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Abstract: Finger vein recognition is considered to be a very promising biometric identification
technology due to its excellent recognition performance. However, in the real world, the finger vein
recognition system inevitably suffers from the single-sample problem: that is, only one sample is
registered per class. In this case, the performance of many classical finger vein recognition algorithms
will decline or fail because they cannot learn enough intra-class variations. To solve this problem,
in this paper, we propose a SIFT-flow-based virtual sample generation (SVSG) method. Specifically,
first, on the generic set with multiple registered samples per class, the displacement matrix of each
class is obtained using the scale-invariant feature transform flow (SIFT-flow) algorithm. Then, the key
displacements of each displacement matrix are extracted to form a variation matrix. After removing
noise displacements and redundant displacements, the final global variation matrix is obtained. On
the single sample set, multiple virtual samples are generated for the single sample according to the
global variation matrix. Experimental results on the public database show that this method can
effectively improve the performance of single-sample finger vein recognition.

Keywords: finger vein recognition; single-sample; virtual sample; SIFT-flow

1. Introduction

Finger vein recognition is an effective biometric technology which uses subcutaneous
finger vein patterns for recognition. Studies have shown that finger vein patterns are unique
and stable [1,2]. Compared with other biometric features such as face, fingerprint, and
gait, finger veins show the following excellent advantages in applications [3,4]. (1) Internal
features: Finger vein patterns are inside the finger, so it is hard to be affected by the external
environment and changes in the finger epidermis. In addition, it is very difficult for others
to obtain or copy finger vein images. (2) Living body recognition: Due to the special
imaging principle, the finger vein image acquisition can only be carried out in the case of
living bodies. Therefore, the problem of fake image attack becomes more difficult in the
finger vein recognition scenario. (3) Non-contact imaging: When capturing images, fingers
do not need to touch the device, making it cleaner and more acceptable. Because of these
advantages, finger vein recognition becomes a promising branch of biometrics.

Generally speaking, a finger vein recognition system mainly includes four parts: image
acquisition, image preprocessing, feature extraction and matching. From the perspective of
feature extraction, finger vein recognition can be divided into the following types:

1. Network-based methods: These methods need to segment vein patterns first and
then extract features according to the vein patterns. Related methods mainly include:
repeated line tracking (RLT) [5], maximum curvature points (MaxiC) [6,7], mean curva-
ture (MeanC) [8], region growth [9], the anatomy structure analysis-based method [10]
(ASAVE), and so on.
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2. Local descriptor-based methods: These methods do not require segment vein patterns
but directly apply local descriptors to images. Related methods mainly include: local
binary pattern (LBP) [11,12], local line binary pattern (LLBP) [13,14], local directional
code (LDC) [15], discriminative binary codes (DBC) [16], anchor-based manifold binary
pattern (AMBP) [17], and so on.

3. Dimensionality reduction-based methods: These methods have achieved good results
in the field of face recognition, so researchers introduced it into finger vein recognition.
Commonly used dimensionality reduction techniques include: principal component
analysis (PCA) [18], linear discriminant analysis (LDA) [19], two-dimensional principal
component analysis ((2D)2 PCA) [20,21], and so on. For these methods, multiple
images are needed to train the transformation matrix.

4. Deep learning-based methods: Deep learning has been applied to various research
fields because of its powerful feature representation ability. Recently, the deep learning-
based methods have also achieved remarkable results in the field of finger vein recog-
nition [22–24]. Such methods also require multiple images to participate in training.

The above methods have shown excellent performance for multi-samples finger vein
recognition. However, in practical applications, such as identity management systems
and attendance systems, often only one image per class can be collected, which leads to
the problem of single-sample finger vein recognition. In these cases, due to insufficient
intra-class information, the performance of some algorithms will drop significantly, such as
network-based methods and local descriptor-based methods. Since a sample cannot obtain
the intra-class variations, some algorithms that require supervised learning are not avail-
able, such as dimensionality reduction-based methods and deep learning-based methods.
Therefore, it is very necessary to solve the single-sample finger vein recognition problem.
Furthermore, the single-sample finger vein recognition system requires less storage space
and has faster acquisition speed, which will have broader application prospects than the
multi-samples recognition system.

