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Abstract: The precise segmentation of bladder tumors from MRI is essential for bladder cancer diag-
nosis and personalized therapy selection. Limited by the properties of tumor morphology, achieving
precise segmentation from MRI images remains challenging. In recent years, deep convolutional
neural networks have provided a promising solution for bladder tumor segmentation from MRI.
However, deep-learning-based methods still face two weakness: (1) multi-scale feature extraction and
utilization are inadequate, being limited by the learning approach. (2) The establishment of explicit
long-distance dependence is difficult due to the limited receptive field of convolution kernels. These
limitations raise challenges in the learning of global semantic information, which is critical for bladder
cancer segmentation. To tackle the problem, a newly auxiliary segmentation algorithm integrating a
multi-scale encoder and decoder with a transformer is proposed, which is called MSEDTNet. Specifi-
cally, the designed encoder with multi-scale pyramidal convolution (MSPC) is utilized to generate
compact feature maps which capture the richly detailed local features of the image. Furthermore, the
transformer bottleneck is then leveraged to model the long-distance dependency between high-level
tumor semantics from a global space. Finally, a decoder with a spatial context fusion module (SCFM)
is adopted to fuse the context information and gradually produce high-resolution segmentation
results. The experimental results of T2-weighted MRI scans from 86 patients show that MSEDTNet
achieves an overall Jaccard index of 83.46%, a Dice similarity coefficient of 92.35%, and a complexity
less than that of other, similar models. This suggests that the method proposed in this article can be
used as an efficient tool for clinical bladder cancer segmentation.

Keywords: bladder tumor segmentation; MRI; 2D CNN; transformer; multi-scale

1. Introduction

Bladder cancer is a malignant tumor that originates from the bladder mucosa, and
its incidence ranks first among urological tumors worldwide [1]. The incidence of male
bladder cancer patients in China is the seventh highest among all malignant tumors, and it
is increasing year by year [2]. Therefore, achieving the early diagnosis of bladder tumors is
important for preventing bladder cancer, reducing mortality and improving the quality of
life of patients.

In clinical practice, the golden standard for the diagnosis of bladder cancer is optical
cystoscopy with transurethral resection biopsies [3]. However, this method is insensitive to
tiny tumors, and it is difficult to use this method to identify tumor invasion of the bladder
wall. Moreover, this invasive procedure is painful for the patient. Currently, due to high
tissue contrast, soft tissue resolution and non-invasive modality, MRI has been rapidly
adopted to diagnose bladder cancer in the form of T2-weighted images followed by the
apparent diffusion coefficient and dynamic-contrast-enhanced images to stage the tumor
or evaluate muscle invasion. Accurate and reliable bladder segmentation from MRI is the
basis for subsequent clinical bladder cancer staging [4]. However, there are some innate
challenges regarding the segmentation of bladder tumors from MRI due to the variable
bladder shape, the strong intensity of inhomogeneity in urine caused by motion artifacts,
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weak boundaries and the complex background intensity distribution (see Figure 1). For
these reasons, the manual segmentation process is time-consuming, labor-intensive and
influenced by subjective factors. Hence, the automated segmentation of bladder tumors
from MRI is urgently needed to deal with this problem [5], and it is indeed the main focus
of this article.

Figure 1. Challenges in bladder cancer segmentation are shown by the arrows: (A) tiny tumor area,
(B) intensity of inhomogeneity and weak tumor boundaries, and (C) discrete tumor distribution.

In recent years, some progress has been made in automatic bladder tumor segmenta-
tion [6,7]. According to the different technical methods, the pioneering methods are divided
into two classes. One category is conventional computer vision approaches to address the
problem of bladder tumor segmentation, such as Markov random fields [8], mathematical
morphology [9] or level-set-based methods [10]. However, traditional segmentation meth-
ods have achieved unsatisfactory results due to the complex distribution of tissue around
the bladder. For example, if the tumor region contains large deformations or noise intensity
variations, these methods likely lead to over-segmentation.

