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Abstract: The recent advancements in multimodal dialogue systems have been gaining importance in
several domains such as retail, travel, fashion, among others. Several existing works have improved
the understanding and generation of multimodal dialogues. However, there still exists considerable
space to improve the quality of output textual responses due to insufficient information infusion
between the visual and textual semantics. Moreover, the existing dialogue systems often generate
defective knowledge-aware responses for tasks such as providing product attributes and celebrity
endorsements. To address the aforementioned issues, we present a Transformer-based Multimodal
Infusion Dialogue (TMID) system that extracts the visual and textual information from dialogues
via a transformer-based multimodal context encoder and employs a cross-attention mechanism to
achieve information infusion between images and texts for each utterance. Furthermore, TMID uses
adaptive decoders to generate appropriate multimodal responses based on the user intentions it
has determined using a state classifier and enriches the output responses by incorporating domain
knowledge into the decoders. The results of extensive experiments on a multimodal dialogue dataset
demonstrate that TMID has achieved a state-of-the-art performance by improving the BLUE-4 score
by 13.03, NIST by 2.77, image selection Recall@1 by 1.84%.

Keywords: multimodal; intelligent dialogue system; transformer; conversation understanding;
chat bots

1. Introduction

The recent introduction of conversational agents into the market has elevated our
life quality in multiple dimensions (e.g., Apple Siri, Amazon Alexa, Google Assistant and
Microsoft Cortana). These intelligent conversational agents are dependent on the dia-
logue systems behind them, which could generally fall into two categories: task-oriented
dialogues systems designed to accomplish a particular task [1,2] and open-domain con-
versations with casual chi-chat [3,4]. However, most of the agents on the market converse
only in unimodal format such as text or voice. There emerge increasing demands for
multimodal conversational agents that could understand the visual information from the
dialogues and generate corresponding image responses, especially in domains such as
fashion, e-commerce retail, entertainment, travel, etc. For example, Figure 1 illustrates a
scenario where a customer is looking for travel bags of certain material, brands and style.
Providing product images can greatly facilitate the filtering process and help agents find
the target product.
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Besides capturing the semantics in images, it is worth noting that plenty of domain
knowledge might be only presented visually or multimodally, especially in domains such
as travel and fashion. For instance, users might query about the features of statues from a
specific era in a museum. These statues might have a particular style or material, which
can be best represented by images instead of texts. Thus, it is essential to incorporate the
multimodality into dialogue systems to help the intelligent conversational agents capture
the important visual information and domain knowledge.

Figure 1. An example of a multimodal dialogue between a client and an agent.
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Several studies have paved the way for research in multimodal task-oriented dialogue
systems. Saha et al. [5] first released a multimodal dialogue dataset (MMD) and two
benchmark models, MHRED and AMHRED, to address two major tasks: the textual
response generation task and the image response selection task. Cui et al. [6] designed a user
attention-guided multimodal dialogue model (UMD) focusing on the user requirements on
the attribute level. An ordinal and attribute-aware response generation model (OAM) [7]
was presented to learn enhanced image representation conditioned on the user utterance.
MAGIC [8] designed adaptive decoders to separately generate general and knowledge-
aware textual responses based on users’ intentions. MATE [9] was the first to utilize
transformers in the multimodal dialogue systems.

Although there has been promising progress made by the aforementioned studies in
multimodal dialogue systems, there are still a few challenges to address. First, existing
models usually perform well on generating short responses such as “Yes” or “No” but their
performance on longer responses is still limited. Second, longer responses often require ad-
ditional information from images to address users’ requests. It is still challenging to infuse
the textual and visual semantics in multimodal dialogue systems. Third, the incorporation
of a knowledge vector is essential to certain types of questions such as asking for style
tips or product attributes. It remains for challenges to efficiently incorporate the domain
knowledge into the multimodal dialogue systems. To address these issues, we present a
Transformer-based Multimodal Infusion Dialogue (TMID) model as illustrated in Figure 2.
In particular, TMID first embeds the textual dialogues through a transformer encoder and
extracts visual features via ResNet. Then, it employs a cross-attention transformer layer to
infuse the textual and visual information and creates a multimodal representation for each
utterance. The Bi-LSTM context encoder will encode all utterance representations into a
context vector. Later, TMID multimodal decoder utilizes the context vector and domain
knowledge to generate appropriate responses to users’ requests based on the state type of
the query.

