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Abstract: The practice of quantified-self sleep tracking has become increasingly common among
healthy individuals as well as patients with sleep problems. However, existing sleep-tracking
technologies only support simple data collection and visualization and are incapable of providing
actionable recommendations that are tailored to users’ physical, behavioral, and environmental
context. A promising solution to address this gap is the context-aware sleep health recommender
system (CASHRS), an emerging research field that bridges ubiquitous sleep computing and context-
aware recommender systems. This paper presents a narrative review to analyze the type of contextual
information, the recommendation algorithms, the context filtering techniques, the behavior change
techniques, the system evaluation, and the challenges identified in peer-reviewed publications that
meet the characteristics of CASHRS. The analysis results identified current research trends, the
knowledge gap, and future research opportunities in CASHRS.

Keywords: sleep tracking; context aware recommender system; quantified self; personal informatics;
ubiquitous computing; mobile computing; mHealth; CBT-I

1. Introduction

Having sufficient and good sleep is crucial for our physical and mental health. There
is established evidence that poor sleep may increase an individual’s risk for cardiovas-
cular disease [1,2], metabolic disorders [3,4], and mental problems [5]. Just as health is a
multidimensional concept, sleep health can also be elaborated along multiple dimensions,
including duration, continuity or efficiency, timing, daytime alertness, and overall subjec-
tive assessment of quality [6]. When it comes to the measurement of sleep, polysomnogra-
phy (PSG) is the gold standard sleep study procedure that simultaneously monitors the
electroencephalogram (EEG), electro-oculogram (EOG), electromyogram (EMG), electrocar-
diogram (ECG), and pulse oximetry, as well as airflow and respiratory effort. Despite the
comprehensive information generated, the use of PSG has been limited to sleep clinics and
laboratories due to its high cost, obtrusiveness, and low usability.

In recent years, the rapid expansion of the sleep-tracking product market has provided
a significant opportunity to promote sleep monitoring and sleep health in daily life. Popular
consumer sleep-tracking wearables (e.g., Fitbit, Apple Watch, Oura Ring) and mobile
apps (e.g., SleepAsAndroid, SleepCycle) have attracted increasing interest in the research
community as well as among end users. A large body of research surrounding these
technologies has intensively studied their accuracy and validity [7–10], as well as user-
perceived properties including usability and credibility [11–13]. Some studies have also
attempted to develop novel sleep staging algorithms that work with the processed data
available from consumer sleep trackers [14–16], as well as devising new analytic methods
for personalized sleep data analysis and knowledge discovery [17–19].

Despite their popularity, consumer sleep-tracking technologies face several barriers
to improving sleep quality. Two major barriers include “not identifying reasons for sleep
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problems” and “not knowing how to act” [20]. Research effort has been expended to address
these barriers. For example, several systems have been developed to assist users to explore
the relationships between sleep and a flux of behavioral and environmental data [11,21–23].
However, these systems still leave users to interpret the statistical results on their own,
without providing specific and readily actionable recommendations based on the results.
Consequently, current sleep-tracking technologies have limited efficacy in improving the
sleep quality of users.

Recommender systems (RSs) represent a promising solution to the current gap in
ubiquitous sleep computing research. An RS is an application that suggests relevant items
to users [24]. Depending on the application context, the items could be movies, products,
restaurants, travel routes, etc. At a high level, an RS attempts to predict whether a given
recommendation item will be appreciated by the user as relevant. Early RSs operated in
a two-dimensional (2D) user × item space and have been criticized for lacking analysis
of contextual information [25,26]. More recently, the RS research community has shifted
focus to the so-called context-aware recommender systems (CARS) [27–29], which aim
to effectively and efficiently exploit the dynamic context of a user to offer suitable and
relevant recommendations [30,31]. In CARS, the classical 2D paradigm is extended to a
3D paradigm of user × item × context. The concept of CARS has also been introduced to
health research, and many health CARS have been developed [32,33].

The concept of recommending behavioral interventions as treatment to sleep problems
is not new in sleep science. One of the most active research areas is the development of
digitally aided cognitive behavior therapy for insomnia (CBT-I). CBT-I is a standardized
multi-component treatment for insomnia as recommended in the American Academy of
Sleep Medicine Practice Guidelines [34]. A CBT-I program comprises sleep restriction
therapy, stimulus control, relaxation strategies, sleep hygiene education, and modification
of maladaptive beliefs about sleep. Several web and mobile applications have been devel-
oped to improve the accessibility and availability of CBT-I, such as iREST [35] and Sleep
Bunny [36]. These systems are often implemented in the form of mobile health (mHealth)
apps, aiming to deliver a cost-effective method of treatment that can be easily accessed at
home. The meta-analysis of digital CBT-I has demonstrated significant improvements in
sleep quality [37,38] and long-term benefits compared to pharmacotherapy [39]. However,
most of the existing digital CBT-I systems merely translated self-help manuals to a digital
format to provide general sleep hygiene recommendations. It was not until recently that
new digital CBT-I systems started to offer recommendations that are shallowly tailored to
limited user features.

On the other hand, sleep health RS for non-clinical populations is relatively new
and has only started to attract research interest very recently [40–43]. Popular consumer
sleep trackers such as Fitbit and Oura all provide generic sleep hygiene tips to facilitate
stimulus control and relaxation before bed. While these recommendations may be shal-
lowly tailored to a user’s gender and age, they do not consider the dynamic context of a
user, such as shifts in their sleep quality baseline, sleep goal, health state, daily schedule,
and personal preference.

To this end, the research and development of sleep health systems that provide
recommendations that are fully personalized and adapted to users’ static and dynamic
context has only been in its infancy. Here, we coin the term context-aware sleep health
recommender system (CASHRS) as an emerging multidisciplinary research field that sits at
the intersection of multiple research domains, including health RS, ubiquitous and mobile
computing, context-aware computing, persuasive technology, human-computer interaction,
consumer electronics, and health informatics.

This paper aims to assess the extent and nature of the peer-reviewed publications
that serve as a foundation for CASHRS. Interestingly, most of the systems reviewed in
this article have not formally self-identified as RSs despite offering tailored actionable
recommendations for improving sleep. There have been promising reviews on sleep apps,
but they are notably limited to the traditional scope of mHealth [44–50]. To our knowledge,
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the present study is the first to examine digital sleep health systems through the lens of
CARS and to formally introduce the concept of RS to ubiquitous sleep computing research.
We outline some of the illustrative and innovative CASHRS to give sleep specialists an
idea of the recent landscape. Meanwhile, the results identify technical research trends in
the literature, unveil limitations of prior studies, and show a future research direction for
computer scientists and engineers who are interested in building CASHRS.

2. Methods

This study links together a scattered assortment of articles in multiple research do-
mains on fully-automated digital sleep health systems that provide personalized/tailored
sleep health recommendations. Systems that solely offer general sleep tips or that require
manual prescriptions by clinicians were not of interest and were thus excluded. The nar-
rative nature of this study allows us to obtain a broad perspective on the topic of interest
rather than a formal, exhaustive, and non-biased systematic appraisal [51,52]. A search was
conducted using electronic databases including Google Scholar, PubMed, Scopus, IEEE
Xplore, and ACM Digital Library. The following keywords were used: “sleep recommender
system”, “sleep hygiene recommender system”, “self-experimentation sleep recommenda-
tion”, and “mHealth sleep”. Snowballing was performed to find related references. Both
journal and conference articles were included if the recommendations provided were per-
sonalized/tailored to a certain degree, regardless of whether the systems were intended for
clinical interventions or general-purpose use. Exclusion criteria were as follows: (1) general
clinical sleep recommendation guidelines, (2) systems that are not fully automated and
require guidance or assistance from a healthcare provider, (3) proprietary systems with
limited accessibility, and (4) algorithms for recommending mattress or pillows.

