain [amin, amax]×
[bmin, bmax] can be narrowed down by considering the following transformation instead
of (2).

fp(x, y) =
[

m
n

]
+

[
a
b

]
+

[
sx 0
0 sy

]
·
[

cos θ − sin θ
sin θ cos θ

]
·
[

x−m
y− n

]
, (11)

where p =
(
a, b, sx, sy, θ

)
and the rotation is relative to the center of the image (m, n). In

this case, the inverse transformation gp is given by:

gp(x, y) =
[

m
n

]
+ RT·S−1

xy

([
x
y

]
−
[

a + m
b + n

])
. (12)

The search space boundaries are set as follows. We assume that
(
θ, sx, sy

)
∈ [−π/2, 0]×

[0, smaxx]×
[
0, smaxy

]
. The alignment is performed using a binarized version of S and T com-

puted by the Canny edge detector [23]; therefore, the input images are represented by sets of
contour pixels. We denote by B(T) = {(xT, yT), minxT ≤ xT ≤ maxxT, minyT ≤ yT ≤ maxyT}
and B(S) =

{(
xS, yS

)
, minxS ≤ xS ≤ maxxS, minyS ≤ yS ≤ maxyS

}
the binarized versions
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of T and S, respectively. Since the elements in B(S) are obtained from those in B(T) using (11),
we obtain:

minxT ≤ m + a + sx·((x−m)· cos θ− (y− n)· sin θ) ≤ maxxT

And

minyT ≤ n + b + sy·((x−m)· sin θ+ (y− n)· cos θ) ≤ maxyT.

By straightforward computation, we obtain that (a, b) ∈ [amin, amax]× [bmin, bmax]:

amin = minxT −m + min
(x, y,θ,sx)∈Da

a_lim(x, y,θ, sx), (13)

amax = maxxT −m + max
(x, y,θ,sx)∈Da

a_lim(x, y,θ, sx), (14)

bmin = minyT − n + min
(x, y,θ,sy)∈Db

b_lim
(
x, y,θ, sy

)
, (15)

bmax = maxyT − n + max
(x, y,θ,sy)∈Db

b_lim
(
x, y, θ, sy

)
, (16)

where

a_lim : Da → R
Da = [−π/2, 0]× [0, smaxx]× [minxS, maxxS]×

[
minyS, maxyS

]
a_lim(x, y, θ, sx)= sx·((y− n)· sin θ− (x−m)· cos θ)

(17)

And

b_lim : Db → R
Db = [−π/2, 0]×

[
0, smaxy

]
× [minxS, maxxS]×

[
minyS, maxyS

]
b_lim

(
x, y,θ, sy

)
= −sy·((x−m)· sin θ+ (y− n)· cos θ)

(18)

Note that the functions a_lim and b_lim are bounded and attain their margins. From a
practical point of view, the extreme values of a_lim and b_lim can be computed in many
ways. In our work, we used the pattern search method implemented by the MATLAB
function patternsearch [24].

4.2. The Multi-Scale Representation of Images

A long series of research works involving multi-scale image processing using var-
ious mathematical tools have been reported in the literature [2–17]. In our approach,
scaling refers to the uniform change of object sizes in processed images and corresponds
to the standard geometric transformation (11) defined by the parameter vector ps =
(0, 0, s, s, 0), s > 1. Note that the dimension of the input images remains unchanged,
while the size of the binary representations B(T) and B(S) decrease proportionally to s.

Let s > 1 be a stretching factor, T the target image, S the version of T perturbed by (11) with
p =

(
a, b, sx, sy, θ

)
, and [amin, amax]× [bmin, bmax]× [−π/2, 0]× (0, smaxx]× (0, smaxy

]
the search space corresponding to the inputs S and T. The representation of S and T in scale s,
denoted by Ss and Ts, leads to a narrowed search space [amin/s, amax/s]× [bmin/s, bmax/s]×
[−π/2, 0]× (0, smaxx]× (0, smaxy

]
. Indeed, denoting by p′ =

(
a/s, b/s, sx, sy,θ

)
, we obtain:

Ss(x, y)= S
(
fps

(x, y)
)
= T

(
fp
(
fps

(x, y)
))

fp
(
fps

(x, y)
)
= fps

(
fp′(x, y)

) (19)

Since Ts(x, y)= T
(
fps

(x, y)
)
, the following relation holds:

Ss(x, y)= Ts
(

fp′((x, y))
)

(20)
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Consequently, aligning S to T can be reduced to registering Ss and Ts. That is, computing
p’.