To sum up, the main contributions of this work are as follows:

• We present a novel efficient Transformer-based multimodal dialogue system that
performs considerably better on generating relatively long textual responses compared
to previous studies.

• We apply a cross-attention mechanism to achieve better information infusion between
texts and images.

• We conduct extensive experiments to evaluate TMID and achieve a stunning improve-
ment of 13.53, 2.77, 1.84% on BLEU-4 (51.59), NIST (8.8317), and Recall@1 (99.99%)
compared to the state-of-the-art method.

2. Related Work

The prominent related work of this study will be introduced in this section, which
generally falls into three categories: unimodal dialogue systems, multimodal dialogue
systems, and transformer-based multimodal dialogue systems.

2.1. Unimodal Dialogue Systems

With the increasing demand for intelligent conversational agents, many researchers
have dedicated considerable efforts in building robust textual dialogue systems. These
dialogue systems can be generally grouped into two categories based on their applications:
open-domain and task-oriented dialogue systems. Though our work focuses on the task-
oriented dialogue systems, some open-domain methods have put forward much progress
in multmodal dialogue systems such as HRED [10] that extends the dialogue capacity
by encoding multiple turns of textual context into the dialogue system and generating
responses in a hierarchical encoder–decoder framework.

Task-oriented dialogue systems, by contrast, are designed to assist users to accom-
plish specific tasks in vertical domains [1,2]. They usually follow a typical pipeline. First,
task-oriented dialogue systems encode utterances to classify the user’s intentions. Then,
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they employ a policy network to determine the next action. In the end, given the cur-
rent user intention, they generate responses by either the predefined templates or using
generation-based methods. The pipeline approach has performed decently well in task-
oriented dialogue systems. However, it is still worth noting that problems such as error
propagation and heavy interdependence among components might emerge in this struc-
ture [11–13]. There have been several studies tackling these problems, including end-to-end
dialogue systems incorporating supervised learning and reinforcement learning [14,15],
and knowledge-aware dialogue systems generating more informative responses [2,16].
Although the existing studies have pushed forward the progress of intelligent dialogue
systems, they all only consider one modality in their works, which neglects the important
visual semantics and knowledge in human conversations.

2.2. Multimodal Dialogue Systems

Since images carry important visual information, there have been several efforts to
build multimodal dialogue systems. As a leading study, Saha et al. [5] constructed a Mul-
timodal Dialogue (MMD) benchmark dataset consisting of more than 150k conversation
sessions with domain knowledge curations. They also proposed two baseline models
for the text response generation task and the image response selection task: MHRED
and AMHRED, which ignored incorporating the domain knowledge. To address that,
Liao et al. [12] proposed a knowledge-aware multimodal dialogue (KMD) system to en-
code the style tips knowledge into hierarchical neural model with attention mechanisms.
Nie et al. [8] presented a multimodal dialogue system with adaptive decoders (MAGIC) that
could generate general responses, knowledge-aware responses, and multimodal responses
dynamically based on user intentions. Moreover, a few studies applied attention mecha-
nisms into their models [17–19]. Chauhan et al. [7] presented an ordinal and attribute-aware
response generation model (OAM) to learn enhanced image representation conditioned
on the user utterance. Cui et al. [6] presented a user attention-guided multimodal dia-
logue model (UMD) that paid more attention to the user requirements explicitly in the
attribute level.

2.3. Transformer-Based Multimodal Dialogue Systems

The extraordinary success of Transformer [20] in the field of natural language pro-
cessing has also drawn researchers’ attention on applying transformers to multimodal
tasks [21–23]. However, rare efforts have been dedicated to applying transformers into
multimodal dialogue systems. He et al. [9] proposed MATE that first utilized transformers
in capturing context-aware dependencies of semantic elements. Although MATE achieved
state-of-the-art performance on the MMD dataset for the textual response generation task,
there still exists a large space for improvement on the textual response quality. Further-
more, MATE only focuses on the textual response generation task while ignoring the
image selection task. To address these issues, we propose a novel transformer-based multi-
modal dialogue system that can encode the multimodal semantics using cross-attention
mechanisms to generate appropriate multimodal responses.

3. Method

In this paper, we propose a Transformer-based Mutlimodal Infusion Dialogue (TMID)
system illustrated in Figure 2. The overall architecture of our model can be split into two
major components: multimodal context encoder and multimodal response decoder. In this
section, we formalize our problem first and then elaborate the details of our method.