We were interested in what was considered as context and how context was coupled
to the recommendation algorithms, how these systems were evaluated and whether they
were effective in improving sleep, and what theories or techniques were used to facilitate
behavior change, as well as the challenges and barriers identified in the literature. Primary
research questions in the current study were as follows:

• RQ1: What was considered as context in CASHRS? How was it measured?
• RQ2: How was context coupled to the recommendation algorithms?
• RQ3: What approaches and algorithms were used for managing the life cycle of context

(i.e., context acquisition, context modeling, context reasoning, context dissemination)?
• RQ4: What theories or techniques were applied to encourage compliance to the

recommendations and to promote positive behavior change?
• RQ5: Were CASHRS approaches effective in fostering good sleep hygiene and improv-

ing sleep quality? Were the systems evaluated in other dimensions?
• RQ6: What challenges and barriers were identified in prior studies?

In answering these questions, this research seeks to understand the scope and level of
maturity of context-aware sleep recommendation technology and to lay a foundation for
future CASHRS research.

3. Results

We identified 12 systems that met the characteristics of CASHRS (Table 1), among
which 7 were developed within the scope of ubiquitous self-tracking tools and 5 were
developed as a digital CBT-I solution for clinical use. These systems were implemented
either as a stand-alone mHealth app or as a comprehensive system that integrates data from
wearable and IoT sensors to a mobile app. As illustrated in Figure 1, CASHRS typically con-
sists of four main components: the input data, a database, the recommendation algorithm,
and the behavior change techniques applied. The input data are obtained either explicitly or
implicitly to initialize the recommendation process. The database stores information about
the users and the item profiles (e.g., sleep hygiene tips). The recommendation algorithm
uses the input data and the database to suggest a set of behavior interventions to target
users. In addition, a CASHRS needs to bridge the gap between recommendation and action,
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to facilitate the initiation of behavior change, and to encourage sustained compliance to
the recommendations. The behavior change technique component distinguishes CASHRS
from traditional CARS. In this section, we report a qualitative summary of the findings
to answer the research questions listed in the previous section. Note that RQ3 was left
unanswered as this topic was not explored in any of the studies reviewed.

Table 1. CASHRS reviewed in this paper.

Category CASHRS Year Region Note

General purpose Lullaby [22] 2012 America –
ShutEye [53] 2012 America –
SleepCoacher [43] 2016 America Self-experimentation
CBSR [42] 2018 America –
PUM [41] 2020 America Self-knowledge discovery
SleepBandit [54] 2020 America Self-experimentation
PARIS [40] 2021 America –

Clinical Sleepio [55] 2012 Europe –
Sleepcare [56] 2017 Europe –
SMSR [57] 2018 Asia –
SRT [58] 2021 Oceania –
Insomnia Coach [59] 2022 America –

Figure 1. Architecture of CASHRS.

3.1. Context in CASHRS (RQ1)

A CASHRS differs from a traditional digital sleep hygiene education system in that the
recommendations provided in CASHRS are to a certain degree adapted to a user’s context.
In the field of computer science, context is defined as “any information that can be used to
characterize the situation of an entity. An entity is a person, place, or object that is considered
relevant to the interaction between a user and an application, including the user and application
themselves” [60]. Context-aware systems use “context to provide relevant information and/or
services to the user, where relevancy depends on the user’s task” [61,62]. As such, the actual
meaning of a user’s context in CASHRS refers to any factor(s) that may influence the quality
and continuity of the user’s sleep at night.

A large body of sleep science studies has identified many factors that could influ-
ence night sleep. Demographic characteristics such as age and gender are known to be
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associated with sleep quality and varied risk of sleep diseases [63]. Daytime events such
as physical activity, exercise, and diet could have impacts on each sleep stage and sleep
efficiency [64–66]. Sleep hygiene [67], which relates to the regularity of sleep schedule as
well as minimizing potential sleep disturbing factors close to bedtime (e.g., avoid exposure
to blue light, optimize bedroom environment), also has a profound impact on sleep [68].
In the field of ubiquitous sleep computing, it has been acknowledged that collecting infor-
mation on contextual factors of sleep is important for interpreting the self-tracking sleep
data [11,20,21,69]. Interventions to some of these factors may not only help to improve the
sleep quality of healthy individuals with no diagnosed sleep problems but also help patients
to reduce insomnia and improve sleep apnea symptoms [70,71]. As such, these factors
constitute the context of interest in CASHRS. We found that existing CASHRS approaches
incorporated the monitoring of one or several factor(s) summarized in Table 2. Note that
we only counted the contextual information that was actually used in the recommendation
algorithm of the CASHRS, and the information that was captured by the system but was
not coupled to the recommendation algorithm was discarded. These contextual factors may
fluctuate at different frequencies. For example, resting heart rate and ambient temperature
normally do not change dramatically in a short period of time, while physical activity level
and sleep quality could vary a great deal from day to day.

Interestingly, the sleep quality of previous nights was the most widely used context
to personalize behavior intervention recommendations in existing CASHRS, followed
by physical activity. Especially, clinical CASHRS often relied on a user’s average sleep
quality in the past week, such as time in bed (TIB), total sleep time (TST), and sleep
efficiency (SE), together with a user’s preference, to adjust the recommended sleep window
(either TST or bedtime/wake time) in a sleep restriction therapy [55–59]. On the other
hand, temporal context (e.g., time of the day, weekday, meal time) was only considered
in three CASHRS [22,41,53]. The environmental context describing the environmental
situation when sleep takes place, such as ambient temperature, light, and noise levels,
was considered in two CASHRS [22,41]. In addition to monitoring the environmental
context before bedtime or during sleep, the design of the Lullaby system also placed strong
emphasis on monitoring these factors during daytime using the embedded sensors [22].
Psycho-social factors such as stress and anxiety were rarely considered in the systems.
Many clinical CASHRS provided guided progressive relaxation before sleep, but without
allowing users to assess or record their stress/anxiety level. Taken together, the variety of
contexts considered in CASHRS so far is limited, and the improvisational aspects of users’
behavior context (which requires intraday data collection at higher resolution) were left
out of scope in all systems.

Table 2. Contextual factors and measurement sensors/instruments.

Contextual Factor Sensor/Instrument

Sleep quality of nights before Simple sleep diary (in-app) [55,57,58]
Consensus sleep diary (in-app) [56,59]
Microsoft Band [42]
Garmin Fenix 5 & Sleep Cycle app [41]
Fitbit [58]

Sleep goal Survey (in app) [53,55,56]
Physical activity Survey (in app) [43]

Microsoft Band [42]
Garmin Fenix 5 & Strava [41]
Philips Actiwatch Spectrum [40]

Resting heart rate Philips Actiwatch Spectrum [40]
Chronotype Survey (in app) [43]
Health condition Survey (in app) [43]
Stress level Survey (in app) [43]
Diet Survey (in app) [43]
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Table 2. Cont.