In the field of face recognition, some researchers use sample expansion technology to
synthesize multiple virtual samples from the original sample, making the single-sample
problem into general face recognition. Thus, the face recognition algorithms based on mul-
tiple samples can continue to be used in single-sample recognition, which has considerable
practical significance. Inspired by this, we propose a finger vein sample expansion method
to solve the single-sample finger vein recognition problem. Similarly, the state-of-the-art
algorithms widely used in the multiple samples finger vein recognition can continue to be
applied in single sample recognition.

Compared with symmetrical face images, finger vein images do not have regular and
obvious characteristics. Therefore, we can not directly follow the virtual sample generation
method of the face to generate virtual finger vein images. We found that the variations
between genuine images are mainly due to the finger’s translation, rotation, etc. Many
persons have similar habits with their fingers, which lead to similar intra-class variations.
Hence, we can capture intra-class variations on a generic set and then use these variations
to generate virtual samples for a single sample. Scale-invariant feature transform flow
(SIFT-flow) [25–27] can effectively estimate the variations between two images; thus, we
adopt it in our paper. Specifically, the SIFT-flow algorithm is used to estimate the variations
between genuine images, which is used as the displacement matrix within the class. Then,
the key displacements of each class are obtained to form a global variation matrix. After
removing the interference displacements and redundant displacements, a final variation
matrix is obtained. Finally, the variations matrix is used to generate virtual samples for a
single sample on a single sample set. Based on virtual samples, single-sample finger vein
recognition has been transformed into multi-sample recognition.
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The main contributions of this paper can be summarized as follows. (1) We propose
a virtual sample generation method to solve the single-sample finger vein recognition
problem. By adding the generated virtual samples, the performance of classical algorithms
is improved significantly. (2) In order to obtain effective virtual samples, we learn the
intra-class variations on the general data set and then use these variations to generate
virtual samples. (3) When learning intra-class variations, we use the SIFT-flow algorithm,
which can effectively estimate the displacement between images. The experimental re-
sults show that our method can greatly improve the performance of single-sample finger
vein recognition.

The rest of the paper is organized as follows. We discuss related work of single-
sample recognition in Section 2. In Section 3, we introduce the proposed method of solving
single-sample finger vein recognition. We report the experimental protocols and results in
Section 4. Finally, the conclusions of our work is given in Section 5.

2. Related Work

Single-sample recognition is an important research branch of biometrics. In particular,
single-sample face recognition has attracted many researchers’ interests. To solve the
problem of single-sample face recognition, many methods have been designed, and the
method based on virtual sample generation is one of them [28]. For the virtual sample
generation approach, researchers used various technologies to construct multiple virtual
images from a single face image and then applied them for recognition. For example,
Shan et al. [29] generated 10 face images for each person using a combination of appropriate
geometric transformations (e.g., rotation, scaling) and gray-scale transformations (e.g.,
simulating lighting, artificially setting noise points). Zhang et al. [30] proposed performing
singular value decomposition on each image matrix and then generated multiple virtual
images for each face image by perturbing the singular values. Wang et al. [31] used
face symmetry and sparse theory to synthesize virtual face images for sample expansion.
Hu et al. [32] proposed using a single sample to reconstruct a 3D face model and then
used the reconstructed model to obtain virtual face images. Xu et al. [33] used the axial
symmetry of the face to generate virtual samples.

The research on single-sample finger vein recognition is scant; to the best of the
author’s knowledge, only Liu et al. [34] proposed a deep ensemble learning method for
single-sample finger vein recognition, achieving good results. However, there are many
classical algorithms for multiple-sample finger vein recognition; their performance only
degrades or fails in single-sample recognition. It will be very meaningful if they can
continue to be used in single-sample finger vein recognition. Existing methods cannot
achieve this goal. Therefore, in this paper, we propose the method of virtual sample
generation to solve the single-sample finger vein recognition problem.

3. The Proposed Method

In this section, we first introduce the SIFT-flow algorithm that will be used in our
method and then introduce the proposed SIFT-flow-based virtual sample generation
method in detail.

3.1. SIFT-Flow Algorithm

As the SIFT-flow [26] algorithm can effectively estimate the variation of two images, it
is widely used in computer vision and computer graphics. For finger vein recognition, we
also choose the SIFT-flow algorithm to obtain the displacement matrix between the images.