From an implementation point of view, digital image scaling using large scale factors
s involves information loss due to object shrinkage. Therefore, the size of the binary
representations B(Ts) and B(Ss) is smaller than the size of B(T) and B(S), yielding to faster
registration algorithms.

The multi-scale memetic algorithm introduced in the next section involves stages
that use images represented at different scale factors. The algorithm evolves from one
stage to another by changing the chromosome values and the boundaries of the translation
parameter according to (20).

4.3. The Proposed Multi-Scale Registration Method

The extension of the clustered-based memetic algorithm provided in S3 registers pairs
of monochrome images (S, T) in the case of the perturbation model defined by (11). If S and
T are colored images, monochrome representation can be considered instead to obtain the
inverse transformation (11).

The proposed algorithm involves a pre-processing stage, as follows. First, the binary
representations B(S) and B(T) are computed using a noise invariant edge detector, and the
search space boundaries are evaluated according to (13)–(16). Then, the data is represented
at two scales 1 < s1 < s2. The scale s1 is used in developing the registration procedure
from (Algorithm 2), while s2 is used to generate the initial population (Algorithm 3) and
to avoid getting stuck in a local optimum (Algorithm 4). The genotypes computed in the
search space defined by s2 are converted in the algorithm’s scale s1 using transformation
(2), where s = s1/s2. One can generalize the multi-scale approach by using multiple scale
parameters to develop Algorithms 3 and 4, respectively. The fitness function that controls
the evolution of the memetic algorithm is defined by (6), while the method used to cluster
the current population of individuals is the k-mean. Note that the fitness values lie in [0, 1].

First, the population is randomly instantiated. Then, a few chromosomes computed
by Algorithm 1 using the s2 scale are added to it. The memetic registration is an iterative
process that applies an FA iteration to compute the new generation followed by locally
2MES-based improvement of the best chromosome of clustered data. The data is grouped
into k clusters, which varies depending on the population quality.

k = cnumber +
ct1

bvalFA
, (21)

where ct1 > 1 is a constant that controls the maximum number of clusters, and c_number
stands for the initial number of clusters.

To avoid premature convergence, we apply the following procedure. If the best fitness
value bval is the same during the last iterations, increase the step size of 2MES, multiplying
it by ct2/bval2, where ct2 > 1 is a constant tuning the perturbation size z in (7). If the best
fitness value bval is the same during the last it’ > it iterations, k0 new locally improved
individuals and the result computed by Algorithm 1 with s2 = 15 replace k0 + 1 individuals
belonging to the current population.

The proposed method is summarized by Algorithm 2. Using C_Popt= {c t
1, ct

2, . . . , ct
n

}
,

we denote the population at moment t. The input arguments are grouped depending on
their use, as follows:

• general parameters: the input images, S and T; the maximum number of iterations,
NMax; the population size, n; the threshold fitness value, τstop; the scales s1 and s2; the
constants c_number, ct1, and ct2; 2MES inputs, σ′0, ϑ′, τ′ES, and MAX′; FA parameters
β0, γ;

• Algorithm 3 parameters, corresponding to Algorithm 1 arguments: 2MES parameters,
σ0, ϑ, τES, υ, and MAX; FA parameters (same as those belonging to the list of general
parameters); NMax1, K1, and the threshold value τstop1;
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• Algorithm 4 parameters: the number of non-effective successive iterations, i.e., without
highest quality changes, cp; it, it’, and k0 as described above; 2MES parameters (same
as those belonging to the list of general parameters); Algorithm 1 parameters (same as
those described in the list of Algorithm 3 parameters); the population C_Pop.