Another approach is deep learning segmentation models such as FCN [11],
DeepMedic [12], U-Net and their improved versions [13,14]. Such methods typically
integrate progressive dilated convolutions or shapes into the model to tackle tumor shape
variability and strong-intensity inhomogeneity. Despite the satisfactory results obtained
by these methods, there are still two obvious weaknesses: (1) Multi-scale feature extrac-
tion and utilization are still inadequate. (2) The establishment of explicit long-distance
dependence is difficult due to the limited receptive field of convolution kernels, although
CNN-based methods have excellent representation ability. These limitations raise chal-
lenges in learning global semantic information, which is critical for dense prediction tasks
such as segmentation.

To provide an efficient solution, a newly auxiliary segmentation algorithm integrating
a multi-scale encoder–decoder with a transformer is proposed, which is called MSEDTNet.
Generally speaking, MSEDTNet can effectively capture multi-scale local context infor-
mation and parse the tumor area. The transformer encodes the global semantic context
extracted from the designed encoder and builds the long-distance dependency restricted
by CNN between high-level cancer semantics. To improve the performance of the decoder,
MSEDTNet further involves a spatial attention mechanism to adaptively guidance the
network to focus on the tumor area. We seamlessly transform MSEDTNet into a 2D neural
network that performs efficient end-to-end optimization by backpropagation, successfully
achieving the accurate segmentation of bladder tumors from MRI. A series of empirical
studies on a newly collected dataset show that MSEDTNet achieves a remarkably high
performance.

The main contributions of this paper are as follows:
(1) For the first time, we propose a newly auxiliary segmentation algorithm that unifies

a multi-scale encoder–decoder and transformer in a mutually beneficial way for bladder
tumor segmentation.

(2) We designed a novel multi-scale pyramidal convolution (MSPC) to tackle the
problem of feature extraction due to large tumor shape variations. Furthermore, the
transformer bottleneck is then designed to learn long-range correlations with a global
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receptive field. The spatial context fusion module (SCFM) can adaptively fuse multi-scale
context information by learning spatial attention weights to improve the performance of
decoder.

(3) The proposed model achieves promising performance, and the complexity is less
than that of other similar models.

The rest of the paper is organized as follows. Section 2 reviews the related work.
Section 3 introduces the proposed method. In Section 4, abundant experiments validate the
effectiveness of the proposed MSEDTNet. Finally, conclusions and analysis are given in
Section 5.

2. Related Work
2.1. Bladder Tumor Segmentation

As mentioned above, bladder tumor segmentation research can be divided into tra-
ditional and CNN-based methods. The traditional approaches use hand-crafted features,
which are distinguished from the deep learning approaches with automatic feature extrac-
tion [15]. The CNN-based approach focuses on multi-scale extraction and a priori assisted
segmentation. Specifically, to accommodate the large tumor shape variations, the authors
modified the architecture of the CNN-based methods by integrating dilated convolutions.
Dolz et al. [16] proposed the FCN-based method for bladder cancer segmentation. They
collected 3.0T T2-weighted MRI scans from 60 cases of confirmed patients with a mean
Dice similarity coefficient of 0.98, 0.84 and 0.69 for the inner wall, outer wall and tumor
region segmentation, respectively. Ge et al. [17] proposed the MD-Unet, which uses multi-
scale images as the input of the network and combines dilated convolution to increase the
receptive field of the convolutional network. The accuracy of MD-Unet is 0.996. In addition
to dilated convolutions at multiple levels, they also incorporate multi-scale predictions [18].
However, these methods only adopt dilated convolutions at certain layers or use multi-scale
images to supplement feature information loss by downsampling layer by layer; some
information (e.g., global or multi-scale contextual semantic feature information) has not
been fully considered.