Contextual Factor Sensor/Instrument

Duration of wake phase Sleep Cycle app [41]
Meal time Smartphone camera [41]
Time of day Device’s internal clock [22]
Week day Device’s internal clock [53]
Bedroom temperature Embedded temperature sensor [22]

IoT sensor [41]
Bedroom humidity IoT sensor [41]
Bedroom light Embedded light sensor [22]

Survey (in app) [43]
Bedroom noise Embedded microphone [22]
Activity of household members Embedded passive infrared (PIR) motion sensor [22]

Survey (in app) [43]
User preference Survey (in app) [53,54,56]

3.2. Recommendation Algorithm and Context Filtering (RQ2)

There are several methods for generating recommendations. Recommendation algo-
rithms could be collaborative [72,73], content-based [74], knowledge-based [75,76], and hy-
brid [77–79]. Collaborative algorithms attempt to estimate the unknown preference of a
user based on ratings from similar users. This approach is popular because of its simplicity.
Content-based algorithms recommend items that are similar to those that a target user
preferred in the past. The similarity between items is computed based on their own char-
acteristics (e.g., features or attributes) instead of other users’ ratings. Knowledge-based
algorithms exploit structured domain knowledge as auxiliary information to improve
the precision, diversity, and interpretability of the recommendations. Hybrid algorithms
combine two or more types of algorithms to overcome the limitation of each individual
type and to increase the quality of the recommendations.

In a related vein, there are three approaches to incorporate contextual information [80]:
pre-filtering, post-filtering, and contextual modeling. Pre-filtering applies contextual in-
formation to filter the data before applying traditional recommendation algorithms. Only
items that are relevant to a given context are selected for generating recommendations. Post-
filtering considers the contextual information only in the final step of the recommendation
generation process. In other words, the recommendations are generated using traditional
methods and then contextualized for each user. These two methods consider the context as
an additional filtering constraint that can be applied to any traditional recommendation
algorithm. In contrast, contextual modeling implies a totally different approach by directly
incorporating the contextual information in the recommendation models. Contextual mod-
eling directly leverages the contextual information in the estimation of ratings. It firstly
models the contextual data and then parameterizes the recommendation algorithms as
a function of the contextual model. Studies comparing the different approaches demon-
strated no conclusive findings on their performance [81]. A few studies also proposed to
combine these approaches for better system performance [82].

Table 3 presents a summary of the recommendation algorithms and the context filter-
ing approaches adopted in the reviewed CASHRS. A knowledge-based algorithm was used
in almost all CASHRS. This is plausible as the generation of behavior interventions needs
to be grounded on evidence-based sleep science domain knowledge. Such knowledge
was obtained through population-level large-sample sleep studies. A problem of relying
on population-level knowledge is that the recommendations may not ensure the desired
homogeneous response from individual users due to interpersonal differences [83]. Only
three systems implemented recommendation algorithms other than a knowledge-based
algorithm: CBSR [42] and PARIS [40] used a collaborative algorithm to overcome the cold-
start problem, while PUM [41] combined knowledge-based with content-based algorithms
to leverage a user’s self-knowledge extracted from self-tracking data. In a sense, the collab-
orative and content-based algorithms used in the three systems still relied on some kind
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of knowledge, but such knowledge was obtained using new approaches that deviated
from the traditional large-sample experiment design. CBSR [42] and PARIS [40] relied
on crowd-sourcing, where the autonomous aggregation of data from an unprecedented
scale of real-world users contributed to the discovery of new knowledge that would have
been difficult to achieve in a traditional experiment design. In comparison, the principles
of PUM [41] and PARIS [40] were centered on the discovery of users’ self-knowledge
from their historical self-tracking data. The three systems present promising directions for
devising novel recommendation algorithms in CASHRS.

Table 3. Recommendation generation and context filtering.

CASHRS Recommendation Algorithm Context Filtering

Lullaby [22] Knowledge-based Post-filtering
ShutEye [53] Knowledge-based Post-filtering
SleepCoacher [43] Knowledge-based Post-filtering
CBSR [42] Collaborative Post-filtering
PUM [41] Hybrid (knowledge-based and content-based) Post-filtering
SleepBandit [54] Knowledge-based Post-filtering
PARIS [40] Hybrid (knowledge-based and collaborative) Post-filtering
Sleepio [55] Knowledge-based Post-filtering
Sleepcare [56] Knowledge-based Post-filtering
SMSR [57] Knowledge-based Post-filtering
SRT [58] Knowledge-based Post-filtering
Insomnia Coach [59] Knowledge-based Post-filtering

With respect to context filtering, existing CASHRS all relied on post-filtering that
performs post-hoc selection based on certain types of context. Clinical CASHRS approaches
that offer digital CBT-I solutions tend to exploit the average sleep duration of the past
one week (either TIB or TST) together with a user’s sleep goal and preference to adjust
the recommended sleep window (either TIB or bedtime/wake time) in a sleep restriction
therapy. In contrast, CASHRS for general-purpose use focused more on other types of
context, including physical activity, meal time, and bedroom environment, to tailor the
behavior intervention recommendations.

We found that personalization was not a yes–no characteristic. As shown in Table 4,
a large portion of the reviewed CASHRS provide a mixture of personalized and general
recommendations. Clinical CASHRS have only dominantly focused on tailoring sleep
windows, while keeping the other recommendations consistent with the standard CBT-I
content in the literature. General-purpose CASHRS provide personalized recommendations
in more aspects, probably due to their ability to collect a wide range of self-tracking data
with multi-modal sensors. Notably, ShutEye [53] provides general sleep hygiene tips but
adjusts the recommendations by the time of day. For example, the recommendation of meal
times was presented to users since waking time to 3 h before bed, while relaxation tips were
only presented from 1 h before bedtime to bedtime. Lullaby [22] also leverages temporal
context (i.e., time of the day, weekday) to recommend the optimal bedroom environment,
such as temperature, light, and noise. SleepCoacher [43] and PUM [41] provide fully
personalized recommendations based on statistical analysis and data mining on users’
self-tracking data.
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Table 4. Recommendation content and delivery.

CASHRS Context-Aware Recommendations General Recommendations Delivery

Lullaby [22] Bedroom environment (temperature, move-
ment of house hold members, light, noise)

None In-app

ShutEye [53] Napping, meals, alcohol, relaxation None In-app
SleepCoacher [43] Contextual factors associated to sleep, opti-

mal bed/wake time, optimal TIB
None In-app

CBSR [42] TIB, regularity of sleep schedule, relax before
bed, exercise

None Email (daily)

PUM [41] Contextual factors associated to sleep None In-app
SleepBandit [54] Self-experimentation results on dim light be-

fore bed, snack before bed, socks while sleep-
ing, caffeine, and electronics before bed

None In-app

PARIS [40] Physical activity None In-app
Sleepio [55] Bedtime, wake time Standard CBT-I content In-app, online Wikipedia
Sleepcare [56] TIB (modified sleep restriction) Sleep environment, relaxation,

meals
In-app

SMSR [57] Bedtime Sleep hygiene tips on meals,
bedroom environment, and
guided relation.

In-app

SRT [58] TIB None In-app
Insomnia
Coach [59]

Bedtime, wake time, results-based feedback
(e.g., try looking at the following tools: Quiet
Your Mind)

Sleep environment, guided
relaxation

In-app

Two CASHRS approaches pioneered the introduction of a new concept: self-
experimentation. SleepCoacher [43] and SleepBandit [54] developed design probes to
support users to investigate personal sleep factors through self-experimenting and re-
flection. Despite being a less-known concept in the ubiquitous computing community,
self-experimentation is a promising method for generating fully personalized sleep health
recommendations based on a user’s self-knowledge in addition to population-level knowl-
edge. Self-experimentation is grounded on the principle of the N-of-1 trials or single-case
design in personalized medicine [84,85], which involves repeated, prospective, and quan-
titative measurement of outcomes of interest in a single subject to identify the optimal
treatment for the particular individual. The N-of-1 trials are considered to be an approach
that is well suited to help people to find the best behavior interventions for health [84].
Grounded on the principles of the N-of-1 trials, self-experimentation helps to address the
heterogeneity of treatment effect (HTE) issue in existing health RS approaches. The tradi-
tional large-sample design widely used in clinical studies fails to count the characteristics of
individual subjects (within-subject variation) [86,87]. Recommendations generated based
on population-level knowledge thus may not generalize well to individuals due to the
variation of individual treatment effects across people [42]. In contrast, CASHRS systems
with self-experimentation feature guide users to control confounding factors and to inten-
tionally increase data variability, meaning that it becomes feasible to discover patterns and
knowledge that are specific to the specific user from whom the data are collected.