Algorithm 2 Multi-Scale Memetic Algorithm

1. Input: S, T, NMAX, n, τstop, s1, s2, σ′0, ϑ′, τ′ES, υ′, MAX′, β0, γ, σ0, ϑ, τES, υ, MAX,
NMAX1, K1, τstop1

2. Compute B
(

Ts1
)

, B
(

Ts2
)

, B
(

Ss1
)

, B
(

Ss2
)

, and the corresponding boundaries of each
search space

3. t = 0; cp = 0

4. Compute C_Popt using Algorithm 3 and the input arguments n, B
(

Ts2
)

, B
(

Ss2
)

, σ0, ϑ0,
τES0, υ, MAX, β0, γ, NMAX1, K1, and τstop1

5. Obtain the representation of C_Popt in the s1 scale search space
6. Evaluate C_Popt and compute bval = max

c∈C_Popt
fitness(c)

7. while t < NMax and bval < τstop do
8. Apply an FA iteration and get C_Popt+1

9. Compute bindFA: bvalFA = max
c∈C_Popt+1

fitness(c)

10. if bvalFA ≤ bval
11. Apply the premature convergence avoiding mechanism Algorithm 4 with the input

arguments n, B
(

Ts2
)

, B
(

Ss2
)

, cp, it, it′, k0, σ′0, ϑ′, τ′ES, MAX′, σ0, ϑ0, τES0, υ, MAX, β0, γ,

NMAX1, K1, τstop1, and C_Popt+1 represented in the s2 scale search space
12. Get the representation of C_Popt+1 in the s1 scale search space
13. Get the clusters C1, . . . , Ck using k-means
14. for i = 1 . . . k
15. Compute the best candidate solution c ∈ Ci
16. Apply 2MES with the arguments σ′0, ϑ′, τ′ES, υ′, MAX′ to locally improve c
17. end for
18. Compute bvalnew = max

c∈C_Popt+1
fitness(c)

19. if bvalnew > bval
20. bval = bvalnew; cp = 0
21. else
22. Keep the best individual in C_Popt+1

23. cp = cp + 1
24. end if
25. end if
26. t = t + 1
27. end while
28. Output: the best parameter vector in the final population

Algorithm 3 Population at t = 0

1. Input: n, S, T, σ0, ϑ0, τES0, υ, MAX, β0, γ, NMAX1, K1, and τstop1

2. Randomly generate a set of n-nr individuals {c 0
1, c0

2, . . . , c0
n−nr

}
3. for i = 1 . . . nr
4. Apply Algorithm 1 to compute c0

n−nr+i
5. end for
6. Output: C_Pop0= {c 0

1, c0
2, . . . , c0

n

}
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Algorithm 4 Premature Convergence Avoiding Mechanism

1. Inputs: n, S, T, cp, it, it′, k0, σ′0, ϑ′, τ′ES, MAX′, σ0, ϑ0, τES0, υ, MAX, β0, γ, NMAX1, K1,
τstop1, and C_Pop

2. if cp = it1
3. σ′0 = σ′0

bval2

4. end if
5. if counter = it2
6. for i = 1 . . . k0
7. Randomly generate an individual ci
8. Apply 2MES with the arguments σ′0, ϑ′, τ′ES, MAX′ to locally improve ci
9. end for
10. Apply Algorithm 1 to compute ck0+1
11. Apply 2MES with the arguments σ′0, ϑ′ τ′ES, MAX′ to locally improve ck0+1
12. Replace k0 + 1 individuals in C_Pop by

{
c1, . . . , ck0+1

}
13. end if
14. Output:σ′0, C_Pop

5. Experimental Results and Discussion

A long series of tests on binary, monochrome, and colored images have been performed
to assess the performances of the new registration algorithm. The computer used for testing
has the following configuration: Intel Core i7-10870H, 16GB RAM DDR4, SSD 512GB,
NVIDIA GeForce GTX 1650Ti 4GB GDDR6.

The algorithm performances have been measured using runtime and registration
accuracy. The accuracy has been evaluated by a series of measures to reflect the effectiveness
of Algorithm 2 in a comprehensive manner. The main indicator is the mean success rate
recorded for NR runs of Algorithm 2, where a successful run is the one that produces an
individual whose quality exceeds a certain limit. The indicator measures the capability of
Algorithm 2 to compute approximations of the fitness global optimum. The success rate of
the algorithm that aligns the image S to the target T is computed by:

SR(T, S) =
NS
NR
·100%, (22)

where NS represents the number of attempts with correct registration, and S and T are of
the same size, M×N.