Recently, Duta et al. [19] proposed the pyramidal convolution for visual recognition,
which can then be used for other tasks, such as semantic segmentation [20] and object
detection [21]. From this perspective of multi-scale feature extraction, Zhang et al. [22]
proposed the lightweight segmentation algorithm based on multi-scale pyramidal con-
volution, which is dubbed PylNet. Following this work, we propose a novel multi-scale
encoder which contains the multi-scale pyramidal convolution (MSPC). MSPC is better
able to capture detail than PylNet. The reason is that the number of multi-scale convolution
kernels is greater than in PylNet, which can further enrich the fine-grained information for
segmentation. At the same time, to learn global contextual semantic features, we involve
the transformer bottleneck behind the multi-scale encoder, which further improves the
semantic information modeling ability of the algorithm.

2.2. Transformer

Transformers and self-attention models have revolutionized computer vision and
natural language processing [23]. ViT [24] splits the image into patches and models the
correlation between these patches as sequences with a transformer, achieving a favorable
performance for image classification. Recently, there have been some explorations of
the usage of transformer structures in image segmentation. SETR [25] deploys a pure
transformer to encode an image as a sequence of patches and develops a simple decoder
to provide a powerful segmentation model. Swin-Unet [26] utilized a transformer-based
U-shaped architecture with skip connections for local and global semantic feature learning.
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Related works include TransUNet [27] and TransBTS [28], which also leverage trans-
formers for image segmentation. However, there are several key differences. (1) TransBTS is
a 3D network that processes all the image slices at the same time, allowing the exploitation
of better representations of continuous information between slices. However, due to the
task complexity and needs, the MSEDTNet proposed in this article is based on 2D CNN and
processes 2D MRI images in a slice-by-slice manner. (2) TransUNet and TransBTS adopt
stacked convolution layers in the encoder, while MSEDTNet is more focused on multi-scale
local fine-grained extraction. In other words, MSEDTNet is specifically designed for the
segmentation of bladder cancer. Our model is also superior in terms of segmentation
accuracy (see Section 5).

3. Methods

The overall architecture of the proposed MSEDTNet is presented in Figure 2. Inspired
by the U-net family [29], MSEDTNet is a symmetric structure which consists of an encoder,
bottleneck, decoder and skip connections. Concretely, in the encoder, the multi-scale
convolution is utilized to generate compact feature maps which capture the rich local
detailed features of the input image. Then, the transformer is leveraged to model the
long-distance dependency between high-level cancer semantics from a global space in the
bottleneck. In the end, layer-by-layer upsampling and spatial attention are adopted to
gradually produce the high-resolution segmentation results. In addition, skip connections
are added to connect the encoder and decoder to form the symmetric structure, and increase
the spatial resolution of the semantic information. Next, each component is elaborated in
the following.
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Figure 2. The architecture of MSEDTNet, which is composed of an encoder, bottleneck, decoder and
skip connections.

3.1. Multi-Scale Encoder

In image classification or segmentation tasks with differently shaped target regions,
using the fixed kernel size convolution may neglect in part the useful detailed context and
eventually lead to poor results [30]. Inspired by the literature [19], we designed a novel
multi-scale pyramidal convolution (MSPC) with an encoder to tackle the problem of feature
extraction due to large tumor shape variations. As shown in Figure 3, MSPC contains
different levels of kernels with varying size and depth, and it can effectively capture the
local contextual information in parallel.
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Figure 3. The architecture of the proposed multi-scale encoder with MSPC and traditional convolu-
tion block.

