
Citation: Pae, S.-i.; Kwon, K.-W.

Majority Approximators for

Low-Latency Data Bus Inversion.

Electronics 2022, 11, 3352.

https://doi.org/10.3390/

electronics11203352

Academic Editors: Juan M. Corchado,

Byung-Gyu Kim, Carlos A. Iglesias,

In Lee, Fuji Ren and Rashid

Mehmood

Received: 30 September 2022

Accepted: 14 October 2022

Published: 17 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Majority Approximators for Low-Latency Data Bus Inversion
Sung-il Pae and Kon-Woo Kwon *

Department of Computer Engineering, Hongik University, Seoul 04066, Korea
* Correspondence: konwoo@hongik.ac.kr

Abstract: Data bus inversion (DBI) is an encoding technique that saves power in data movement in
which the majority function plays an essential role. For a latency optimization, the majority function
can be replaced by a majority approximator that allows for a small error in majority voting to obtain a
faster encoder that still saves power. In this work, we propose two systematic approaches for finding
high-performance majority approximators. First, we perform an exhaustive search of all possible
Boolean functions to find an optimal approximator based on a certain circuit structure comprised
of fifteen logic gates. The approximator found by the systematic search can be implemented using
compound gates, resulting in a latency-efficient design with only two gate levels. Compared with
prior works using a heuristic idea, the proposed circuit runs at the same speed but achieves greater
switching activity savings. Second, we propose another majority approximator using the average of
three randomly permuted copies of the approximator found in the first approach. We show that the
second proposed approximator achieves even higher savings in switching activity as its function is
closer to a true majority voter. We report various performance metrics of the newly found majority
approximators based on syntheses using a 65 nm process.

Keywords: approximator; data bus inversion; latency; majority function; switching activity

1. Introduction

Data bus inversion (DBI) is an encoding technique that saves power in data move-
ment [1–7]. Let u(t) = (u0(t), . . . , u7(t)) be 8-bit data to move at time t, and consider a
9-bit encoding v(t) = (v0(t), . . . , v8(t)) of the data u(t), which is computed by the encoder
given in Figure 1.

Figure 1. A DBI encoder.

Electronics 2022, 11, 3352. https://doi.org/10.3390/electronics11203352 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics11203352
https://doi.org/10.3390/electronics11203352
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0003-3902-8214
https://orcid.org/0000-0002-4973-6815
https://doi.org/10.3390/electronics11203352
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics11203352?type=check_update&version=3

Electronics 2022, 11, 3352 2 of 13

The encoder first computes

x(t) = (v0(t− 1), . . . , v7(t− 1), v8(t− 1))⊕ (u0(t), . . . , u7(t), 0), (1)

the bitwise XOR of the previous encoding v(t− 1) and the current data u(t) with 0 ap-
pended at the end. The first 8 bits of x(t) are the bit toggles between the previous encoding
and the current data. Now, the toggle bits x(t) are fed to the majority voter MAJ and

if MAJ(x(t)) = 1, then, (if x(t) has more than four 1’s,)
v8(t) = 1, and, vi(t) = ui(t), for 0 ≤ i ≤ 7, (set control bit to 1 and invert)

otherwise,
v8(t) = 0, and, vi(t) = ui(t), for 0 ≤ i ≤ 7. (set control bit to 0)

The last bit v8(t) of the encoding v(t) is the control bit that contains the information on
whether the data are inverted or not, and the majority function determines the control bit
based on the number of toggles.

We are interested in the number of bit toggles that occur on the bus, as it is proportional
to the energy dissipation through charging and discharging the interconnect capacitance,
which is known to be a substantial portion of the energy consumed by digital circuits [8–13].

If the DBI encoding is not used, then the data u(t) are directly sent to a 8-bit bus. If
DBI encoding is used, then we assume the encoded data v(t) are sent to a 9-bit bus. The
above encoding reduces the average number of bit toggles even though it has the extra
control bit, and we can see this as follows. If the data u(t) are uniformly random, then the
bit toggles are random, and thus the total amount τu of bit toggles over all possible 8-bit
values is

τu = 0
(

8
0

)
+ 1

(
8
1

)
+ · · ·+ 8

(
8
8

)
= 8 · 27 = 1024.