We also evaluated the accuracy of Algorithm 2 through similarity indicators computed
between the images T and T̃, where T̃ is the image obtained by aligning S using the result
of Algorithm 2. Denoting the density function by p(x), the similarity measures are the
following:

• Signal-to-Noise-Ratio (SNR).

SNR
(

T, T̃
)
= 10∗ log10

 ∑M
x=1 ∑N

y=1(T(x, y))2

∑M
x=1 ∑N

y=1

(
T(x, y)− T̃(x, y)

)2

. (23)

• Shannon normalized mutual information [25,26].

NMIS
(

T, T̃
)
=

2·MIS
(

T, T̃
)

HS(T) + HS
(

T̃
) , (24)

where
MIS

(
T, T̃

)
= HS(T)+HS

(
T̃
)
−HS

(
T, T̃

)
, (25)
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HS(X)= −
L−1

∑
x=0

p(x)· log2 p(x). (26)

• Tsallis normalized mutual information of order α [27,28].

NMIT
α

(
T, T̃

)
=

MIT
α

(
T, T̃

)
HT
α

(
T, T̃

) , (27)

where
MIT
α

(
T, T̃

)
= HT

α(T)+HT
α

(
T̃
)
−HT

α

(
T, T̃

)
(28)

HT
α(X) =

1
α− 1

·
(

1−
L−1

∑
x=0

p(x)α
)

. (29)

A good approximation T̃ is such that the value of SNR
(

T, T̃
)

is very large (infinite

for T̃ = T), while NMIS
(

T, T̃
)

and NMIT
α

(
T, T̃

)
are both near 1. Note that, in case of

significant perturbations, the information residing in the observed image S is not enough to
completely reconstruct T; that is, reversing the exact geometric transformation leads to an
image T’ possible different from T. For this reason, the correct way to measure the quality
of the registration is to evaluate the ratio.

RSIM
(

T, T̃
)
=

SIM
(
T′, T

)
SIM

(
T̃, T′

) , (30)

where SIM ∈
{

SNR, NMIS, NMIT
α

}
; the theoretical maximum value being 1.

If T can be completely reconstructed using a geometric transformation, the fitness
threshold value is usually set above 0.8. In case of significant perturbations, the threshold
value τstop is set to [0.5, 0.6].

Since the proposed method is of stochastic type, the above-mentioned measures is
applied NR times on each pair of images, and the recorded result is computed using the
corresponding mean value. Consequently, if we denote by T̃1, . . . , T̃R the images obtained
when S is aligned using the geometric transformations computed by Algorithm 2, the
accuracy measures are defined by:

MeanRSIM(T, S) =
∑NR

i=1 SIM
(

T, T̃i

)
NR

, (31)

The evaluation of the computation complexity is assessed by:

MeanRT(T, S) =
∑NR

i=1 ti

NR
, (32)

where t1, . . . , tNR are the corresponding runtimes.
We used various parameter settings and uniform scaling factors to implement the

proposed multi-scale memetic approach and optimize the alignment accuracy and the
execution times.

Below, we provide a summary of the registration results obtained for images belonging
to the Yale Face Database [29]. The database consists of 165 monochrome face images of
15 persons, 11 samples for each. The spatial resolution for all images is 320 × 243 pixels.
Tables 1–4 present results for 30 test images (two for each person). Figures 1–7 show a
selection of images for two persons that includes target, perturbed, and aligned pictures
and also binarized and scaled versions used during computations.
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The perturbation model is given by (11), with the parameters: θ ∈
[
−π2 , 0

]
, sx, sy ∈

[0.5, 1.5], a ∈ [−20, 80] and b ∈ [−40, 80]. The sensed images shown in Figure 1 and are
perturbed by p =

[
80, 40,− π

2.2 , 1.5, 0.8
]
, and p =

[
10,−10,− π

2.1 , 1.1, 1.35
]
, respectively.

The proposed alignment procedure computes an approximation of the perturbation
parameter vector in the search space narrowed down by the stretching factor s1 = 4, while
significantly larger scaling values s2 are used to generate the initial population and it
prevent becoming stuck in a local optimum. In our work, the scaling parameter s2 was
between 11 and 15.