Specifically, at layer l, given an input MRI image or a feature map xl−1 ∈ Rh×w×c,
where c represents the number of image channels, h and w are the dimensions of the image.
At block 1, the MSPC first utilizes different levels of kernels to generate four feature maps.
All feature maps have the same dimensions and channels. Then, the feature maps are
cascaded in the channel dimension, which is denoted as follows:

FMi = Convl
ki
(xl−1) + bl (1)

FM = Cat(FMi), i = 1, 2, 3, 4 (2)

where ki represents the multi-level convolution kernels. Convl
ki

and bl represent the con-
volution operation and offset at l layer, respectively. FMi is the feature map generated by
the ki kernel. FM is the result of the cascading multi-scale feature maps in the channel di-
mension. Then, the feature map is processed by batch normalization and the relu nonlinear
activation function. The process can be expressed as follows:

x
′
l = Relu(BatchNorm(FM)) (3)

Subsequently, we adopt the common 3 × 3 convolution with batch normalization and
the relu nonlinear activation function to further enrich the extracted multi-scale features
and then obtain the xl in block 2. After stacking a series of MSPC convolution blocks
with downsampling operations to gradually encode input images, we finally obtain high-
level feature representation EF5 ∈ RH/16×W/16×Z(Z = 1024), which is 1/16 of the input
dimensions of H, W. In this way, EF5 contains richly detailed local semantic information.

It is worth noting that the MSPC is implemented by deep separable convolution,
which maintains a similar number of parameters and computation costs as traditional
convolutions.

3.2. Transformer Bottleneck

In the encoder, the EF5 is obtained, but it still lacks global contextual semantic feature
information. To overcome this, a transformer bottleneck is designed to learn long-range
correlations with a global receptive field. As shown in Figure 2, the transformer bottleneck
expects a sequence as input. Following the TransBTS [28], the high-level feature representa-
tion EF5 is arranged in a M× Z dimension sequence, where M = H/16×W/16 represents
the size of each image patch. Then, the image patch sequences are fed into the transformer
bottleneck. It is worth noting that we do not split the feature map into patches.

In the transformer bottleneck, to ensure comprehensive feature representation, a linear
projection is used to map each image patch into a latent N-dimensional embedding space
(N = 512) and increase the nonlinearity of high-level features. Meanwhile, the position
information of the sequence is crucial for the segmentation task. Hence, we introduce the
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learnable position-embedding function to encode the location information and directly
added the feature map as follows:

h = LP(EF5) + PE (4)

where LP(∗) represents the linear projection, and LP(EF5) ∈ RM×N . PE ∈ RM×N is the
position embedding information, and h ∈ RM×N denotes the feature embedding and then
inputs this to the transformer layer to learn the global information representation efficiency.

As shown in Figure 4, the transformer bottleneck has L = 6 standard transformer layers.
Each of them consists of a multi-head self-attention (MHSA) and a multilayer perceptron
(MLP) block. Specifically, at the l layer, given the input hl−1, the self-attention of a triple
(Q, K, V) is computed from the input hl−1 as:

Q = Norm(hl−1)WQ (5)

K = Norm(hl−1)WK (6)

V = Norm(hl−1)WV (7)

where WQ/WK/WV ∈ RN×d are the learnable parameters and d is the dimensions of the
triple (Q, K, V). Norm(∗) denotes the layer normalization. Then, the self-attention (SA) is
formulated as:

SA(hl−1) = so f tmax(
Q(hWK)

T
√

d
)V + hl−1 (8)

MHSA is an extension with k independent SA operations and concatenates their outputs as:

MHSA(hl−1) = [SA1(hl−1); SA2(hl−1); . . . ; SAk(hl−1)]Wo (9)

where Wo ∈ Rkd×N , d = M/k. Finally, the output hl ∈ RM×N is calculated by the MLP
block with residual connections as:

hl = MLP(MHSA(hl−1)) + MHSA(hl−1) (10)

After all transformer layers were transformed, we obtained the EF6, which contains
different levels of coarse- and fine-grained information that is useful in recovering the
image details. Notably, to input the features into the decoder, we also designed a feature
mapping system that reshaped the EF6 to a standard 3D feature map H/16×W/16× Z
where Z = 1024.

K
Multi-Layer

PerceptionQ

V

Layer Norm Layer Norm

Figure 4. The schematic of the transformer layer.