3.3. Behavior Change Techniques Incorporated in CASHRS (RQ4)

A main goal of CASHRS is to influence the behavior of users. However, behavioral
modifications to improving sleep quality could be hard to achieve and sustain. The raw
outputs of the recommendation algorithms may barely have an intervention effect and
need to be enhanced with behavior change techniques (BCT). In clinical terms, both the
recommendation contents and the BCTs adopted are components making up the behavior
interventions. As such, theoretical models and techniques in health psychology and
behavioral medicine have become an essential part of CASHRS.

We found that all the 12 CASHRS incorporated one or more evidence-based BCTs,
and some BCTs appeared noticeably more often than others. We coded the techniques based
on the BTC Taxonomy V1 [88]. The taxonomy defines 16 principal methods of behavior
change and is widely considered as the gold standard for behavior change research design
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and reporting. Eleven out of the 16 principal methods in the BTC Taxonomy V1 were
incorporated in the reviewed CASHRS. We further divided the adopted BCTs into three
categories. Category-I BCTs (Table 5) target behavior interventions before sleep. Five BTCs
fall into this category: goals and planning, repetition and substitution, antecedents, shaping
knowledge, and regulation. Goals and planning sits at the beginning of the behavior
change trajectory and is a key feature of clinical CASHRS. Setting realistic goals for sleep
and behavior is usually the first step in a digital CBT-I program. Sleepio [55] has the richest
features in supporting goals and planning, followed by Sleepcare [56] and SMSR [57]. Habit
formation based on repetition and substitution was the most widely adopted BCT (i.e.,
used in 8 out of the 12 CASHRS) under category-I. Allowing users to set reminders and
providing guided relaxation are also popular BCTs (i.e., used in 5 out of the 12 CASHRS).
Notably, no BCT in category-I was incorporated in Lullaby [22].

Table 5. BCTs focusing on behavior interventions before sleep (Category-I BCT).

Cluster Label BCT Component Examples

Goals and
planning

Goal setting (sleep outcome) Leveraging users’ anchor to set realistic goals for sleep
targets [55,56]; managing desired sleep schedules [53]

Goal setting (behavior) Allowing users to set behavior goals [55,57,59]

Discrepancy between current be-
havior and goal standard

Focusing on the users’ current interest and concerns, and
aiming to develop discrepancies between present behavior and
important personal goals, values and beliefs [43]

Problem solving/coping
planning

Providing tips for overcoming obstacles in changing sleep
hygiene; providing room for negotiation about the
recommendations [43,53,55,56].

Review of behavior goal(s) Dashboard, plots, Email messages, SMS [55,57,59]

Review of outcome goal(s) Dashboard, plots, Email messages, SMS [55–57]

Repetition and
substitution

Habit formation Encouraging users to follow a continuous chain of repeating the recommen-
dation [43,54–59]

Antecedents Restructuring the physical envi-
ronment

Allowing users to set reminders to enter sleep diaries, review the CBT-I
training plan, and complete other
activities [42,54–56,59]

Shaping
knowledge

Knowledge sharing on healthy
lifestyle

Providing access to educational material on sleep
hygiene [53,55,57,59]

Antecedents modification Prompting users to manage bedroom environment [22,43,53,54]

Behavioral experiments Guiding the design and implementation of self-experimentation [43,54]

Instruction on how to perform a
behavior

Providing supplementary materials on guided
relaxation [55–59]

Regulation Regulate negative emotions Supporting users in regulating nagative emotions through
cognitive techniques (mindfulness, thought restructuring) [55], self-regulation
practice [57] and gamification [58]

Conserve mental resources Recommending only one behavior change to users [42]

Category-II BCTs (Table 6) focus on the future outcomes of sleep or the consequences
of poor sleep. These BCTs include feedback and monitoring, reward and threat, and natural
consequences. Self-tracking or daily logging of sleep was incorporated in all the reviewed
CASHRS. Indeed, the quantified-self practice of sleep-tracking serves as a foundation for
all sleep-related ubiquitous computing systems. Conversely, self-tracking or daily logging of
behavior was only incorporated in five systems, indicating that less attention was put into
the monitoring of behavior in current CASHRS research. Interestingly, social reward–a BCT



Electronics 2022, 11, 3384 10 of 26

commonly used in other health domains (e.g., physical activity)–was only incorporated in
Sleepio [55].

Table 6. BCTs focusing on future outcomes of sleep or consequences of poor sleep (Category-II BCT).

Cluster Label Component BCT Examples

Feedback and Monitoring Feedback on behavior Showing signs of progress and rewards [55–57]; logging compliance
to the recommendations [54]

Self-monitoring of outcome of
behavior

Self-tracking or daily logging of sleep [22,40–43,53–59]

Self-monitoring of behavior Self-tracking or daily logging of behavior (e.g., steps, exercise,
diet) [40,41,54,56,57]

Reward and threat Social reward Holding virtual graduation ceremony on course completion [55]

Natural consequence Health consequences Providing educational content on the consequence of poor
sleep [55,56,59]

In addition, two BCTs targeting social support have also been used in CASHRS,
as shown in Table 7. Sleepio [55,89] extensively applied the social cognitive theory to facili-
tate behavior change. Peer influence and peer support were implemented throughout the
whole CBI-I program. When a user first logs in Sleepio, they will read about Sally’s personal
story with insomnia and all the ways that Sleepio has helped her improve her sleep and life
in general. The online Sleepio community engages users to connect with other users facing
similar issues or to seek personalized guidance and reassurance. The ability to communi-
cate with other users in the Sleepio community motivated users to complete the program
and promoted long-term engagement [55,89]. Sleepio users mentioned “reduced sense of iso-
lation”, “community being supportive and nonjudgmental”, “positive comparison”, and “altruism”
as some of the reasons that they engaged in the Sleepio online community [89].

Table 7. BCTs focusing on social support (Category-III BCT).

Cluster Label Component BCT Examples

Social support Social support Building a community of users, moderated by expert [55]
Comparison of behavior Positive social comparison Sharing the successful story of other users [55]

3.4. System Evaluation (RQ5)

While the evaluation of traditional RS has put emphasis on the accuracy of recommen-
dation algorithms in predicting a user’s preference, the evaluation of CASHRS embraces
more dimensions. Given the interactive nature of CASHRS, it became clear that system
properties including efficacy in improving sleep outcomes and users’ experience and
satisfaction with the system are equally, if not more, important. Good sleep health rec-
ommendations should not only accurately reflect and relate to a user’s needs but also be
achievable in terms of a user’s physiological states/motivation and implementable given a
user’s daily schedule and living environment.

There are three methods for evaluating RS: offline, user studies, and online experi-
ments [90]. The offline method leverages pre-collected datasets together with simulated
users’ behaviors to examine the accuracy of different recommendation algorithms. User
studies and online experiments examine the overall system outcomes on target measures
as well as users’ interaction with the system, with the only difference between the two
being whether the experiments are conducted in a controlled laboratory environment or in
a naturalistic setting.

We found that none of the reviewed CASHRS approaches were evaluated using
the offline approach; conversely, all of them were evaluated via user studies either in a
controlled setting or in the wild. For CASHRS, algorithm accuracy appeared to be less of a
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concern than the overall efficacy and users’ experience with the system. In what follows,
we first present an evaluation of the system maturity, followed by reporting the evaluations
centered on the efficacy of the system in improving sleep and that centered on how users
interact with the system.