SIFT-flow uses scale invariant feature transform (SIFT) [35] descriptors to build dense
connections between the source and target images. The SIFT descriptor is an excellent local
descriptor with illumination and rotation invariance as well as partial affine invariance.
The original SIFT descriptor includes two parts: feature extraction and salient feature point
detection. SIFT-flow only uses the feature extraction component. The SIFT feature extraction
steps are as follows: (1) For each pixel in an image, divide its 16× 16 neighborhoods into
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4× 4 cell arrays. (2) Count the gradient directions of each cell array into 8 main directions,
so that a 128 (8 main directions × 16 cell arrays) dimension feature vector for a pixel can
be obtained. The SIFT image is obtained by extracting the SIFT descriptor of each pixel in
an image.

In order to obtain the displacement matrix of the two SIFT images, it is necessary to
find the best matching pixel for each pixel. The displacement of each pixel can be obtained
by the position difference of the pixel with its best matching pixel. The displacement of each
pixel consists of a horizontal displacement and a vertical displacement. Liu et al. regarded
the matching problem as an optimization problem and design an objective function similar
to optical flow. Suppose s1 and s2 are the two SIFT images. The objective function for
SIFT-flow is defined as:

E(w) = ∑
p
||s1(p)− s2(p + w(p))||1+ (1)

1
σ2 ∑

p
(u2(p) + v2(p))+ (2)

∑
(p,q)ε

min(α|u(p)− u(q)|, d) + min(α|v(p)− v(q)|, d), (3)

where p = (x, y) is the coordinate of the current pixel. w(p) = (u(p), v(p)) is the displace-
ment vector of the current pixel relative to the matching pixel, which is only allowed to
be an integer. u(p) and v(p) represent the displacement in the horizontal and vertical
directions, respectively. In addition, ε is the neighborhood of the pixel, and the default
value is 4 neighborhoods.

There are three parts of the function: a data term, a small displacement term, and a
smooth term. The data item in (1) calculates the difference of two SIFT images. The small
displacement term in (2) constrains the displacement vector to be as small as possible,
since the best matching pixel should be chosen within the nearest neighborhood. The
smoothness term in (3) is used to constrain the translation of adjacent pixels, which should
have similar displacements. SIFT-flow uses dual-layer loopy belief propagation as the
base algorithm to optimize the objective function. Unlike usual optical flow functions, the
SIFT-flow smooth terms allow us to separate the horizontal flow u(p) and vertical flow
v(p), which can greatly reduce the complexity of the algorithm.

3.2. SIFT-Flow-Based Virtual Sample Generation (SVSG)

The proposed SVSG method is divided into a training stage and testing stage. A
schematic diagram of the virtual sample generation process is demonstrated in Figure 1. (1)
Training stage. There are multiple samples for each class on the generic set. First, regions of
interest (ROI) are extracted for each finger vein image through efficient preprocessing steps.
Then, the displacement matrix for each class is learned using the SIFT-flow algorithm. We
extract the key displacements of all displacement matrices, forming a variation matrix.
The final global variation matrix is formed after removing the interference displacement
and redundant displacement. (2) Testing stage. On the single sample set, there is only
one registered sample per class. Using the variation matrix obtained from the generic set,
multiple virtual samples are generated for each class. During recognition, the preprocessed
input image is compared with the registered samples and virtual samples to obtain the
recognition result. An overview of the recognition process is demonstrated in Figure 2.



Electronics 2022, 11, 3382 5 of 15

Single sample set

(Single image per class) Virtual sample generation

Preprocessing Variation matrix
Generic set

(Multiple images per class)

Preprocessing

Virtual samples

SIFT image pairs

Displacement matrix

Key Displacements

Remove interference 

displacements

Sampling

1. Training stage

2. Testing stage

Figure 1. Schematic diagram of the virtual sample generation process.

PreprocessingInput image Feature extraction Matching Recognition result

Preprocessed registered 

samples and virtual samples

Feature extraction

Figure 2. Overview of the recognition process.

3.2.1. Preprocessing

In our work, preprocessing mainly consists of ROI extraction, size normalization, and
gray normalization [36].

ROI extraction: The collected finger vein images have complex backgrounds, and the
noise in these backgrounds will reduce the recognition performance, so it is necessary to
extract the ROI. To obtain the ROI image, we first use the edge detection operator to detect
the edge of the finger. Then, the width of the finger area is determined according to the
inscribed line of the edge of the finger, and the height of the finger area is detected according
to the two knuckles in the finger. Finally, the ROI image can be obtained according to the
above width and height

Size and gray normalization: The size of the ROI images obtained using the above
steps is different, which will cause trouble for subsequent operations, so we normalize the
size of the ROI images. The normalized image size is 80× 240 pixels. Then, we use gray
normalization to obtain a uniform gray distribution.