3.3. Decoder with Spatial Context Fusion

Effectively recovering the image details based on the semantic feature maps obtained
by the encoder is very important for the decoder, which can affect the quality of the
recovered images. To obtain high-quality pixel-level segmentation results in the original 2D
image space, a decoder with a spatial context fusion module (SCFM) is proposed, as shown
in the right part of Figure 2. The detailed structure of SCFM is shown in Figure 5. In the
decoder, several cascaded upsampling convolution operations are gradually employed to
restore the original image size. Moreover, additional skip connections are added to increase
the spatial resolution of the semantic information.
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Figure 5. The details of the spatial context fusion module.

For spatial context fusion, a spatial attention mechanism is adopted to adaptively focus
on the tumor area. The spatial position weights are learned through carefully designed
modules and multiplied with the input feature maps; then, the results are concatenated.
Specifically, given a decoder feature map of DFi, we use the max pooling and average
pooling operations to aggregate the spatial information of DFi and concatenate them
according to the channel dimension. Then, a 3 × 3 convolution and sigmoid function are
utilized to obtain the spatial weights and multiply them with DFi. This process is shown in
the following formula:

DF
′
i = W × DFi = (σ(Conv7×7[MaxPool(DFi); AvgPool(DFi)]))× DFi (11)

where σ represents the sigmoid function. Conv7×7 is the 7 × 7 convolution. In order to
transfer the weighted information to the coarse-grained feature map, a 1× 1 convolution is
used to decrease the channel dimension and then interpolated to the same size as the input
image as follows:

Fi = θ(Conv1×1(DF
′
i )) (12)

where θ represents the interpolation function. Conv1×1 is the 1 × 1 convolution. Fi ∈
RH×W×1 is the weighted feature map we need. Finally, we obtained four decoder feature
maps—DF1, DF2, DF3 and DF4—after the skip connection structure, and we cascaded the
corresponding weighted feature maps—F1, F2, F3 and F4—through the channel dimension.
In the last layer of the decoder, the feature maps F and DF5 are cascaded to integrate the
dual branches of context and semantic information, and the pixel-level segmentation results
are obtained after 1× 1 convolution layer processing. Meanwhile, the sigmoid function
is used to compress the pixel value to range [0, 1], using 0.5 as the threshold to obtain the
segmentation results of the bladder tumor foreground and background.

4. Experiments
4.1. Dataset

The dataset was acquired from the Affiliated Hospital of Shandong University of
Traditional Chinese Medicine, including 86 patients, with a total of 1320 bladder cancer
T2-weighted MRI images. All samples were collected using a magnetic resonance apparatus
(GE Discovery MR 750). The thickness of the slices was 1 mm, and the interval between
the slices was also 1 mm. The acquisition time of the 3D scans ranged from 160.456 to
165.135 s. The repetition and echo times were 2500 ms and 135 ms, respectively. The image
size was uniformly set to 512× 512, and each image was marked with tumor regions by
experienced clinicians.
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4.2. Experiments and Implementation Details

To evaluate the effectiveness of each new module in MSEDTNet, we first conducted
serval ablation experiments. The differences among ablation models are listed in Table 1. We
selected the vanilla UNet as the baseline model. The BaseNet, BaseMNet and BaseMTNet
are new modules gradually added to the baseline model. The MSEDTNet is our proposed
model.

We further compared the proposed method with existing segmentation methods (see
Section 2), including Dolz et al. [16], Ge et al. [17] and Liu et al. [18]. In addition, we
also compared the performance with start-of-the-art segmentation methods, such as UNet,
DeepLabv3+ [31] and TransUNet [27]. However, a direct performance comparison with
previous related segmentation methods has two challenges when used to perform this
task. On the one hand, the relevant studies mentioned above were not able to evaluate the
performance on publicly available datasets. Moreover, the source code used to replicate
the work is not publicly available. On the other hand, performance evaluation metrics are
not uniform for these works. Hence, for fair performance comparison, we re-trained all
compared methods using our bladder cancer dataset. The other settings of the compared
models are identical to those presented in the original paper.