3.1. Problem Definition

A complete multimodal dialogue system can understand and generate multimodal
information. Therefore, in this work, we address both the textual response generation task
and the image selection task. Precisely, given a user query Q = {(Uk, Ik)} and a multimodal
conversational history Hk = {(Ut, It)}k−1

t=1 , the task is to generate a multimodal system
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response R = (Ur, Ir). Here, each turn of the dialogue history or query (Ut, It) consists
of two parts: the textual utterance Ut = {wt

i}
nt
i=1 that contains nt words and the image

utterance It = {imgt
j}

n′t
j=1 that contains n′t images. It is worth noting that at some turns

there might only exit one modality. The system response to generate can also be unimodal
depending on the intention of of the user query.

Figure 2. Framework of Transformer-based Mutlimodal Infusion Dialogue (TMID).

3.2. Multimodal Context Encoder

In order to learn the multimodal semantics of the context, we construct a multimodal
context encoder as illustrated in Figure 2.

3.2.1. Transformer-Based Text Encoder

We employ a Transformer encoder [20] to extract the textual embeddings. The encoder
is composed of a stack of six identical layers, which have two sub-layers each: a multi-head
self-attention layer and and a position-wise fully connected feed-forward layer. We also use
a residual connection [24] and layer normalization [25] after each sub-layer. More precisely,
the final output of each sub-layer is LayerNorm(x + SubLayer(x)) where SubLayer(x) is
either the function of the multi-head attention layer or the fully connected feed-forward
layer.

To be more specific on the multi-head attention sub-layer, it contains h single-head
attentions as illustrated below:

headi = so f tmax(
QiKT

i√
dk

Vi) (1)

where Qi = QWQ
i , Ki = KWK

i , Vi = VWV
i . Here, Q, K, V denote the query, key, value

matrix, respectively, and WQ
i , WK

i , WV
i are corresponding projection parameter matrices.
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Note that dk = dv = dmodel/h to perform as a scaling factor to reduce the dimension for
each head and the total computational cost. Multi-head attention allows the model to
jointly attend to information from different representation subspace at different positions
as presented below:

MultiHead(Q, K, V) = Concat(head1, ..., headh)WO (2)

where WO is the parameter matrix for the multi-attention mechanism.

3.2.2. Cross-Attention Transformer Layer for Multimodal Infusion

We use a ResNet [24] to extract the visual features from product images. To understand
and generate multimodal utterances, it is essential to infuse the textual and visual semantics.
Most of the previous works directly concatenate the textual and image embeddings together
for each utterance. We believe that this practice would limit the model’s ability to extract
useful multimodal semantics from the utterances. For example, if a user asks for a specific
style of backpack in one particular image yet another color presented in another image,
then a good multimodal representation should be able to pay attention to the style and
color in those two images respectively given the text, and also pay attention to the key
words “style”, “color” and the image number. Therefore, we implement a cross-attention
mechanism after we extract the textual and visual embeddings.

As shown in Figure 2, we construct a co-attentional transformer layer TRM to obtain
the multimodal utterance representations. Intermediate visual and textual representa-
tions EV

i and EW
i from the previous text and image encoders are fed into a cross-attention

transformer layer. Similar to the textual transformer encoder, we need to compute query,
key, and value matrices. However, instead of inputting the corresponding key and value
matrices to that modality’s multi-headed attention layer, we feed them into the other modal-
ity’s multi-headed attention layer, which will generate attention-pooled features for each
modality conditioned on the other. Specifically, we treat the visual embeddings as key and
value matrices and input them into the textual transformer encoder layer with the textual
embeddings as queries TRMtext(EW , EV , EV), and vice versa for the visual transformer
TRMvisual(EV , EW , EW). Through the cross-attention transformer layer, we apply image-
conditioned language attentions on the visual representations HV and text-conditioned
image attentions on the textual representations HW .

3.2.3. Bi-LSTM Utterance Encoder

After we obtain the textual HW and visual representations HV from the cross-attention
transformer layer, we first concatenate them and then feed them into a high-level Bidirec-
tional LSTM. The final hidden state of the high-level utterance encoder is treated as our
context representation c, which will later be used to identify the intention of the query and
to generate corresponding responses in either textual, visual or multimodal format .