3.2.2. Variation Matrix Learning

In this section, we will discuss how to learn the variation matrix from the generic set.
The learning process is divided into two steps, which are displacement matrix calculation
and global variation matrix calculation. The displacement matrix calculation is for one
class, while the global variation matrix calculation is for all classes.
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1. Displacement matrix computation.
As mentioned above, the calculation of the displacement matrix is based on the SIFT
image pair, so we need to construct the SIFT image pair. In order to ensure that
the displacement matrix can cover all displacements within the class, all images are
required to participate in forming image pairs. Specifically, for a particular class w, the
displacement matrix is calculated as follows:

(1) Construct SIFT image pairs.
For each image within the class w, we obtain the SIFT image using the SIFT
descriptor, where the jth SIFT image is represented as SFimgw

j . Then, taking the
first SIFT image as the benchmark, the remaining other SIFT images form SIFT
image pairs with it: for example, the pair (SFimgw

1 , SFimgw
j ) is formed by the

first SIFT image and the jth SIFT image.
(2) Calculate displacement matrix.

In this step, the SIFT-flow algorithm is used to obtain the displacement matrix
dispw

j of each SIFT image pair, which is given as follows:

dispw
j = SIFTL f low(SFimgw

1 , SFimgw
j ) (4)

where each matrix consists of displacements in both the X-direction and the
Y-direction.

The process of obtaining the displacement matrix between two images is given in
Figure 3. Figure 3a presents two genuine images: that is, two images from the same finger.
Figure 3b shows the SIFT image pair of the two genuine images, in which the SIFT value of
a pixel is represented by a white circle. In Figure 3c, the displacement matrix is given, which
consists of horizontal (X-direction) displacement and vertical (Y-direction) displacement.
For presentation, the values of the displacement matrix have been normalized to be between
0 and 255. By observation, we can see that the horizontal displacement of different pixels
in the same image is consistent, and this feature also applies in the vertical direction.

(a)Genuine images (b)SIFT image pair

SIFT descriptor SIFT-flow

X

Y

(c)Displacement matrix

X-direction Y-direction

Figure 3. The process of obtaining the displacement matrix.

2 Global variation matrix computation.
Herein, we introduce the steps to obtain the global variation matrix. First, we obtain
the key displacement of each displacement matrix and then remove the interference
displacement. Finally, the variation matrix is sampled to reduce redundancy.

(1) Obtain key displacements.
Meng et al. [37] pointed out that in finger vein recognition, the displacements
of different pixels in two images from the same finger are similar, and Figure 3c
also proves this statement. So, we can use the displacement with the most
occurrences as the key displacement between two images. First, the frequency
of each displacement for the displacement matrix is counted. The displacement
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with the largest frequency is used as the key displacement of the matrix, and
all key displacements are combined into a variation matrix keydispw of class w
which can be calculated as:

keydispw = [ f (max(p(dispw
1 )), . . . . . . , f (max(p(dispw

m−1))] (5)

where p(dispw
j ) denotes the frequency of all displacements in the displacement

matrix dispw
j , and max(p(dispw

j )) denotes the maximum frequency. Equation f
gives the displacement with a certain frequency. We calculate the key displace-
ments of all classes in the generic set to form a temporary variation
matrix Vtemp.

(2) Remove interference displacements.
There are two kinds of interference displacements considered in this paper. The
first is the displacement with too large value and small frequency, which is
also quite different from the adjacent value. These displacements are caused by
occasional large movements of a finger during acquisition and are not universal.
If these displacements are used to generate virtual samples, they are likely to
adversely affect recognition. The second is that the displacement value is 0 or too
small, and these displacements indicate that there is almost no difference between
the two images. If such displacements were used to generate virtual samples,
they would not be helpful for identification but would create data redundancy.
Therefore, we remove the above two displacements.

(3) Sampling.
The existing temporary variation matrix is displacement-intensive. For example,
there will be displacements with value x and x+1 at the same time, and the
virtual samples generated by these two adjacent displacements have almost
the same contribution to recognition. In order to avoid data redundancy, for
adjacent displacements, we just keep one. Therefore, we sample the remaining
matrix according to the step size and use the remaining matrix as the final global
variation matrix V = [v1, v2, ..., vk]

T , where vi = (∆x, ∆y) has two components,
representing the displacement in the X-direction and Y-direction.