3.4.1. System Maturity

Inspired by [58], we assessed the maturity levels of the reviewed CASHRS on a con-
tinuum from pre-prototype to prototype to released. A pre-prototype refers to a CASHRS
that was at the stage of conception or algorithm design without a functional app prototype.
A prototype refers to the version of a CASHRS app with minimal working functionality for
user testing. A matured version refers to the version of a CASHRS app that has undergone
a redesign based on feedback from user testing. A released version refers to the version of a
CASHRS app that is published in app stores for download. As shown in Table 8, we found
that three systems were pre-prototypes, four were prototypes, one was matured, and four
were released.

Table 8. Maturity of the reviewed CASHRS.

Level of Maturity CASHRS

Pre-prototype CBSR [42], PUM [41], PARIS [40]
Prototype Lullaby [22], ShutEye [53], SMSR [57], SRT [58]
Matured Sleepcare [56]
Released SleepCoacher [43], SleepBandits [54], Sleepio [55], Insonia Coach [59]

3.4.2. Evaluation Centered on Efficacy

In a clinical setting, the evaluation of CASHRS was often centered on the efficacy
of the recommendations in helping users improve sleep quality. Human sleep can be
measured along multiple dimensions and sleep quality can be quantified using various
metrics. The sleep metrics of interest may vary in different systems. Table 9 summarizes
the sleep metrics considered in the evaluation of CASHRS, how the metrics were measured,
and the direction of change before and after a clinical trial or field study (↓, ↑ and→ indicate
reduction, increase, and no change, respectively). Both objective and subjective measures
of sleep were used. Clinical studies predominantly relied on retrospective questionnaires
and sleep diaries to capture self-reported appraisals of sleep. Objective measures of sleep
were noticeably underused in clinical studies. Most studies used simple statistical tests,
while [56] used more advanced multilevel analysis. We only included conclusive results
with statistical significance. Some studies also consider additional metrics including the
insomnia index, daytime sleepiness, and attitudes/beliefs about sleep [59]. Multiple studies
consistently demonstrated increased SE, reduced ISI, and reduced day-time sleepiness.
The efficacy on SOL, TST, WASO, and subjective sleep rating was mixed.

We spotted several issues pertaining to the existing evaluation paradigm. First, system-
level overall evaluation makes it impossible to pinpoint which intervention modules of
the CBT-I protocol contributed most/least to the system efficacy. Second, adherence to the
treatment plan and compliance to the behavior intervention recommendations, which are
described in detail in the next subsection, could also confound the efficacy of CASHRS
but were not discussed. Third, all studies relied on statistical analysis rather than clinical
thresholds as an indication for whether a target sleep outcome was improved. For example,
the average PSQI in [56] was reduced from 11.0 to 7.4, which was a significant improvement.
However, a PSQI score above 5 indicates that sleep problems still presented despite the
reduced severity. Future studies are needed to address these issues.
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Table 9. CASHRS evaluation centered on efficacy.

Sleep Metric Sensor/Instrument Direction of Change

Sleep onset latency (SOL) Consensus Sleep Diary [91] (in-app) ↓ [59]
Original sleep diary (in-app) ↓ [55]

→ [56]
Time in bed (TIB) Consensus Sleep Diary (in-app) → [56]
Total sleep time (TST) Microsoft Band ↑ [42]

Consensus Sleep Diary (in-app) → [56,59]
Wake after sleep onset (WASO) Consensus Sleep Diary (in-app) → [59]

↓ [56]
Original sleep diary (in-app) ↓[55]

Number of awakenings Consensus Sleep Diary (in-app) ↓ [56,59]
Sleep efficiency (SE) Consensus Sleep Diary (in-app) ↑ [59]

Original sleep diary (in-app) ↑ [55]
↑ [56]

Subjective sleep rating PSQI questionnaire [92] (in-app) ↓ [56,59]
→ [42]

PSQI questionnaire (paper-basd) ↓ [58]
Insomnia index ISI questionnaire [93] (in-app) ↓ [56,59]

ISI questionnaire (paper-based) ↓ [58]
Day-time sleepiness PROMIS questionnaire [94] (in-app) ↓ [59]

Epworth sleepiness scale (paper-based) ↓ [42,58]
Attitudes about sleep DBAS-16 questionnaire [95] (in-app) → [56,59]

3.4.3. Evaluation Centered on Human-Computer Interaction

RS research always places emphasis on the need for engaging users and minimizing
users’ interaction effort, in addition to generating useful and trustworthy recommenda-
tions [96]. It is crucial to understand how end users interact with CASHRS systems, as
users are at the center of digital health technologies. As such, user-centered evaluation has
been adopted in addition to efficacy-centered evaluation to gain an understanding into
users’ engagement with the system and compliance to the recommendations, as well as the
perceived usability and usefulness of the system.

As shown in Table 10, the most widely used methods for user-centered evaluation
include open-ended questions in survey/questionnaires and semi-structured interviews.
These methods allow researchers to collect qualitative data that are not directly observable.
Such qualitative insights can generate answers to a wide set of questions, such as whether
the users enjoyed the user interface, why the users perceived the system as useful/useless
in affecting their behavior, and how the system can be improved.

Usability is an important aspect of CASHRS and can be assessed either quantitatively
or qualitatively. Along the quantitative spectrum, the mobile apps rating scale user version
(uMARS) [97] and the system usability scale (SUS) [98] are the most widely used. Some
studies also devised original surveys to collect users’ perception on system usability [57].
Along the qualitative spectrum, researchers collected users’ feedback using open-ended
survey questions or semi-structured interviews. These qualitative data were then analyzed
using standard qualitative data analysis methods, such as thematic analysis. In a related
vein, Refs [42,43] investigated users’ perceived usefulness of the recommendations. Partici-
pants mentioned increased awareness of current sleep habits and their impact on sleep and
how social comparison motivated behavior change.
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Table 10. CASHRS evaluation centered on human–computer interaction.

CASHRS Dimension Method Result

Lullaby [22] Adherence App usage analysis All 4 participants made regular use of the app, par-
ticularly around bedtime.

ShutEye [53] Usability Semi-structured interview Eleven out of the 12 participants found the interface
easy to understand.

Perceived usefulness Same as above Eleven out of the 12 participants mentioned about
raised awareness of what affects sleep.

Compliance Same as above Most participants changed behavior regarding caf-
feine consumption and sleep schedule.

SleepCoacher [43] Adherence App usage analysis On average participants used the app for
94–95% of the nights.

Perceived usefulness Survey Sleep habits were positively influenced;
increased awareness of how daily activities
affect sleep.

Compliance Survey/app usage analysis Participants followed 20–100% of the
recommendations.

CBSR [42] Perceived usefulness Open-ended survey ques-
tions

Increased awareness of how daily activities affect
sleep; the social comparison feature
motivated behavior change.

SleepBandits [54] Adherence Semi-structured interview App was used on average 60% of the time
(SD = 38%).

Perceived usefulness Same as above 55–65% participants considered sleep
improved. All would recommend the app to others.

Sleepcare [56] Adherence App usage analysis Participants with adequate dose ranged from
10–68% depending on the intervention module

SMSR [57] Usability Original usability survey &
Interview

3.69–3.89 (good); interface was user-friendly.

Perceived usefulness Interview Useful in helping users learn about sleep
routines and motivating them to modify the routine.

Insomnia
Coach [59]

Adherence App usage analysis App was used 50.2% of days during the
treatment period and 30.3% of days during the
follow-up period

Usability uMARS Average rating was 4.08 (excellent)
SUS Overall score was 80.42 (excellent)
Semi-structured interview All participants considered sleep improved; in-

creased knowledge of sleep and insomnia; all would
recommend the app to others.