Table 1. Ablation models.

Model Description

BaseNet vanilla UNet baseline
BaseMNet baseline + MSPC

BaseMTNet baseline + MSPC + transformer
MSEDTNet baseline + MSPC + transformer + SCFM

All comparison models are implemented in the PyTorch deep learning framework [32]
and ran on the machine equipped with an NVIDIA Tesla V100 GPU with 32 GB of mem-
ory. These networks are trained from scratch using an Adam optimizer with a decaying
learning rate initialized at 10 −4. For all training cases, data augmentations, such as ran-
dom rotation, flapping and shift, are used to increase data diversity. During the training
process, 16 images are grouped as a mini batch. Standard five-fold cross-validation is also
employed for all experiments to evaluate the robustness and generalization performance.
In addition, the imbalance between foreground and background segmentation tasks may
cause segmentation bias. Therefore, we used the Dice coefficient as the loss function to
optimize the proposed method.

4.3. Evaluate Metrics

The Dice similarity coefficient (DSC), Jaccard index (JI) and 95th percentage of asym-
metric Hausdorff Distance (95HD) were employed for the quantitative evaluation of blad-
der cancer segmentation. DSC and JI are sensitive to bladder cancer area, where 95HD is
sensitive to tumor shape. These metrics are calculated as follows:

DSC(X, Y) =
2|X ∩Y|
|X|+ |Y| (13)

J I(X, Y) =
|X ∩Y|
|X ∪Y| (14)

95HD(X, Y) = max(max
x∈X

min
y∈Y

d(x− y), max
y∈Y

min
x∈X

d(x− y)) (15)

where X and Y are the segmentation results and ground truth, and x and y are the voxels
in X and Y, respectively.
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5. Results and Analysis
5.1. Ablation Study

Table 2 presents the quantitative results of ablation experiments. All metrics are
represented by mean ± standard deviation. From the experimental results, it can be seen
that the segmentation performance of the algorithm is improved to a certain extent after
adding those modules, and MSPC is the most effective. For instance, BaseMNet achieves a
JI of 80.51 and DSC of 90.45, which is 1.47% and 2.51% higher than BaseNet, respectively.
This superior performance may benefit from the semantic information learned from the
local multi-scale feature integration. As a basic feature extraction unit, these results also
demonstrate that MSPC can effectively facilitate the identification of the various shapes
of bladder cancer lesions. Other improvement strategies, which focus on modeling the
high-level semantic feature information of the model, thus provide smaller enhancements
to the experimental results. We use MSEDTNet as the basic comparison model in the
following experiments.

Table 2. Segmentation results on different ablation models.

Model JI (%) ↑ DSC (%) ↑ 95HD (mm) ↓

BaseNet 79.04 ± 1.35 87.94 ± 0.89 3.96 ± 0.11
BaseMNet 80.51 ± 1.32 90.45 ± 1.17 3.97 ± 0.12

BaseMTNet 82.63 ± 1.33 91.16 ± 1.12 3.87 ± 0.10
MSEDTNet 83.46 ± 1.26 92.35 ± 1.19 3.64 ± 0.18

We then evaluate the impact of MSPC at different scales. MSPC represents each layer
of the convolution block containing the designed multi-scale pyramidal convolution in a
network encoder. In MSPC, different levels of convolution kernels have a certain influence
on the performance of the algorithm. To further investigate this impact, we use different
levels of convolution kernels for experimental comparison and analysis. The experimental
results are shown in Table 3. Intuitively, these results illustrate that in the current bladder
cancer segmentation task, where the tumor has large tumor shape variations, the use of
moderate perceptual fields, i.e., convolution kernels, can better extract pixel-level features
from the underlying layers of the image.

Table 3. Segmentation results on different levels of convolution kernels.