The process to learning the global variation matrix can be summarized as Algorithm 1.

Algorithm 1: Learning variation matrix.
Inputs: The preprocessed finger vein images on the generic set
Outputs: Variation matrix V
Algorithm:
1. Initialize V = [], Vtmp = [], i = 1, j = 2
2. While i ≤ n do \\ n is the number of classes of generic set
3. Get SIFT image SFimgi

1 of first image of class i
4. While j ≤m do \\m is the number of samples per class
5. Obtain SIFT image pairs (SFimgi

1, SFimgi
j)

6. Calculate displacement matrix dispi
j using Equation (4)

7. End while
8. Get key displacements of class i
9. End while
10. Key displacements of all classes form a temporary matrix Vtmp
11. Remove interference displacement of Vtmp
12. Sampling Vtmp
13. The remainder of forms the global variation matrix V
14. Return V
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3.2.3. Virtual Sample Generation

On the single sample set, there is only one registered sample of per class. We use the
variation matrix V = [v1, v2, ..., vk]

Tto generate different virtual samples. Assuming that
(x, y) is the coordinate of point p in the registered image I , the coordinate (x′, y′) of the
corresponding point p′ in the virtual image can be calculated as:x′

y′

1

 =

1 0 ∆x

0 1 ∆y

0 0 1


x

y

1

 (6)

The translation vector (∆x, ∆y) is a row vector of matrix V. ∆x and ∆y represent the
displacement in the X- direction and Y-direction, respectively . The number of row vectors
of V is k, so k virtual images will be generated eventually.

For the newly generated image, we use bilinear interpolation [38,39] to keep its
size consistent with the original image. For the unknown point P = (x, y) shown in
Figure 4, the four points around it are known, which are Q11 = (x1, y1), Q12 = (x1, y2),
Q21 = (x2, y1) and Q22 = (x2, y2). The pixel value f (x, y) of the point can be calculated by
the following equation.

f (x, y) ≈ f (Q11)

(x2 − x1)(y2 − y1)
(x2 − x)(y2 − y) +

f (Q21)

(x2 − x1)(y2 − y1)
(x− x1)(y2 − y)+

f (Q12)

(x2 − x1)(y2 − y1)
(x2 − x)(y− y1) +

f (Q22)

(x2 − x1)(y2 − y1)
(x− x1)(y− y1)

(7)

y1

y2
Q12

Q11

Q22

Q21

R2

R1

y

x1 x x2

P

Figure 4. Bilinear interpolation.

The generated multiple samples will participate in the recognition together with the
original single sample. Figure 5 shows the process of virtual image generation. In Figure 5a,
a registered image is given, and Figure 5b shows the variation matrix. The registered
image is transformed with each row of the variation matrix, generating multiple virtual
images. Several generated virtual sample images are given in Figure 5c. Since the virtual
images are transformed from the registered image, virtual images are very similar to the
registered image.
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(a) Registered image (c) Virtual images(b)Variation matrix V 

Figure 5. The process of virtual image generation.

4. Experiments

To verify the effectiveness of the proposed method, we conduct experiments on a
public finger vein database from Hong Kong Polytechnic University, called HKPU-FV [40].
A total of 156 volunteers participated in the collection. Each volunteer provided six or 12
images from the index and middle fingers. The finger vein image acquisition process is
completed in two sessions. Only 105 volunteers participated in collection in the second
session, leading to the number of images of each finger being different. We employ finger
vein images acquired in the first session. Since the vein patterns of different fingers of the
same person are different, there are a total of 312 (156 persons × 2 fingers) classes and 1872
(156 persons × 2 fingers × 6 images) images in our experiments. Several typical finger vein
images of the HKPU-FV database are shown in Figure 6.

Figure 6. Finger images from the HKPU-FV database.

The database is divided into two non-overlapping subsets: the generic set and the
single sample set. The generic set has 50 classes, each class has 6 images, and the images
in this dataset are used to train the global variation matrix. The remaining 262 classes
constitute the single sample set.

All experiments are implemented in MATLAB2018 on a personal computer with
3.3 GHz CPU and 16.0 GB memory. Four experiments are designed to verify the proposed
method: (1) Experiment 1 verifies the effectiveness of the proposed method in solving the
single-sample finger vein recognition. (2) Experiment 2 proves that the generated virtual
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samples are complementary. (3) Experiment 3 analyzes the interference displacements.
(3) Experiment 4 discusses sampling parameters.