SRT [58] Adherence App usage analysis Participants logged 19 out of the 21 nights.
Perceived usefulness Semi-structured interview Three out of the 12 participants experienced a shift

in dysfunctional beliefs related to sleep duration.
All participants considered sleep improved.

Users’ adherence to a CASHRS system is important because it serves as a precursor to
subsequent behavior change. Existing CASHRS approaches examined the adherence of
users either based on app usage patterns [59] or dropout rate during a trial [89]. In [59],
the authors approximated app usage patterns by analyzing app events, which were cap-
tured and logged with a time stamp each time the user tapped in the app. A user’s overall
app usage (including app opening events and usage days) and use of each active compo-
nent were assessed. They found that the participants used the app 50.2% of days during
the treatment period and 30.3% of days during the follow-up period. In a clinical trial
using Sleepio, it was found that the dropout rate was less than 20%, and 75% of patients
completed follow-up [89].

Another aspect pertaining to the efficacy of CASHRS is users’ compliance to the
recommendations. Adherence and compliance measure different aspects of user behavior.
Adherence only reflects whether a user has consistently engaged with the system and is
often obtained through analyzing app usage. Conversely, compliance refers to whether a
user follows a given recommendation. App usage does not by default indicate that the user
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followed the given recommendations. Some studies relied on alternative ways to collect
information on users’ compliance to behavior intervention recommendations, either by
seeking users’ direct input (e.g., self-report) [42] or by only sending recommendations that
could be verified from passively collected data [42]. Overall, adherence and compliance
varied significantly across CASHRS.

3.5. Challenges Identified in Prior Studies (RQ6)

Existing studies highlighted several challenges and barriers to developing CASHRS
that generate relevant, actionable, credible, and personalized recommendations.

Non-compliance to the recommendations provided in CASHRS was highlighted as a
challenge in several studies [42,43,53,59]. Compliance is a complicated issue when it comes
to behavior intervention because many factors could confound a user’s decision-making
on whether to follow a recommendation, and it is likely that not all the relevant factors
are within the user’s control. As such, non-compliance could occur either intentionally
or unintentionally. On one hand, people are less likely to make behavior change when
the effort needed to adjust to a new sleep behavior is perceived to outweigh the potential
benefits they could get. In [53], some participants mentioned that they at times dismissed
the recommendations because they preferred to hang out with friends at night. On the other
hand, recommendations were not always actionable or achievable. Lifestyle, environment,
and resource constraints could all hamper compliance. For instance, living near a bar
may hinder a user’s ability to control ambient noise during sleep [53], and a hectic work
schedule could make it difficult to extend sleep hours [42,43,53]. Often, lacking knowledge
on how to achieve a recommended behavior change plays a critical role in non-compliance.
People may have no knowledge of how to relax the body and mind, even when the system
recommends relaxation before bedtime. It is therefore important to provide supplementary
materials or a step-by-step guide on how to implement a behavior change plan.

Lacking perceived credibility is by itself a challenge and could also exacerbate non-
compliance, especially if users feel better when they are not compliant [42,54]. Some
participants in [54] found the recommendations unconvincing and lacking novelty. Rec-
ommendations that conflict users’ mental model of sleep or that with poor phrasing may
all negatively affect trustworthiness [42]. Technology dictatorship and privacy concern
are two barriers related to credibility [53,89]. Some participants complained about feeling
like the technology was dictating what they should and should not do [53], which may
cause mental stress and rumination. From a technical perspective, predicting what sleep
metrics interest a target user is a challenging task. Human sleep is multidimensional and
can be measured using a number of metrics. It was found that recommendations targeting
uninteresting sleep metrics may reduce perceived usefulness and trustworthiness [42].
One possible solution, as suggested in [42], was to directly ask users about which sleep
dimension they intend to improve or they would like to focus on.

4. Discussion

The purpose of this review was to assess the current landscape of CASHRS research.
Specifically, we aimed to examine what types of context were considered and how they were
measured, what BCTs were incorporated to promote positive behavior change, and how
the systems were evaluated.

The literature on CASHRS remains small and lacks a systematic frame. Sleep has not
been studied to the same extent as other health-related topics such as exercise and diet in
CARS research, probably due to the concerns that digital technologies may not be well
suited for sleep because they may interfere with sleep itself. However, most of the studies
reviewed in this work established evidence for the efficacy of CASHRS in improving sleep.
CASHRS approaches also share unique features that are not seen in other health CARS
because sleep comprises multidimensional constructs that are often not directly controllable.
Meanwhile, we found that prior research has been mostly centered on the clinical efficacy
of the systems as well as how users interact with the systems. No study has systematically
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delved deep enough into the technical aspects such as the recommendation algorithms and
the context life cycle. In what follows, we discuss current research trends in CASHRS and
opportunities for future research.

4.1. Research Trend in CASHRS

Our analysis results revealed three trends in current CASHRS research: algorithm
development, BCT incorporation, and self-experimentation.

The recommendation algorithm is a core element of a CASHRS. It uses the system’s
input data and the database to suggest a set of behavior interventions to the target user.
Eleven out of the 12 CASHRS in our review relied on knowledge-based recommendation
algorithm, which is plausible given the importance of incorporating evidence-based sleep
domain knowledge. However, there is no guarantee that the population-level knowledge
generalizes well to individuals. A few recent studies combine knowledge-based algorithm
with collaborative filtering (i.e., PARIS [41] and CBSR [42]) or content-based filtering
(i.e., PUM [40]). Prior studies on computer-tailored digital health programs concluded
that incorporating a collaborative filtering (e.g., based on demographic information) as
a second step to knowledge-based filtering could potentially enhance users’ experience
with the RS [99]. As such, these three systems are likely to have better prediction accuracy,
but algorithm-level evaluation is missing in current literature.

Incorporating behavior change theories and techniques is another trendy topic in
CASHRS. It is widely recognized that the design of health RS needs to consider the details
of real needs and real use. A major drawback of previous systems is that the design of
these systems was not grounded on behavior change theories [100]. Simply giving advice
or recommendations alone is rarely an effective trigger for behavior change, particularly
when users experience ambivalence or resistance to change. A prior study on sleep apps
found that social cognitive theory was the most aligned with the apps examined in the
study. Other potentially useful theories include the reinforcement theory [101] and the
self-regulation theory [57,102]. In this study, we found that 8 of the 16 principal methods of
behavior change as defined in the BTC Taxonomy V1 have been applied to CASHRS. Some
systems even combined multiple BCTs to maximize the effect. Self-monitoring of sleep was
the most widely used BCT and was found in all of the reviewed CASHRS. Asking users to
directly input their perception of sleep quality and their “gut feeling about sleep habits” could
prompt users to reflect on their sleep hygiene [42,103], which in turn may help boost users’
motivation for positive behavior change [104]. The quantified insights from wearable and
IoT sensors can provide complementary information of users’ sleep structure and daily
activity, which may serve as visual cues for behavior change. A recent review of mHealth
sleep apps revealed that the category-I BCTs that focused on changing aspects of behavior
before sleep were more appropriate for sleep intervention than the category-II BCTs that
focused on future outcomes or consequences of poor sleep [44], as the latter may lead to
anxiety and rumination that interfere with the initiation and continuation of sleep. Indeed,
our analysis revealed that more category-I BCTs were used in current CASHRS.