(Take the derivative of (y + 1)n = ∑n
k=0 (

n
k)y

k, and obtain n(y + 1)n−1 = ∑n
k=0 k(n

k)y
k−1.)

If the data u(t) are uniformly random, we can show that the encoding v(t) becomes
uniformly random quickly. The total amount τv of bit toggles over all possible 9-bit values
of x(t) is

τv = 0
(

9
0

)
+ · · ·+ 4

(
9
4

)
+ 4

(
9
5

)
+ · · ·+ 0

(
9
9

)
(2)

= 2
(

0
(

9
0

)
+ · · ·+ 4

(
9
4

))
= 1674. (3)

Now, to make a proper comparison, we need the average amounts of toggles per data
movement, which are

τu/28 = 1024/28 = 4,

τv/29 = 1674/29 ≈ 3.270.

So, the encoding reduces the number of bit toggles by 18.3% on average, when com-
pared to the direct data movement.

Latency-Optimized DBI Encoding

In the above encoding scheme, replace MAJ by an arbitrary Boolean function f on
9-bit inputs. The resulting encoding still functions correctly; if the control bit was set to
1, then the inverted data are recovered by decoding. However, the number of toggles can
increase. For example, if f is identically 0, then the encoder passes the original data as it is
with the control bit 0, and the total number of toggles over all input patterns is the same as
the direct data movement with 8-bit bus.

Electronics 2022, 11, 3352 3 of 13

In the following, we are concerned with a DBI encoder for 8-bit data that use a Boolean
function f in place of MAJ. Let τ(f) be the total sum of toggles on all possible 9-bit patterns
for encoding the corresponding DBI encoder and let us call it total switching activity for f .

The total switching activity is minimized when f is MAJ. For each input, the majority
function gives a minimal switching and thus the total switching activity over all inputs
is minimal. For the toggle bits x of (1), let wt(x) be its Hamming weight. Note that the
switching activity is either wt(x) or 9−wt(x). More precisely,

switching activity =

{
wt(x) if f (x) = 0
9−wt(x) if f (x) = 1

(4)

If wt(x) ≤ 4, then the switching activity is minimized if and only if f (x) = 0. If
wt(x) > 4, then the switching activity is minimized if and only if f (x) = 1. Such a Boolean
function f is exactly the majority function MAJ, and this proves our claim that the total
switching activity is minimized when f is MAJ.

However, the majority function is rather complicated to implement as a circuit and
thus increases the latency of data transmission (of course, in favor of power saving). In [14],
the authors replaced it with simpler approximate circuits to decrease the latency at the cost
of switching activity. Let us call a Boolean function f that replaces majority function in
DBI encoder a majority approximator. As observed above, even if a majority approximator f
makes an error in majority voting, the data are transmitted correctly. If we come up with
a low-latency circuit that is close enough to majority function, then we can make a more
quickly running DBI encoder and thus a more quickly running system, while still saving
power for data transmission. Furthermore, a lower latency itself can save energy by saving
the time and thus the energy to sustain the system.

In this paper, we aim to find low-latency majority approximators that result in as low
switching activity as possible. We have seen τ(MAJ) = 1674 in (3). If MAJ is replaced by
an approximate voter f , by the above reasoning in (4), for x such that f (x) 6= MAJ(x), the
additional switching activity compared to the correct DBI encoder is |2wt(x)− 9|. So, the
total switching activity with respect to f ,

τ(f) = τ(MAJ) + ∑
f (x) 6=MAJ(x)

|2wt(x)− 9|.

Let us call
δ(f) = τ(f)− τ(MAJ) = ∑

f (x) 6=MAJ(x)
|2wt(x)− 9|

additional total switching activity of f , and we use this as a performance measure for a majority
approximator. Given a Boolean function f , it is often easier to compute the additional
total switching activity of f than the total switching activity. Of course, when f is close
to the majority function, that is, its Hamming distance to the majority function is small,
its additional total switching activity tends to be small. In our search for good majority
approximators, we use the two measures, the Hamming distance and the additional total
switching activity.