3.3. Multimodal Response Decoder

In a multimodal dialogue system, the ability to generate multimodal system responses
to users’ queries is essential. However, many existing models only focus on the textual
response generation task and ignore the image response at all, making them less robust
regarding the nature of multi-modality. In this work, we design a multimodal response
decoder that can generate either unimodal or multimodal responses based on the require-
ments of queries. Before we input the context vector to the multimodal response decoder,
we need to identify the state of the query first. The domain experts who have constructed
the MMD dataset group the states of queries into 15 types such as greeting, show-image,
ask-attribute [5]. Given a specific state type of the query, the required system response
is in a different format. For example, the greeting state type requires a textual response
while show-orientations require multimodal responses. Therefore, we construct a simple
multilayer perceptron with a cross-entropy loss to classify the state type of query using the
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context vector from the multimodal utterance encoder. This simple neural network can
classify the state type at a very high accuracy of 99.4% in our model.

Once we have identified the state type of the query, we pass the context vector into the
multimodal response decoder, which is composed of two components: the image response
decoder and the textual response decoder. Since the multimodal dialogue system only
involves two modalities, it is intuitive to construct decoders for both image and text. This
design of state type classification and multimodal response decoder boosts the efficiency
of generating proper responses in an appropriate format. Among the 15 state types, there
are 3 special ones that require the incorporation of domain knowledge: goes-with, ask-
attribute and celebrity. In order to integrate the domain knowledge into decoder, we extract
the domain knowledge from the corresponding preprocessed information and create a
knowledge embedding vector. Once our model identifies the state type of query that falls
into any of these three, we incorporate the knowledge embedding into the textual response
decoder.

3.3.1. Image Response Decoder

In a multimodal dialogue setting, users might ask for specific products they want.
The system is expected to search through their catalog of products and respond to the
users with corresponding images. Therefore, the task of image response is indeed to rank
a given set of images depending on their relevance to the context of dialogue. Therefore,
we construct an image response decoder to select the best response to users. The image
response decoder has two steps: constructing a multimodal product representation p from
the visual semantics and the product attributes, and then computing the similarity between
the context vector c and the product representation.

As shown in Figure 2, we first encode the visual semantics and product information
into a combined representation. Similar to the image encoder in the multimodal context
encoder, a ResNet is used to extract the visual semantics from the images, creating visual
representations of the products. In addition to visual representations, we also encode
textual product attributes into the final product representations. We input the embeddings
of the key-value pairs of product attributes into an RNN layer sequentially and then obtain
the final hidden state as the product attribute representation. The visual representation and
the product attribute representation are concatenated together as a multimodal product
representation p, which is then used to compute the cosine similarity with the context
vector. Once we have obtained the cosine similarity for positive and negative samples, we
calculate the Euclidean distance between them as follows:

d = ||CosSim(c, ppos)− CosSim(c, pneg)||2 (3)

Then, we employ a contrastive loss function [26] to optimize the parameters when
training our model:

L =
1

2N

N

∑
n=1

yd2 + (1− y)max(margin− d, 0)2 (4)

where d is the Euclidean distance between the positive and negative product similarity with
the context vector, y = 1 for positive samples and y = 0 for negative samples, N denotes
the number of positive and negative pairs, margin is a predefined limit. The contrastive
loss [26] function enables the discrepancy between the positive and negative samples to be
as large as possible while the discrepancy between positive samples is as small as possible.

3.3.2. Textual Response Decoder

The quality of textual responses is of great significance to our final evaluation on the
performance of a multimodal dialogue system. As shown in Figure 2, a textual response
decoder is constructed to generate textual responses based on the context vector. The
textual response decoder is an RNN. We first initialize the first hidden state of the RNN
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decoder h0 using the context vector c, which carries rich multimodal information from the
dialogues. Then, we iteratively update the hidden state at time t ht by its previous hidden
state ht−1 and the embedding of the previous word Et−1 in the target response. Later, we
pass the hidden state at each step into a linear layer and get a probability distribution over
the vocabulary, which is optimized by minimizing the cross-entropy loss.

Recall that for several state types of queries, the incorporation of domain knowledge is
required. These state types include style tips, product attributes and celebrity endorsements.
To determine whether to incorporate domain knowledge or not, we design the model to
automatically incorporate the corresponding knowledge vector for each of the three state
types once they are classified by the state classifier. The incorporation of domain knowledge
is achieved by adding the knowledge vector Ek into the word embedding of the previous
token in the target response Et−1 when updating the hidden state at time step ht. Specifically,
we concatenate Et−1, Ek and an attentive context vector ca, which is obtained by combining
the hidden states of the previous sentence through the attention mechanism. Then, we
iteratively update the hidden state at time t ht by its previous hidden state ht−1 and the
concatenated embedding.