While self-monitoring is becoming increasingly common in recent years, self-
experimentation is a relatively new concept in CASHRS. Two systems—SleepCoacher [43]
and SleepBandits [54]—provided tailored recommendations on how to investigate personal
sleep factors through self-experimentation and reflection. The two systems generated
a set of hypotheses based on sleep domain knowledge and recommended micro self-
experimentation plans based on the self-knowledge discovered in a user’s self-tracking
data and preference. Users were able to identify causal relationships between person-
ally concerned sleep factors and sleep outcomes. In a sense, the two systems expanded
the scope and variety of recommendations based on the self-knowledge newly discov-
ered from each user’s own data. New recommendations went beyond the widely known
sleep hygiene recommendations, e.g., how listening to an audio book may influence SOL
or how eating cheese for dinner may affect deep sleep ratios. Self-experimentation is
grounded on the principle of the N-of-1 trials in personalized medicine [84,85], which



Electronics 2022, 11, 3384 16 of 26

arose in the mid-1980s in response to the limitations of the conventional large-cohort
trials [105,106]. The N-of-1 design has wide applicability in clinical care and behavioral
science [107] and has been considered to be an approach that is well suited to help people
to find the best behavior interventions for health [84]. Inheriting the advantages of the
N-of-1 trials, self-experimentation holds promise for generating behavior intervention
recommendations that are fully personalized to each user’s physiological, behavioral,
and environmental context. Self-experimentation also has great compatibility with the
self-tracking practice, as the wearable and mobile technologies widely adopted for self-
tracking can substantially reduce the burden of data collection and increase the feasibility
of conducting self-experimentation [108,109].

4.2. Opportunities for Future CASHRS Research

The results of this narrative review indicate that research on CASHRS is still in its
infancy. The context coupled to existing CASHRS was restricted to a limited range, with dy-
namic context such as time, location, and social situation being left out of scope. This is
especially the case in clinical CASHRS in which the content was structured only based
on established therapeutic guidelines [34]. Complying with a medical standard undoubt-
edly improves the rigidity of the content but comes at the cost of missing out novel and
potentially effective recommendations. From a technical perspective, little attention has
been placed on the computing aspects of CASHRS. Most of the knowledge-based recom-
mendation algorithms are preliminary and incapable of incorporating dynamic context.
Context life cycle—an important topic in RS research–has not yet been covered in any of
the studies reviewed. The evaluation of CASHRS was dominantly performed on a high
level (e.g., efficacy in improving sleep measures, users’ perceived usefulness, adherence),
leaving the algorithm-level performance (e.g., accuracy, coverage, diversity [90]) unex-
plored. Future research should focus on re-framing CASHRS research with established
methods, approaches, and techniques in CARS. The major design opportunities concern
addressing users’ compliance to recommendations (O2, O3) as well as developing and
validating context-aware recommendation algorithms for CASHRS (O1).

4.2.1. O1: Developing and Validating New Algorithms for Recommendation Generation,
Context Filtering and Context Life Cycle Management

Prior studies acknowledged that offering fully personalized recommendations was
challenging for digital CBI-I systems [110,111]. Addressing this issue requires increasing
the variety of contextual information in data collection and designing new algorithms to
incorporate such information.

A main gap in current CASHRS is the lack of integration of high-granularity and
improvisational dynamic context. In this study, we found that the context considered in
existing CASHRS was restricted to predefined, low granularity, daily aggregated contextual
information, such as the sleep quality of previous nights, physical activity level in a day,
and resting heart rate. A natural consequence of this design scheme was that the systems
were not able to dynamically react to the changes of a user’s context. Prior studies on RS
argued that context can encompass multidimensional and dynamic information, including
a user’s location, physical and emotional states, the timing when the user engages in an
activity, social interaction with family and colleagues, and the environmental situation
concerning the user of a system [112,113]. From an interactional view, context is a relational
and occasioned property rather than being a stable, objective set of features [61]. Context
arises from the situation that the target user is currently engaged in; thus, the scope of
contextual features needs to be defined dynamically [61].

The major design opportunity concerns not the use of a predefined context but rather
how a CASHRS can support the life cycle management of dynamic context, which com-
prises context acquisition, context modeling, context reasoning, and context dissemina-
tion. In a sense, not all the factors listed in Table 2 are relevant to a user all the time.
The widespread and ubiquitous use of wearable (e.g., activity trackers) and mobile devices
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(e.g., smartphones, touch pads) opens the door for collecting a huge amount of high-
resolution data to derive the actions and behaviors of the target users as well as the rich and
ever-changing context in which they interact with the system. However, the data that were
automatically and passively collected with wearable and mobile sensors have not been
incorporated in most of the CASHRS reviewed in this article. Future CASHRS research
needs to fully embrace the ubiquitous sensing and data-driven scheme. Developing new
and multi-functional integrated wearable electronic devices to simultaneously capture
numerous and stable data is another promising way to encourage the sustained acquisition
of contextual information while reducing tracking fatigue.

Furthermore, the high dimensionality of the contextual information requires a hybrid
method that incorporates the context at various stages in the recommendation genera-
tion algorithms. In addition to the post-filtering approach adopted in all the CASHRS,
pre-filtering and context modeling based on machine learning and data mining are an-
other two promising context filtering approaches. Context modeling is also an important
phase in the context life cycle [114,115] that precedes the context reasoning and context
sharing phases [116]. Researchers of CARS have devised a great number of algorithms
and techniques [117,118]. For instance, [119] proposed a hybrid multilevel context-filtering
approach that comprised pre-filtering using demographic information, collaborative fil-
tering combined with knowledge-based filtering, and post-filtering with dynamic context
information. Sequential recommendations based on sequential pattern mining were pro-
posed in [120,121]. These algorithms may serve as a foundation for the development of
novel recommendation algorithms and context-filtering techniques tailored to CASHRS.
Moreover, algorithm-level evaluation (i.e., accuracy, coverage, diversity [90]) needs to be
established as a complement to system-level evaluation (i.e., efficacy, usability).

4.2.2. O2: Enhancing the Credibility of CASHRS

Credibility describes the believability of a system and embraces two key components:
trustworthiness and expertise [122]. Credibility matters when computing systems “act
as knowledge sources”, “report measurements”, “instruct or tutor users”, or “act as decision
aids” [122]. Perceived credibility also affects the adoption and retention of health tech-
nology [123]. Credibility has been previously studied in general RS [124] and quantified-
self sleep-tracking technologies [12] and was further reaffirmed as a crucial property for
CASHRS [42].

One way to enhance the credibility of CASHRS is to support better communication
between the system and the users to build empathy [103]. In classic psychotherapy research,
it was found that effective human coaching relies on the patient and therapist mutually
agreeing on therapeutic goals, the fulfillment of therapeutic tasks, and establishing mutual
trust [125,126]. As a CASHRS often plays the role of a digital therapist or coach, it needs to
be perceived as legitimate and to form a bond with users. Empathy building starts with
goal setting by defining target sleep measures. Prior studies found that subjective sleep
quality was the most targeted and improved dimension of sleep by mHealth sleep apps [44],
while wearable device users target a wider spectrum of measures, ranging from SOL and
TST to the ratio of deep sleep and REM sleep [12,21]. Existing CASHRS support users to
set goals of sleep hours and sleep schedule (i.e., bedtime and wake up time) but seldom
target other sleep metrics such as sleep efficiency and sleep stages. Future CASHRS
may enable sleep goal setting in as many dimensions as users preferred. Identifying
modifiable sleep factors may also help to build empathy between the system and the users.
The determinants of poor sleep quality are multi-factorial, with some but not all of them
amenable to intervention. This requires CASHRS to focus on identifying modifiable factors
for each user and to suggest what users can easily incorporate into their daily schedule
rather than what they ought to do [61]. Conversely, recommending behavior changes
that are difficult to achieve may stir up feelings of doubt and compromise the credibility
of the system. For instance, the SleepBandits system did not include sleep duration or
timing as the target sleep metrics because they are predominantly determined by users’
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schedule rather than behavioral factors [54]. Beyond identifying modifiable factors, users
may also want to receive detailed scaffolding on how to implement the recommendations.
For example, “why not trying 10 min of jogging and 10 min of kickboxing after work”
could be a more actionable recommendation than “20 fairly active minutes to hit the daily
goal”. It is worthwhile to note that behavioral modifications to some sleep metrics (e.g.,
deep sleep, REM sleep) may not be well-supported by sleep science domain knowledge,
but it may be possible to identify modifiable factors specific to a user based on well-
designed self-experimentation. One study found that CASHRS may create a sense of
dictatorship [53]. It is hence important to allow users to negotiate the recommendations
or to provide the top-N recommendations and let users choose their favorite ones. Many
of the reviewed clinical CASHRS allow patients to negotiate sleep duration in a sleep
restriction plan [55,56,59], and [53] allows users to modify the effective window of caffeine
based on their tolerance level.