Since DBI was first proposed by [1], many researchers have presented bus coding
schemes in various forms for energy-efficient data movement. Shin et al. [15] proposed a
scheme named partial DBI in which the DBI coding is applied to a subset of total bus lines
to reduce the energy waste caused by encoding inactive bus lines. Kwon [7] proposed a
modified DBI scheme suitable for OR-chained buses that require extra switching activity for
data parking. Lee et al. [16] proposed a scheme named dynamic bus inversion dedicated
for a pseudo open drain interface in which sending the logical value 1 consumes more
energy than sending the logical value 0. Based on the observation that there exists a
similarity between multiple data elements sent in a single transaction, the authors in [16]
proposed XOR-based encoding such that the number of logical 1’s can possibly reduce
in the code word. Song et al. [17] proposed using a bus in idle cycles as a resource for

Electronics 2022, 11, 3352 4 of 13

sparse bus encoding that can outperform the DBI at the expense of many extra bits of
overhead. Pae et al. [14] proposed low-latency DBI encoders by replacing a true majority
voter with a majority approximator. Specifically, two majority approximators FA and FB
were suggested and implemented as circuits with significantly lower latencies than the
majority function, while among the 29 = 512 inputs, they create error for 126 and 111
inputs, respectively. They were devised using the heuristic idea that an input is likely to
satisfy so-called adjacency condition if the input has more 1’s than 0’s. In this paper, we
aim to find better majority approximators through systematic searches of certain classes
of circuits.

The rest of this paper is organized as follows. Section 2 describes an exhaustive search
on all possible Boolean functions based on the circuit scheme that imitates the structure
of the approximate voters in the previous work [14]. As a result, we could come up with
majority approximators, which we call F0 and F1, with a similar latency but with less
errors (93). Section 3 describes a search on circuits made by parallelly combining three of
the newly found approximators F0 but randomly rearranging inputs, and then by taking
the majority of the three outputs, we came up with three new approximators with only
39 errors. In this case, the search is not exhaustive because the search space is too huge, and
therefore there is no guarantee that they are the best approximators. Section 4 reports the
relevant metrics including the latencies, areas, operating powers, and switching activities
of the circuits based on syntheses using a commercial 65 nm process. Section 5 concludes
the paper, and Appendix A presents a table of abbreviations and symbols.

2. Search for Majority Approximators

Consider the schematic shown in Figure 2. Substituting the fifteen rectangles with
appropriate logic gates gi, we obtain a circuit with nine inputs. In a functional form, the
resulting Boolean function is

f (x) =g15(g13(g9(g1(x0, x1), g2(x2, x3)), g10(g5(x1, x2), g6(x3, x4))),

g14(g11(g3(x4, x5), g4(x6, x7)), g12(g7(x5, x6), g8(x7, x8))).
(5)

For example, consider NAND and NOR as candidates for the gates. Then, there exist
215 = 32, 768 possibilities, and we can make comparisons with the majority function to find
the best approximators among them. As a result, we found six circuits, shown in Table 1,
with a Hamming distance of 93 to the majority function, which is the minimum among the
possible circuits. As the next-best circuits, there are two functions with a distance of 94.
Furthermore, then there are four circuits with a distance of 96, etc. A similar exhaustive
search was performed with respect to the additional total switching activity. Figure 3 shows
the tally counts of the functions with respect to the number of errors and the additional
total switching activity.

Table 1. The six circuits that are nearest to majority function using the search scheme in Figure 2. For
the gates g1, . . . , g15, 0 stands for NAND and 1 stands for NOR.

f (g1, g2, . . . , g15)

F0 (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
F1 (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1)
F2 (0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0)
F3 (0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0)
F4 (1, 0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1)
F5 (1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 0, 1)

Electronics 2022, 11, 3352 5 of 13

Figure 2. A search scheme for majority approximators.

Figure 3. Tally counts according to the number of errors to MAJ and the additional total switching
activity, among 215 = 32, 768 possible circuits using NAND and NOR gates; test.