4.1. Experiment 1: Effectiveness of SVSG

In order to verify that the proposed method can effectively solve the single-sample
finger vein recognition problem, we compare the recognition rates of the classical algorithms
and the recognition rates of these methods combined with the proposed SVSG. In this
experiment, the first image of each class on the single sample set is used as the registered
sample, and the last two images of each class are used as test samples. Two types of classical
methods are considered for verification, i.e., the local-based method and network-based
method, which are available in single-sample scenarios. The recognition rates are reported
in Table 1, and the corresponding CMCs (cumulative match curves) are illustrated in
Figure 7.

Table 1. Identification performance of different methods.

Category Method Rank-One Recognition Rate

Local descriptor-based methods

LBP 72.33%
LBP + SVSG 87.02 %

LDC 75.57%
LDC + SVSG 86.45%

LLBP 69.47%
LLBP + SVSG 85.69%

Network-based methods

MaxiC 55.92%
MaxiC + SVSG 76.34%

MeanC 55.73%
MeanC + SVSG 76.72%

0 5 10 15 20 25 30 35 40 45 50

Rank

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

C
u

m
u

la
ti
v
e

 A
c
c
u

ra
c
y

LBP

LLBP

LDC

MaxiC

MeanC

LBP+SFVSG

LLBP+SFVSG

LDC+SFVSG

MaxiC+SFVSG

MeanC+SFVSG

Figure 7. CMCs of different methods.
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The experimental results from Table 1 and Figure 7 suggest that the methods combined
with SVSG achieve significant improvement in recognition performance compared to the
methods used alone. We believe that such a significant improvement is mainly attributed
to the distinction and complementary nature of the virtual samples generated by SVSG.
The combination of virtual samples and registered samples enriches the information within
class, which increases the effectiveness of the successful matching of genuine images.

In single-sample recognition, network-based methods (i.e., MaxiC and MeanC) have
poor recognition performance, which may be largely limited by single-sample incomplete
vein pattern segmentation and noise. On the other hand, local descriptor-based methods
(i.e., LBP, LDC, and LLBP) have better recognition performance than network-based meth-
ods, probably because these methods do not need to segment veins and are relatively less
affected by single sample.

4.2. Experiment 2: Complementarity of Virtual Samples

The purpose of this experiment is to demonstrate the complementarity of the generated
virtual samples. Six virtual samples are generated for each registered sample, and the
recognition rates of them are shown in Table 2. In Table 2, for display purposes, we use
Vsamplei to distinguish different virtual sample images; for instance, Vsample1 represents
the first virtual sample. In addition, this experiment and subsequent experiments 3 and 4
will adopt the LBP algorithm as the verification algorithm, and the rest of the experimental
settings are the same as those of experiment 1.

The data in Table 2 suggests that the highest recognition rate of the virtual sample is
74.62%, and the lowest recognition rate is 56.68%, which means that each virtual sample
has a certain distinction. With the combination of virtual sample images, the recognition
rate keeps improving. The recognition rate of all samples combined is 87.02%, which is
much higher than each virtual sample. The experimental results show that the generated
virtual samples are complementary. Specifically, the virtual samples are obtained through
transformation; hence, there is a certain complementarity with the registered samples. On
the other hand, after sampling, the displacements in the variation matrix are obviously
different, so the generated virtual samples are also necessarily different and complementary.

Table 2. Identification performance of different virtual samples.

Template Rank-One Recognition Rate (%)

Registered sample 72.33%

Virtual sample 1 74.62%

Virtual sample 2 56.68%

Virtual sample 3 68.89%

Virtual sample 4 59.73%

Virtual sample 5 64.12%

Virtual sample 6 60.11%

Vsample1 + Vsample2 75.95%

Vsample1 + Vsample2 + Vsample3 76.15%

Vsample1 + Vsample2 + Vsample3 + Vsample4 85.69%

Vsample1 + Vsample2 + Vsample3 + Vsample4 +
Vsample5 85.88%

Vsample1 + Vsample2 + Vsample3 + Vsample4 +
Vsample5 + Vsample6 86.45%

Vsample1 + Vsample2 + Vsample3 + Vsample4 +
Vsample5 + Vsample6 + Registered sample 87.02%
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4.3. Experiment 3: Interference Displacement Analysis

The purpose of this experiment is to determine the interference displacement. Figure 7
shows the projection of the displacement matrix in the X and Y directions. The horizontal
axis is a random number between 0 and 1, and the vertical axis represents the value of
the displacement.