The results of applying Algorithm 2 are summarized below. Figures 1 and 2 show
recorded, sensed, and registered images for two test samples, subjects 10 and 7. The
corresponding numerical results are presented in rows 10 and 7 in Tables 1–4.
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Figures 3 and 4 represent scaled and binarized variants of the images from Figures 1
and 2, computed by Algorithm 2.
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Figure 4. Images for subject 7, scaled and binarized, s1 = 4: (a) target; (b) sensed.

Algorithm 2 parameters were set to: τstop ∈ [0.5, 0.6], n = 20, NMAX = 250, nr = 6,
ind = 4, β0 = γ =1, σ0 = [12, 12, 0.3, 0.5], ϑ = ϑ′ = 0.85, τES = 20, υ = 0.3, MAX = 800,
σ′0 = [7, 7, 0.03, 0.05], τ′ES = 15, MAX′ = 240, it = 3, and it′ = 7. Each time the algorithm
gets caught by a local optimum, k0 = 7 new locally improved individuals and the result
computed by Algorithm 1 with s2 = 15 replace k0 + 1 individuals belonging to the current
population. Note that the parameters’ values used in 2MES and FA algorithms are set in
line with values widely used in various reported works [19–21], which constitute a de facto
standard.

Figure 5 present the alignment results of Algorithm 2.
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Figure 5. Images registered by Algorithm 2: (a) subject 10; (b) subject 7.

The proposed algorithm has yielded a perfect success rate, correctly aligning all the
test image pairs. Note that Algorithm 1 correctly aligns the considered images, but the
recorded runtimes are substantially larger than those obtained by the proposed method.
The numeric results reported below refer to the mean value and the standard deviation of
the runtimes computed for Algorithms 2 and 1, respectively. The data in Table 1 prove that
Algorithm 2 is significantly faster than Algorithm 1.

The mean values and the standard deviation values computed for the accuracy mea-
sures are displayed in Tables 2–4. Note that we used α = 1.2 to compute the Tsallis mutual
information. The maximum value of the functions defined by (31) is 1, but due to rounding
and computation errors, slightly larger values may be obtained.

Additionally, in order to derive comprehensive conclusions regarding the perfor-
mances of Algorithm 2, we tested it against two classical methods for monomodal image
registration, the regular step gradient descent optimization (RS-GD) based on mean squares
image similarity metric (MS) [30,31], and Principal Axes Transform (PAT) [18]. RS-GD
based registration adjusts the geometric transformation parameters so that the evolution of
the considered metric is toward the extrema. PAT is an image registration technique based
on features automatically extracted from images, where the image features are defined by
the corresponding set of principal axes.
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Table 1. The recorded runtimes for Algorithms 1 and 2.

Picture
Number

MeanRT
Algorithm 2

Standard
Deviation

Algorithm 2

MeanRT
Algorithm 1

Standard
Deviation

Algorithm 1

1 16.683 13.840 39.226 51.040
2 7.032 4.448 18.024 12.859
3 8.693 9.794 21.973 34.752
4 9.279 6.536 19.962 14.004
5 10.875 9.985 26.616 34.338
6 27.259 25.174 81.579 80.575
7 6.592 6.219 17.904 14.108
8 9.898 8.019 19.449 11.861
9 9.992 8.588 14.837 14.519
10 45.863 35.704 73.085 95.596
11 17.577 11.032 32.336 17.693
12 3.713 2.134 7.921 3.138
13 7.026 4.049 14.868 8.589
14 12.279 8.817 29.684 20.397
15 22.550 21.484 78.269 79.963
16 16.881 13.385 40.910 33.674
17 10.417 8.510 25.807 44.410
18 6.941 4.229 19.458 14.295
19 9.059 7.981 14.484 8.955
20 6.998 4.559 12.114 8.604
21 5.218 2.388 10.452 6.977
22 15.622 11.741 36.905 50.612
23 10.943 12.642 23.850 24.620
24 7.110 6.141 17.508 13.665
25 6.595 4.438 17.884 15.519
26 3.500 2.740 8.466 4.721
27 10.334 8.059 27.193 24.778
28 8.165 7.235 24.559 23.945
29 6.027 4.516 20.026 23.594
30 4.437 3.095 15.116 11.412