We have chosen the scheme presented in Figure 2 because the approximate voters FA
and FB proposed in the previous work [14] used a similar structure that could exploit the
adjacency condition, especially the better approximator FB. In fact, using the convention of
Table 1, the approximator FB can be represented as (0, 0, 0, 0, 0, 0, 1, 1, 1).

Among the six circuits in Table 1, F0 and F1 stand out because they have all the
same gate for gi. In fact, in terms of switching activity, they are the two best approxima-
tors among 215 = 32, 768 circuits. The other four circuits in Table 1 have slightly higher
switching activities, although they have the same number of errors. See Table 2 for the
specific numbers.

Table 2. Hamming distances and additional switching activities to the majority function.

Approximator Hamming Distance Additional Total
f to MAJ Switching Activity

FA 126 198
FB 111 161

F0 93 113
F1 93 113

F2 to F5 93 115

Electronics 2022, 11, 3352 6 of 13

Recall that FA and FB from [14] have Hamming distances of 126 and 111, respectively,
and thus, F0 and F1 are more accurate majority approximators. Even with more extensive
searches on various combinations of two or three gates among NAND, NOR, AND, and OR,
F0 and F1 are found to be the best approximators in terms of both Hamming distance and
switching activity. For example, when NAND, AND, and OR gates are candidates, there
are 315 = 14, 348, 907 possibilities (see Figure 4). An exhaustive search found 75 circuits
with the same Hamming distance of 93, as with F0 and F1. Among them, 45 circuits have
the same additional total switching activity of 113 as with F0 and F1, and those are all the
circuits with the minimum additional total switching activity. Interestingly, those 45 circuits
are all equivalent to either F0 or F1.

Figure 4. Tally counts according to the number of errors to MAJ and the additional total switching
activity among 315 = 14, 348, 907 possible circuits using NAND, AND, and OR gates.

The Boolean function F0 can be implemented as a low-latency circuit using the idea
used in [14] (see Figure 5). We start with the four-level circuit (a) with all NAND gates. By
De Morgan’s law, replace the NAND gates with AND gates at the first and third levels and
with OR gates at the second and fourth levels. This equivalent circuit (b) can be viewed as
a majority approximator comprising five AND–OR pattern detectors.

For a latency-efficient design, NOR gates are preferred over the OR gates in the second
level of (b) because a NOR of two AND gates can be implemented as a single compound
AND-OR-INVERTER (AOI) gate. At each wire connecting the second and third levels, we
add two bubbles, of which one is used for converting OR to NOR in the second level while
the other is pushed to the third level as shown in (c). The pushed bubbles are combined with
two ANDs and one OR gate, resulting in a single compound gate of OR-AND-INVERTER
(OAI). Circuit (d) now consists of only two gate levels: the first stage contains four AOI
gates in parallel and the second one contains an OAI gate. In general, AOI and OAI gates
are available as a standard cell that includes only two transistors in series for both low-to-
high and high-to-low transitions as shown in Figure 6 (see that a simple NAND gate also
needs two transistors in series for a high-to-low transition).

Similarly, F1 can be implemented as a low-latency circuit using the compound gates
as shown in Figure 7. Four levels of NOR gates (a) are replaced by appropriate gates that
result in an equivalent circuit (b), and the shaded regions can be regarded as OAI and
AOI gates.

Electronics 2022, 11, 3352 7 of 13

Figure 5. A low-latency implementation of F0.

Figure 6. An efficient compound implementation of AOI gate and OAI gate.

Electronics 2022, 11, 3352 8 of 13

Figure 7. A low-latency implementation of F1.

3. Averaging Approximators

Let f1, f2 and f3 be majority approximators that make errors independently, in the
sense that, for i 6= j,

Pr(fi makes an error | f j makes an error) = Pr(fi makes an error),

and assume that the three functions all create errors on 18% of the inputs. Consider
the function

f (x) = MAJ(f1(x), f2(x), f3(x)).

This function takes a 9-bit input x, feeds it into three approximate voters, and then
takes a majority vote of their outputs. The function f makes an error if and only if at least
two of the fis make errors. Let Ei be the event that fi makes an error, and let E be the event
that f makes an error. Then,

E = (E1 ∩ E2) ∪ (E2 ∩ E3) ∪ (E3 ∩ E1),

and
Pr(E) = Pr(E1 ∩ E2) + Pr(E2 ∩ E3) + Pr(E3 ∩ E1)− 2 Pr(E1 ∩ E2 ∩ E3).