It can be seen from the figure that the displacement in the X direction is mainly concen-
trated in the interval [20, −10], and a few points are outside the interval. Correspondingly,
the displacement in the Y direction is mainly concentrated in the interval [−5, 8]. These
displacements outside the above two intervals are the first type of disturbance displace-
ments discussed in Section 3.2.2, that is, displacements of large value and small probability.
They are caused by the accidental movement of a finger and are not universal; hence, we
removed them. Specifically, displacements that are more than 5 pixels from the boundary
and occur only once are removed. In addition, as shown in Figure 8, a large number of
points are concentrated at or near the displacement of 0. These displacements indicate that
there is almost no displacement between the two images, and they are meaningless for
generating virtual samples. Therefore, we also remove these displacements as disturbances.
In the specific implementation, we remove all displacements of 0 and displacements less
than 3.

(a) X-direction displacement projection (b) Y-direction displacement projection

Figure 8. Displacement projection in different directions.

From Figure 8, we can also see an interesting phenomenon: the displacement in the
X direction is in the range of [20, −10], and the displacement in the Y direction is in the
range of [−5, 8]. It means that when collecting images, the amplitude of the finger moving
left and right is greater than the amplitude of the up and down movement. In addition,
the upper boundary of the X direction is 20, and the lower boundary is −10, indicating
that the magnitude of the finger moving to the right is greater than the magnitude of the
finger moving to the left. This may be related to human behavior, which needs to be further
explored. These values can guide people when they collect images, reducing intra-class
variation of images and increasing the recognition rate.

4.4. Experiment 4: Sampling Step Size

In this experiment, we discuss the effect of the displacement sampling step t on the
recognition performance. If the sampling step size t is small, more virtual samples are
generated. On the contrary, if the sampling t is large, fewer virtual samples generated.
Observing the distribution of key displacements in Figure 8, we found that the smaller the
displacement, the more concentrated the points. This indicates that in the actual acquisition,
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the images with small finger movement are the majority. Therefore, we consider sampling
with sequence step sizes. That is, for dense displacement points, use small steps to obtain
more virtual samples. Conversely, for sparse displacement points, a small step size is used.

Since the displacement varies greatly in the X direction, we use the X direction as the
benchmark to sample the variation matrix. The recognition rates of different t are shown in
Figure 9. It can be seen that recognition rate is largest when t is 5; when t is 4 and 6, the
recognition rate is the same. Therefore, we use the three steps with the top three recognition
rates to form the sampling sequence t = {4, 5, 6}. After using this sequence of sampling, a
total of six virtual samples are produced, and the experiment proves that the recognition
rate is also the highest.

After using this sequence of sampling, a total of six virtual samples are produced. The
experimental results in Table 2 prove that the recognition rate of six virtual samples reaches
86.45%, which is higher than using a fixed sampling step.

3 3.5 4 4.5 5 5.5 6 6.5 7

Value of t

0.82

0.825

0.83

0.835

0.84

0.845

0.85

R
e

c
o

g
n

it
io

n
 r

a
te

Figure 9. Recognition rates of different t.

5. Conclusions

To address the problem of single-sample finger vein recognition, this paper proposes a
SVSG method. Due to the similarity of intra-class variations, we learn the variation matrix
on generic set and then use this matrix to generate virtual samples for the single samples
on a single sample set. In order to ensure the effectiveness and simplicity of the variation
matrix, SVSG also removes the interference displacement and redundant displacement.
The results on the public database verify the effectiveness of the method in solving the
single-sample finger vein recognition problem. The complementarity between the virtual
samples is also verified by the experiment.

Although the proposed SVSG can improve the problem of single-sample finger vein
recognition, there is still a gap between our experimental results and the ideal results,
which is mainly caused by limited information. In the proposed method, we obtained the
intra-class variation matrix through learning, but the activities of some fingers in real life
are also unpredictable, which will inevitably lead to some displacements that cannot be
learned. The virtual samples are transformed through these displacements, so there is still
a gap between the generated virtual matrix and the real collected samples. In the future
work, we will dig deeper into the single sample information and look forward to obtaining
a better solution to the problem.
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