Mean value 11.452 9.249 27.015 26.774

Figure 6 present the results of applying the PAT method, and Figure 7 present the
results of applying the RS-GD algorithm.
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The accuracy results of all tested methods are reported in Tables 2–4. The mean and
standard deviation values of RSNR correspond to Algorithm 2 and RSNR values recorded
for PAT and RS-GD are provided in Table 2. In addition, Table 2 show the success ratios of
Algorithm 2 and whether classical methods managed to correctly align the tested pairs of
images. Note that, in the case of severely perturbed sensed images, both classical methods
may misregister the inputs. The resulted accuracy rate of PAT is only 26.7%, while for RS-GD,
it is 53.3%. Algorithm 2 had a 100% accuracy, correctly registering all tested images in all runs.

Table 2. RSNR values and success rates – Algorithm 2, PAT and RS-GD.

Picture
Number

MeanRSNR
Algorithm 2

Standard
Deviation

Algorithm 2

Correct
Alignment

Algorithm 2

RSNR
PAT

Correct
Alignment

PAT

RSNR
RS-GD

Correct
Alignment

RD-GD

1 0.911 0.022 1 0.401 0 0.538 0
2 0.808 0.033 1 0.366 0 0.874 1
3 0.738 0.051 1 0.317 0 0.877 1
4 0.872 0.042 1 0.354 0 0.887 1
5 0.887 0.046 1 0.442 0 0.438 0
6 0.775 0.064 1 0.275 0 0.421 1
7 0.959 0.019 1 0.822 1 0.765 1
8 0.978 0.009 1 0.874 1 0.803 1
9 0.820 0.036 1 0.407 0 0.395 0
10 0.876 0.039 1 0.424 0 0.482 0
11 0.843 0.050 1 0.325 0 0.921 1
12 0.884 0.039 1 0.400 0 0.940 1
13 0.817 0.015 1 0.770 1 0.876 1
14 0.885 0.037 1 0.854 1 0.377 0
15 0.826 0.038 1 0.321 0 0.428 0
16 0.808 0.016 1 0.375 0 0.892 1
17 0.842 0.045 1 0.322 0 0.928 1
18 0.937 0.022 1 0.777 1 0.977 1
19 0.761 0.048 1 0.306 0 0.826 1
20 0.853 0.041 1 0.443 0 0.515 0
21 0.945 0.029 1 0.251 0 0.360 0
22 0.730 0.048 1 0.358 0 0.440 0
23 0.870 0.049 1 0.364 0 0.405 0
24 0.750 0.021 1 0.344 0 0.894 1
25 0.943 0.029 1 0.733 1 0.984 1
26 0.768 0.038 1 0.366 0 0.441 0
27 0.928 0.027 1 0.584 1 0.471 0
28 0.883 0.037 1 0.767 1 0.925 1
29 0.774 0.034 1 0.434 0 0.392 0
30 0.784 0.035 1 0.347 0 0.408 0

Mean value 0.848 0.035 1 0.471 0.267 0.663 0.533
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The mean and standard deviation values of RNMIS and RNMIT
α computed in the case

of Algorithm 2 are displayed in Tables 3 and 4, respectively. The tables also present the
values of RNMIS and RNMIT

α corresponding to PAT and RS-GD methods.

Table 3. The RNMIS values—Algorithm 2, PAT and RS-GD.

Picture
Number

MeanRNMIS

Algorithm 2

Standard
Deviation

Algorithm 2
RNMIS PAT RNMIS

RS-GD

1 0.830 0.032 0.317 0.437
2 0.862 0.040 0.419 1.012
3 0.802 0.038 0.362 0.997
4 0.929 0.025 0.390 1.015
5 0.923 0.031 0.426 0.443
6 0.864 0.041 0.369 0.976
7 0.873 0.042 0.580 1.025
8 0.875 0.027 0.620 1.027
9 0.853 0.035 0.453 0.504
10 0.845 0.036 0.400 0.442
11 0.866 0.041 0.379 1.025
12 0.897 0.035 0.408 1.024
13 0.903 0.021 0.835 1.009
14 0.913 0.033 0.801 0.342
15 0.881 0.030 0.340 0.458
16 0.797 0.021 0.383 1.017
17 0.866 0.035 0.393 1.018
18 0.872 0.032 0.712 1.037
19 0.876 0.032 0.357 0.994
20 0.888 0.044 0.404 0.446
21 0.872 0.022 0.356 0.364
22 0.820 0.040 0.395 0.470
23 0.871 0.050 0.421 0.465
24 0.809 0.019 0.383 1.014
25 0.904 0.039 0.616 1.040
26 0.825 0.032 0.396 0.488
27 0.876 0.031 0.522 0.427
28 0.886 0.037 0.729 1.010
29 0.859 0.034 0.486 0.424
30 0.858 0.033 0.429 0.520