By the independence, for i 6= j, Pr(Ei ∩ Ej) = Pr(Ei)Pr(Ej) = (0.18)2, and similarly,
Pr(E1 ∩ E2 ∩ E3) = (0.18)3. Therefore,

Pr(E) = 3 · (0.18)2 − 2(0.18)3 = 0.085536.

So, the function f is a better approximator that makes only about the half as many
errors as fis. Although the three approximate voters can make errors, by taking their
majority, we expect that the possible errors are averaged out. This idea holds if the
constituent functions fi make relatively small errors. Let us call such an approximate voter
f an averaging approximator.

Using this idea, consider now the following approximator:

f (x) = MAJ(F0(x), F0(π1(x)), F0(π2(x))), (6)

where π1 and π2 are permutations of nine bits of x = (x0, . . . , x8). We have a good
candidate for the constituent function for an averaging approximator, namely F0 and F1.
However, we need three functions that are stochastically independent.

For a Boolean function g and a permutation π, in general, g(x) 6= g′(x) := g(π(x)).
However, a global metric such as the Hamming distance to the majority function does

Electronics 2022, 11, 3352 9 of 13

not change by permutation of the inputs. For the permutations π1 and π2, let F′0(x) =
F0(π1(x)), F′′0 (x) = F0(π2(x)). Then, F′0 and F′′0 have the same performance as F0 as
approximate voters, in the sense that they have the same Hamming distance to the majority
function and the additional total switching activity as F0. Moreover, by taking random
permutations, we expect that the three functions F0, F′0, and F′′0 are relatively independent,
if not strictly independent as we assumed before.

Figure 8 shows a tally count of the Hamming distances for a million approximate
voters (6) obtained by generating pairs of random permutations. The Hamming distance
ranges from 42 to 94, and the frequencies are distributed in a bell shape similar to a
normal distribution. The distribution peaks at 66 and thus we can expect that a randomly
chosen averaging approximator is likely to have a Hamming distance close to 66 with
a high probability. This number of errors is about 12.9% of all 512 inputs. This result
does not exactly agree with the approximately 9% that we made above assuming the strict
independence, and it is probably because F0, F′0, and F′′0 are not strictly independent (note
that F0 makes an error on about 18% of the inputs). However, this experiment results in
approximators with a wide range of performances and shows a possibility of finding a
good approximator.

Figure 8. A tally count according to the number of errors to MAJ among the averaging approximators
using one million random pairs of permutations.

The search was performed to find the two permutations that result in a majority
approximator (6) that is as close to the majority function as possible. Note that there are
9!× 9! = 131, 681, 894, 400 possibilities, which is too huge to make an exhaustive search.
Instead, we generated a few hundred million pairs of random permutations, and then
measured how close the resulting approximator (6) is to the majority function. As a result,
we found three averaging approximators with a Hamming distance of 39, or a 7.6% error
rate, and that was as close as we could obtain.

One of the three best averaging approximators that we found was determined by the
following permutations:

π1 = (x4, x3, x5, x8, x0, x6, x2, x1, x7),

π2 = (x1, x5, x8, x2, x4, x7, x6, x3, x0).
(7)

Let us call the corresponding approximate voter FM, and it can be implemented as in
Figure 9 where three copies of F0 with appropriate permutations operate in parallel then
their majority is chosen by using four NAND gates. The use of more circuits than F0 or F1
increases the latency of FM. However, as will be discussed in Section 4, our implementation
based on FM still runs much faster than a true majority voter-based implementation.

Electronics 2022, 11, 3352 10 of 13

Figure 9. Implementation of FM.

4. Implementation and Performance Metrics

The proposed encoders based on F0, F1, and FM were designed in Verilog HDL and
synthesized using standard cells in commercial 65 nm CMOS process technology to analyze
latency, area, and operating power. For fair comparisons, two prior designs based on FA
and FB as well as another two conventional DBI encoders were also resynthesized using
the same CMOS technology. For the seven different DBI encoders, savings in switching
activity with respect to a direct data movement were evaluated on an input sequence of ten
million uniformly random 8-bit data.