Kernel Size JI (%) ↑ DSC (%) ↑ 95HD (mm) ↓

1,3,5,7 81.27 ± 0.98 90.45 ± 1.02 3.78 ± 0.14
1,3,9,11 81.32 ± 1.18 90.15 ± 0.86 3.48 ± 0.29
1,5,9,11 82.39 ± 1.13 91.32 ± 1.21 3.82 ± 0.22
1,7,9,11 83.09 ± 0.89 91.62 ± 1.39 3.61 ± 0.63
3,5,7,9 83.46 ± 1.26 92.35 ± 1.19 3.64 ± 0.18

3,5,7,11 83.44 ± 1.16 92.32 ± 1.26 3.64 ± 0.16
3,5,9,11 83.45 ± 0.84 92.12 ± 1.12 3.69 ± 0.19
3,7,9,11 83.42 ± 1.05 91.96 ± 1.43 3.78 ± 0.25
5,7,9,11 82.32 ± 1.42 90.98 ± 0.93 3.75 ± 0.19

Figure 6a,b reports the results of our ablation study on different numbers of trans-
former layers (L) in the transformer bottleneck. Testing with different layer numbers
resulted in minor changes in the performance of the proposed method. These results reveal
that the transformer layer has a strong ability to capture the global semantic features, but
the number of transformer layers is insensitive to the effect of global information modeling.
Furthermore, we further explore the various feature embedding dimensions (N) for the
transformer bottleneck. As shown in Figure 6c, the model with N = 512 achieves the
best score in terms of JI and DSC. We observe that increasing the number of embedding
dimensions may not improve the model performance yet may result in extra computational
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costs. In the current task, L = 6 and N = 512 are the trade-off between performance and
model complexity.
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Figure 6. Ablation experiments with various transformer layers (a,b) and embedding dimensions (c).

We finally evaluate the effectiveness of our proposed SCMF. By introducing the spatial
context fusion module in the decoder, our segmentation model outperforms the other
methods. Figure 7 provides the input image and the corresponding spatial attention map
of the last SCFM layer. Intuitively, SCMF acts as a plug-in module in the decoder, allowing
the decoder to focus on the tumor region by computing the spatial attention weights, which
in turn improves the segmentation performance of the model. From Figure 7, we observe
that SCMF can accurately concentrate on the tumor region, which is represented by the red
area in the spatial attention map. It is also clear from the experimental results in Table 2
that SCMF contributes to the segmentation results. In addition, it can also be inferred from
the results that MSPC and the transformer bottleneck can cope better with the deformation
challenges in the tumor region.

Image Mask Spatial attention map Prediction

Figure 7. Visualization of the input image, mask, spatial attention map and prediction result.

5.2. Segmentation Results

We conducted several comparative experiments with the previous segmentation
method. Table 4 reports the results on the segmentation of bladder tumors using MRI. In
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general, all of the methods yielded promising results, especially UNet and its improved
versions, which achieved a similar performance. Among them, MSEDTNet obtained a
higher accuracy than other models in almost all metrics. The mean Dice score and mean
Jaccard index of MSEDTNet were 92.35 and 83.46, respectively, where the former is 4.41%
higher and the latter is 4.41% higher than that of the vanilla UNet. The 95HD improved by
less, relative to the other two metrics. In Table 4, we also observe that DeepLabv3+ achieves
relatively poor results. The reason for this may be that the DeepLabv3+ has a strong
representation capability and an over-fitting problems occur on simple medical image data.
This is also the reason we chose UNet as the benchmark model for improvement.

Table 4. Segmentation results of different methods.