Another way to enhance the credibility of CASHRS is to improve technology trans-
parency [12,13]. It may be helpful to provide some introductory technical explanation on
how the recommendations were generated, what metrics were used and how they were
computed, and how many days of data were needed to draw reliable conclusions. Prior
study found that observing how more data help to fine-tune the recommendations boosted
users’ perceived trustworthiness and motivated users’ compliance to self-tracking and the
recommendations provided [54]. Exposing users to the technical details of the system may
also help to resolve cognitive dissonance. Many users rely on their prior mental model
of sleep health–which is usually based on general sleep hygiene–to judge the usefulness
and trustworthiness of CASHRS [103]. When users receive recommendations that conflict
with their mental models of sleep health, they may experience cognitive dissonance, which
may then drive them to discard the recommendations, as has been shown in sleep tracking
in general [12]. Re-directing users’ attention to how the recommendations are generated
(e.g., the recommendations are tailored to their own data rather than the data of other
people) may help them to understand the reason for the disparity as well as the potential
limitations of the CASHRS.

4.2.3. O3: Supporting Better Decision Making and Sustained Behavior Change for
Sleep Health

At its core, a CASHRS aims to help users to improve sleep through behavioral modifi-
cations. However, behavioral modifications are hard to implement and sustain. The major
research opportunities include addressing users’ compliance to recommendations as well
as supporting behavior changes. Theories of human decision making and BCTs can be
systematically incorporated in CASHRS to achieve a balance between persuasion and
empowerment [127].

First, the design of future CASHRS should encourage users’ decision making that
favors compliance to the recommendations. The “dual process” theories of cognition posit
that there are two systems of human decision making [128]. System one corresponds to
intuitive decision making, which is fast, automatic, and effortless. It is often emotion-
ally charged and hence difficult to control. System two corresponds to analytical and
deliberative decision making, which is slower, serial, effortful, and deliberately controlled.
Assuming that people make rational decisions for health, the design of existing health
RS dominantly targets the decision process of system two. However, the nudge theory
argues that people do not have unlimited cognitive abilities and complete self-control [129].
In reality, people often rely on heuristics rather than analysis when they make health deci-
sions [130]. For example, the status quo bias states that people sometimes prefer to remain in
the current state and avoid change for loss aversion, even when the current state may not
be objectively superior [131]. This explains why a participant may choose to hang out with
friends late at night instead of following the recommended bedtime in [53], because going to
bed comes at the cost of social life, which the participant places more value on. While some
decision-making heuristics may lead to behaviors that go against the recommendation,
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others may be exploited to design system features that support compliance [132]. The avail-
ability heuristic refers to people’s tendency to judge the likelihood of an event by the case
with which relevant instances come to mind. Based on the availability heuristic, sharing
successful stories of other users who followed a recommendation is likely to motivate the
target user to follow the said recommendation. One example is Sally (a virtual character)
sharing her successful story with new Sleepio users in [55]. Another relevant heuristic is the
affect heuristic—a mental shortcut that helps people to make decisions quickly by bringing
emotional response into play. If people have pleasant feelings about something, they see
the benefits as high and the risks as low, and vice versa. As such, the affect heuristic serves
as a first and fast response mechanism in a decision making system. One way to exploit the
affect heuristic for enhanced compliance is to remind users of their past positive experience
when they followed a recommendation.

Second, the latest advance in health psychology and behavioral medicine can be ex-
ploited to empower users to achieve sustained behavior changes. One promising direction
is to concurrently target multiple health behaviors [72]. Prior studies found that targeting
multiple health behaviors together could lead to greater health improvements than target-
ing one behavior alone. This is because of spillover effects in which success with one health
behavior aids in the ability to succeed with other health behaviors [133–135]. This approach
is promising for improving sleep health as many health behaviors such as exercise and
good diet are known to have reciprocal relationships with sleep. In addition, BCTs such as
feedback and monitoring and goal setting have been commonly implemented across mHealth
app interventions targeting physical activity, diet, and sleep [44]. Future research is needed
to examine the optimal combinations of co-targeted health behaviors as well as co-occurring
BCTs to maximize the benefits while avoiding ego depletion [136]. Furthermore, differ-
ent BCTs may be applied based on individual progress through the intervention stages.
For instance, a novice user may receive information about the positive health benefits of
7–8 h of sleep. As the user makes progress to the maintenance stage, such information
would become unnecessary, and the BCT should shift to relapse prevention strategies.
In a related vein, there is also argument that to maximize change in multiple behavior
intervention, each behavior must be targeted using appropriate behavior change techniques
that are specific to that behavior [137,138], but too much and too complex information may
cause cognitive overload and compromise the usefulness of the recommendations [69].
As such, the recommendations must be simple, clear, and easy to follow. Last but not least,
group-based recommendations for sleep health (e.g., expanding the intervention target
from individual to family) could also be an interesting idea to explore [139,140].

5. Conclusions

This study has conducted a narrative appraisal of peer-reviewed publications on
CASHRS. The review demonstrated that CASHRS research is still in its infancy as the
variety of contextual information, recommendation algorithms, context filtering techniques,
and the system evaluation methods are limited in the reviewed publications. Almost
all of the reviewed systems relied on knowledge-based recommendation algorithms and
incorporated context information using post-filtering. The sleep quality of previous nights
was the most widely used context, followed by physical activity and bedroom environment.
Most of the reviewed CASHRS provided a mixture of personalized and general recom-
mendations. Notably, clinical CASHRS focused dominantly on tailoring the recommended
sleep window in a sleep restriction therapy, while keeping the other recommendations con-
sistent with the standard CBT-I content in literature. General-purpose CASHRS provided
personalized recommendations in more aspects, probably due to their ability to collect a
wide spectrum of self-tracking data using wearable and IoT sensors. No information was
found regarding how the systems handled the context life cycle (especially the context mod-
eling and context reasoning phases), which presents a major knowledge gap in CASHRS
literature. All systems incorporated one or more BCTs, among which goals and planning and
self-tracking or daily logging of sleep were the most popular. Interestingly, social reward and
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social support—two BCTs widely used in other health domains (e.g., physical activity)—were
only incorporated in one CASHRS (i.e., Sleepio). The evaluation of the reviewed CASHRS
covered both the overall system efficacy in improving multidimensional sleep outcomes
and how users interacted with the systems (e.g., usability, perceived usefulness, adherence,
compliance). Identified challenges in prior studies included users’ non-compliance to the
recommendations and a lack of perceived credibility. Taken together, CASHRS points at a
promising direction for ubiquitous sleep computing research, but this subdomain requires
a formal re-framing using established methods and approaches in health CARS research.
To achieve this, future CASHRS research may focus on addressing users’ compliance to rec-
ommendations as well as developing and validating new algorithms for recommendation
generation, context filtering, and context life cycle management.
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