Table 3 summarizes the performance of the seven DBI encoders. The encoders based on
true majority voters, namely, SYN-ENC [14,18] and MUX-ENC [19,20], achieve the highest
savings in switching activity of 18.3% at the expense of 0.91 ns or higher latency. Prior
works on approximators based on FA and FB improved latencies significantly, however, as
a trade-off, they showed lower savings in switching activity of 9.5% and 11.2%, respectively.
Our first proposed encoders based on F0 and F1 enhance the trade-off provided by FB, that
is, they achieve 12.8% savings in switching activity without incurring any penalty in the
encoding latency. The enhancement stems from the systematic search scheme as opposed
to the heuristic solution of FB. Our second proposed encoder based on FM achieves 16.4%
savings in switching activity, the best among five approximate approaches. Due to the use
of majority function on three outputs from F0, F′0, and F′′0 , the FM-based design requires
0.53 ns latency which is longer than other approximators; however, this is still almost half
the encoding latency of the true majority voter-based designs.

Table 3. Latency, area, power, and savings in switching activity of the encoders based on the proposed
approximators and the majority voters.

65 nm Process Latency Area Operating Power Savings in Total
(ns) (µm2) (µW) Switching Activity (%)

SYN-ENC [14,18] 0.95 95.68 46.9 18.3

MUX-ENC [19,20] 0.91 103.68 38.0 18.3

FA [14] 0.29 48.96 14.1 9.5

FB [14] 0.35 65.28 26.2 11.2

Proposed F0 0.35 65.28 26.7 12.8

Proposed F1 0.35 65.28 26.4 12.8

Proposed FM 0.53 113.60 65.2 16.4

We also obtained the power-delay product (PDP) and the energy-delay product (EDP)
as shown in Figure 10 to compare the seven encoders in terms of operating energy effi-
ciency [21,22]. Obviously, the five approximate designs outperform the three conventional
designs based on a true majority voter, e.g., even the FM-based design shows a significantly
lower EDP than the conventional designs.

Electronics 2022, 11, 3352 11 of 13

Figure 10. PDP and EDP comparisons. Y axes are in log scale.

5. Conclusions

We proposed two search methodologies for latency-efficient majority approximators
that can replace the true majority function for 9-bit inputs in the DBI encoder for 8-bit data.
First, motivated by our previous work in [14], we performed an exhaustive search on a
class of circuits based on a structure of the approximate voter in [14] and found two new
majority approximators F0 and F1 that are optimal in terms of the total switching activity.
F0 and F1 can be implemented using compound gates of AOI and OAI, resulting in only
two gate levels. The proposed encoders based on F0 and F1 improve the switching activity
without incurring any extra latency compared to the previous work using a heuristic idea.
Second, we considered another class of majority approximators made by averaging three
input-permuted copies of F0. Since the class is too large to perform an exhaustive search,
we randomly picked a few hundred million such approximators and found a good majority
approximator, namely, FM. The appropriately chosen permutations by our systematic
search achieve a functionality close to the true majority function, leading to higher savings
in switching activity than F0 and F1.

The proposed encoders were designed and synthesized using standard cells in 65 nm
CMOS technology. The F0- and F1-based encoders both achieved 12.8% savings in switching
activity, compared to 11.2% for the previous encoder with the same encoding latency of
0.35 ns. The FM achieved 16.4% savings by averaging out the possible errors produced by
constituent approximators. Although the FM is designed with more circuits than F0 and
F1, it is still latency efficient at two compound gate levels in addition to two NAND gate
levels, requiring about half the latency of true majority function-based DBI encoders.