Model JI (%) ↑ DSC (%) ↑ 95HD (mm) ↓

DeepLabv3+ 78.11 ± 1.16 87.38 ± 0.74 4.06 ± 0.12
UNet 79.04 ± 1.35 87.94 ± 0.89 3.96 ± 0.11

Dolz et al. [16] 79.51 ± 1.16 88.38 ± 0.74 3.98 ± 0.14
Ge et al. [17] 80.08 ± 1.38 89.43 ± 0.93 3.81 ± 0.23
Liu et al. [18] 79.91 ± 1.09 89.74 ± 1.02 3.84 ± 0.18
TransUNet 81.02 ± 1.36 90.87 ± 1.01 3.79 ± 0.19
MSEDTNet 83.46 ± 1.26 92.35 ± 1.19 3.64 ± 0.18

Dilated convolution or atrous spatial pyramid pooling allow multi-scale feature ex-
traction by increasing the receptive field of networks, and they achieve some performance
gains (i.e., Ge et al. [17]). However, dilated convolution has problems with the loss of local
information and the grid effect caused by the lack of correlation of information acquired at
a distance, which is detrimental to fine-grained semantic segmentation [33,34]. Contrary to
this, we propose multiple MSPC for parsing the feature maps provided by different levels
of encoders. MSPC, by setting multiple convolution operations at different scales, can not
only process the input using increasing kernel sizes in parallel and enlarge the receptive
field, capturing different levels of detail, but it can also aggregate local texture information
and advance the segmentation performance of the algorithm. On top of these advantages,
MSPC is very efficient, and with our implementation, it can maintain similar parameters
and computational costs as the conventional standard convolution.

Compared with traditional encoder–decoder architecture models, such as UNet,
Tables 2 and 4 show that the transformer architecture plays a crucial role in performance
improvement. In semantic segmentation tasks, the pure transformer encoders tend to
model global semantic information, usually ignoring fine-grained information at low reso-
lution, which hampers the ability of the decoder to recover the image details [35]. Thus,
the encoder with downsampling combined with transformer may be a reasonable choice,
which can complement each other in coarse-grained and fine-grained information to parse
the input effectively. Note that while the related TransUNet achieved closer results than
MSEDTNet, our method can obtain lower parameters and reasoning time, as illustrated in
Figure 8a,b.
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Figure 8. Parameter (a) and inference time (b) comparison of different models [16–18].
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Adding additional branches to the decoder is essential for recovering detailed image
information [36,37]. For example, Liu et al. [18] produced three predicted masks from
different decoders to enhance the segmentation capability, and their experiment results
report a higher DSC score. Meanwhile, MSEDTNet employs five additional branches and
the spatial attention mechanism to assist the decoder in resolving image details. From
this perspective, SCMF also makes full use of the semantic context and high-level feature
information extracted by the encoder.

We also show a visual comparison of the bladder cancer segmentation results of
various methods in Figure 9. It is evident that MSEDTNet can describe bladder tumors
more accurately and generate much better segmentation masks by complementing local and
global semantic information, and modeling long-range dependencies. The masks predicted
by other comparative models can detect inhomogeneously distributed tumor regions, but
the results are also unsatisfactory for tumor boundaries with intensity inhomogeneities.

Ground Truth MSEDTNet UNet TransUNet

DeepLabv3+ Dolz et al. Ge et al. Liu et al.

Figure 9. Visual comparison of bladder cancer segmentation results [16–18].

6. Conclusions

We report a newly designed framework that incorporates the multi-scale pyrami-
dal convolution, the spatial context fusion module and the transformer bottleneck in a
U-shaped network for bladder cancer segmentation. The resulting architecture, called
MSEDTNet, not only has a strong ability to extract detailed local multi-scale information
but also utilizes the transformer structure to capture the global semantic segmentation in-
formation of the context and fusion inherent to the multi-level feature maps of the encoder.
Comprehensive experimental results show that the MSEDTNet can accommodate large
tumor shape variations and has a high-performance advantage over other segmentation
algorithms, therefore being expected to provide an effective segmentation tool to aid the
clinical diagnosis of bladder cancer. The proposed method can be also applied to other
small or variable-shape tumor segmentation tasks. In the future, we will collect more
clinical data and consider including the classification and staging of bladder cancer.
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