Mean value 0.866 0.034 0.469 0.749

The numerical results indicate that Algorithm 2 produces more accurate results than
PAT and RS-GD in the light of all informational and quantitative indicators used. In
addition, the new method is considerably faster than the method reported in [1].
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Table 4. The RNMIT
α values—Algorithm 2, PAT and RS-GD.

Picture
Number

MeanRNMIT
α

Algorithm 2

Standard
Deviation

Algorithm 2

RNMIT
α

PAT
RNMIT

α

RS-GD

1 0.935 0.013 0.658 0.796
2 0.947 0.015 0.705 0.978
3 0.911 0.020 0.655 0.973
4 0.972 0.010 0.672 0.977
5 0.970 0.012 0.741 0.765
6 0.944 0.018 0.694 0.940
7 0.949 0.018 0.830 0.980
8 0.965 0.009 0.856 0.982
9 0.942 0.015 0.712 0.748
10 0.938 0.015 0.713 0.756
11 0.948 0.016 0.718 0.995
12 0.965 0.014 0.698 0.989
13 0.956 0.008 0.898 0.969
14 0.965 0.014 0.850 0.597
15 0.944 0.013 0.621 0.745
16 0.922 0.009 0.680 0.977
17 0.946 0.016 0.655 0.978
18 0.955 0.012 0.882 0.996
19 0.944 0.016 0.624 0.973
20 0.952 0.019 0.668 0.695
21 0.951 0.008 0.734 0.709
22 0.923 0.017 0.655 0.751
23 0.947 0.021 0.695 0.744
24 0.913 0.008 0.632 0.976
25 0.959 0.017 0.845 0.986
26 0.935 0.014 0.707 0.765
27 0.955 0.013 0.823 0.716
28 0.952 0.015 0.856 0.969
29 0.925 0.019 0.785 0.715
30 0.933 0.016 0.677 0.805

Mean value 0.945 0.014 0.731 0.865

6. Conclusions

The aim of the paper was to propose a new comprehensive multi-scale method that
extends the approach reported in [1] to obtain accurate and efficient registration algorithms.
The input images were pre-processed by a noise-insensitive edge detector to obtain bina-
rized versions, i.e., the sets containing contour pixels. Isotropic scaling transformations
were used to compute multi-scale representations of the binarized inputs. The registra-
tion was then carried out in different reduced representations to obtain promising initial
solutions and to identify search directions leading to the global optimum. The process
combined bio-inspired and evolutionary computation techniques with clustered search and
implemented a procedure specially tailored to address the premature convergence issue.

A long series of tests involving monochrome images were conducted to ascertain
meaningful conclusions regarding the registration capabilities of the proposed method.
The experiments involved accuracy and efficiency measures, expressed in terms of SNR,
Shannon mutual information, Tsallis entropy, and runtime. We compared Algorithm 2
against the basic method introduced in [1] and two of the most commonly used alignment
procedures for monomodal images, namely the regular step gradient descent optimization
based on MS image similarity metric and PAT registration. In terms of accuracy, Algorithm
2 is similar to Algorithm 1, with a success rate of 100%, which means that it has always
managed to correctly align the input images. In contrast, both RS-GD and registration
and PAT alignment failed to solve the problem of severely perturbed sensed images, their
corresponding success rate being far less than 100%. In terms of efficiency, there were
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significant improvements over Algorithm 1, with the proposed method being at least two
times faster.

The experimentally established results validate the proposed method and open the
path for further developments and extensions to more complex transformations. In ad-
dition, metaheuristics involving other promising bio-inspired techniques, such as the
flower pollination algorithm, cuckoo search, and bat algorithm, will be considered for
the population-based optimization component. In addition, an experimental study on the
influence of parameter values on the performance of the proposed method is in progress.
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