Author Contributions: Conceptualization, S.-i.P. and K.-W.K.; methodology, S.-i.P. and K.-W.K.;
software, S.-i.P. and K.-W.K.; vali-dation, S.-i.P. and K.-W.K.; formal analysis, S.-i.P. and K.-W.K.;
investigation, S.-i.P. and K.-W.K.; resources, S.-i.P. and K.-W.K.; data curation, S.-i.P. and K.-W.K.;
writing original draft preparation, S.-i.P. and K.-W.K.; writing review and editing, S.-i.P. and K.-W.K.;
visualization, S.-i.P. and K.-W.K.; supervision, S.-i.P. and K.-W.K.; project administration, S.-i.P. and
K.-W.K.; funding acquisition, S.-i.P. and K.-W.K. All authors have read and agreed to the published
version of the manuscript.

Funding: This work was supported in part by Hongik University and in part by the National
Research Foundation of Korea (NRF) Grant funded by the Korean Government under Grant NRF-
2016R1D1A1B01016531 and Grant NRF-2022R1F1A1074728. This work was also partly supported
by the Institute of Information and Communications Technology Planning and Evaluation (IITP)
Grant funded by the Korean Government (MSIT) (No. 2019-0-00533, Research on CPU vulnerability
detection and validation).

Data Availability Statement: Not applicable

Conflicts of Interest: The authors declare no conflict of interest.

Electronics 2022, 11, 3352 12 of 13

Appendix A

Table A1. List of Abbreviations and Symbols

Abbreviation or Symbol Definition

DBI data bus inversion encoding; Section 1
MAJ the majority function; Section 1
τ(f) total switching activity for f ; Section 1
δ(f) additional total switching activity for f ; Section 1
FA, FB majority approximators proposed in [14]; Section 2
F0, F1 best majority approximators by scheme of Figure 2; Table 1
AOI AND-OR-INVERTER; Figure 6
OAI OR-AND-INVERTER; Figure 6
FM an averaging approximator based on F1; Figure 9
SYN-ENC a majority function implementation proposed in [18]
MUX-ENC a majority function implementation proposed in [19,20]

References
1. Stan, M.R.; Burleson, W.P. Bus-invert coding for low-power I/O. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 1995, 3, 49–58.

[CrossRef]
2. Stan, M.R.; Burleson, W.P. Low-power encodings for global communication in CMOS VLSI. IEEE Trans. Very Large Scale Integr.

(VLSI) Syst. 1997, 5, 444–455. [CrossRef]
3. Bae, S.J.; Park, K.I.; Ihm, J.D.; Song, H.Y.; Lee, W.J.; Kim, H.J.; Kim, K.H.; Park, Y.S.; Park, M.S.; Lee, H.K.; et al. An 80 nm 4

Gb/s/pin 32 bit 512 Mb GDDR4 graphics DRAM with low power and low noise data bus inversion. IEEE J. Solid-State Circuits
2008, 43, 121–131. [CrossRef]

4. Hollis, T.M. Data bus inversion in high-speed memory applications. IEEE Trans. Circuits Syst. II Express Briefs 2009, 56, 300–304.
[CrossRef]

5. Lucas, J.; Lal, S.; Juurlink, B. Optimal DC/AC data bus inversion coding. In Proceedings of the 2018 Design, Automation & Test
in Europe Conference & Exhibition (DATE), Dresden, Germany, 19–23 March 2018; pp. 1063–1068.

6. Sohn, K.; Na, T.; Song, I.; Shim, Y.; Bae, W.; Kang, S.; Lee, D.; Jung, H.; Hyun, S.; Jeoung, H.; et al. A 1.2 V 30 nm 3.2 Gb/s/pin 4
Gb DDR4 SDRAM with dual-error detection and PVT-tolerant data-fetch scheme. IEEE J. Solid-State Circuits 2012, 48, 168–177.
[CrossRef]

7. Kwon, K.W. Optimal bus coding for OR-chained buses. IEICE Electron. Express 2021, 18, 20200378. [CrossRef]
8. Borkar, S.; Chien, A.A. The future of microprocessors. Commun. ACM 2011, 54, 67–77. [CrossRef]
9. Borkar, S. Role of interconnects in the future of computing. J. Light. Technol. 2013, 31, 3927–3933. [CrossRef]
10. Dally, B. Power, programmability, and granularity: The challenges of exascale computing. In Proceedings of the 2011 IEEE

International Test Conference, Anaheim, CA, USA, 20–22 September 2011; p. 12.
11. Keckler, S.W.; Dally, W.J.; Khailany, B.; Garland, M.; Glasco, D. GPUs and the future of parallel computing. IEEE Micro 2011,

31, 7–17. [CrossRef]
12. Kestor, G.; Gioiosa, R.; Kerbyson, D.J.; Hoisie, A. Quantifying the energy cost of data movement in scientific applications.

In Proceedings of the 2013 IEEE International Symposium on Workload Characterization (IISWC), Portland, OR, USA, 22–24
September 2013; pp. 56–65.

13. Lucas, R.; Ang, J.; Bergman, K.; Borkar, S.; Carlson, W.; Carrington, L.; Chiu, G.; Colwell, R.; Dally, W.; Dongarra, J.; et al. Doe
Advanced Scientific Computing Advisory Subcommittee (Ascac) Report: Top Ten Exascale Research Challenges; Technical report; Office of
Science, U.S. Department of Energy: Washington, DC, USA: 2014.

14. Pae, S.i.; Kwon, K.W. Latency-Optimized Design of Data Bus Inversion. Electronics 2022, 11, 1205. [CrossRef]
15. Shin, Y.; Chae, S.I.; Choi, K. Partial bus-invert coding for power optimization of application-specific systems. IEEE Trans. Very

Large Scale Integr. (VLSI) Syst. 2001, 9, 377–383. [CrossRef]
16. Lee, D.; O’Connor, M.; Chatterjee, N. Reducing Data Transfer Energy by Exploiting Similarity within a Data Transaction. In

Proceedings of the 2018 IEEE International Symposium on High Performance Computer Architecture (HPCA), Vienna, Austria,
24–28 February 2018; pp. 40–51. [CrossRef]

17. Song, Y.; Ipek, E. More is less: Improving the energy efficiency of data movement via opportunistic use of sparse codes. In
Proceedings of the 2015 48th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO), Waikiki, HI, USA,
5–9 December 2015; pp. 242–254. [CrossRef]

18. Palnitkar, S. Verilog HDL: A Guide to Digital Design and Synthesis; Prentice-Hall, Inc.: Upper Saddle River, NJ, USA, 1996.
19. Parhami, B. Voting networks. IEEE Trans. Reliab. 1991, 40, 380–394. [CrossRef]
20. Balasubramanian, P.; Maskell, D. A distributed minority and majority voting based redundancy scheme. Microelectron. Reliab.

2015, 55, 1373–1378. [CrossRef]

http://doi.org/10.1109/92.365453
http://dx.doi.org/10.1109/92.645071
http://dx.doi.org/10.1109/JSSC.2007.908002
http://dx.doi.org/10.1109/TCSII.2009.2015395
http://dx.doi.org/10.1109/JSSC.2012.2213512
http://dx.doi.org/10.1587/elex.18.20200378
http://dx.doi.org/10.1145/1941487.1941507
http://dx.doi.org/10.1109/JLT.2013.2283277
http://dx.doi.org/10.1109/MM.2011.89
http://dx.doi.org/10.3390/electronics11081205
http://dx.doi.org/10.1109/92.924059
http://dx.doi.org/10.1109/HPCA.2018.00014
http://dx.doi.org/10.1145/2830772.2830806
http://dx.doi.org/10.1109/24.85461
http://dx.doi.org/10.1016/j.microrel.2015.07.015

Electronics 2022, 11, 3352 13 of 13

21. Nagendra, C.; Owens, R.M.; Irwin, M.J. Power-delay characteristics of CMOS adders. IEEE Trans. Very Large Scale Integr. (VLSI)
Syst. 1994, 2, 377–381. [CrossRef]

22. Laros III, J.H.; Pedretti, K.; Kelly, S.M.; Shu, W.; Ferreira, K.; Vandyke, J.; Vaughan, C. Energy Delay Product. In Energy-Efficient
High Performance Computing; Springer: Berlin/Heidelberg, Germany, 2013; pp. 51–55.

http://dx.doi.org/10.1109/92.311649

	Introduction
	Search for Majority Approximators
	Averaging Approximators
	Implementation and Performance Metrics
	Conclusions
	Appendix A
	References