With respect to the knowledge vector, we obtain it from the knowledge base by using
the previous hidden state ht−1 as the query q. Since the hidden state at the first step h0 is
actually the context vector c, we use it as our query at the beginning of the decoding and
a special token ’st’ is fed into our textual response decoder. The processes of generating
knowledge vectors using queries are similar for all three types of knowledge. This is
due to the similarity of the data format among styletips, product attributes and celebrity
endorsements. We can create pairwise entries for all knowledge entries. For example, for
knowledge of style tips, we construct a pairwise entry of two products that go well with
each other such as (jeans, T-shirts). Then, we embed each item of the pair into a vector and
concatenate them as a knowledge entry. We store all knowledge entries into a Memory
Network and use the query to obtain the knowledge vector Ek. Similarly, the knowledge
entries to be stored in the Memory Network for the knowledge of product attributes is
the concatenated embeddings of the key-value pairs such as (color, black). For celebrity
endorsements, the knowledge entries are the preference distributions over all products of
different celebrities. For instance, for celebrity x, their preferences on Np products can be
represented as a one-dimensional vector of Np. Then, we store all those preference vectors
as knowledge entries in the Memory Network.

3.4. MMD Dataset

In this study, we adopt the MMD dataset as our main dataset for experiments and
comparison [5]. The MMD dataset is the very first large-scale multimodal conversation
dataset that provides a strong foundation for training and evaluating Multimodal Dialogue
Systems. It consists of over 150k converstaions where users state their preferences and the
agent tries to find the products that satisfy users’ needs and requirements. The dialogues
between users and agents represent shopping experiences that would usually involve both
texts and images, which require multimodal understanding and feature extraction. Each
conversation consists of approximately 40 utterances and every user’s utterance has been
associated with a state type, in other words, their intention of that utterance. The average
number of words in a shopper’s question is 12, while it is 14 in the agent’s response. The
average number of positive and negative image responses is 4. Within the dataset, over
1 million fashion products along with relevant domain knowledge in different forms are
collected from several popular online retailing websites, including Amazon, Jalong and
Abof and curated by domain experts.

Note that instead of utilizing the fixed visual features of products extracted from
the FC6 layer of the VCGNet-16 [27] as MHRED and KMD did, we have followed the
practice of MAGIC to use the original images of the products from the websites to achieve
better representation construction and information infusion with textual semantics. We
utilized the images crawled by MAGIC from those websites. Our work focuses on two
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major research tasks proposed by [5] on the MMD dataset: the textual response generation
task and the image response selection task. Many previous studies only focus on the
textual response generation task, which weakens the robustness and flexibility of their
multimodal dialogue systems. In regard to the training data, we treat each utterance in the
conversations as the target response, and the utterances before as the context history for
multimodal understanding.

4. Results
4.1. Experiment Setup

We chose the MMD dataset in our model training and testing [5]. We followed the
same split of training–validation–testing (75%, 15%, 15%) in the original MMD dataset for
the following two reasons: first, most studies adopting the MMD dataset followed their
split, and second, the same split should make model performance comparisons fair and
convincing. We adopted PyTorch as the deep learning framework in our model. During
the training, we followed the practice in previous studies [8,12] to use two-turn utterances
before the responses as the context for the multimodal transformer encoder. The vocabulary
size was 24,622. The dimension of word embeddings was set as 300 for both the utterances
and the generated textual responses. We set the dimension of the Bi-LSTM as 512 both in
the textual encoder and the context encoder empirically. The dimension of the knowledge
vector to be added during the decoding stage was also set as 512. With respect to the image
decoder, one positive product image and four negative product images were utilized to
compute the similarity. In the calculation of the contrastive loss, we set the margin as 1.
Adam [28] was used for the optimization and the learning rate was initialized as 0.0001.

4.2. Baseline Models

To demonstrate the performance of TMID, we compared it with several representative
methods from different perspectives: (1) Text-only methods such as Seq2seq and HRED,
which only encode textual semantics into their model and ignore the visual information.
(2) MMD benchmark methods by Saha et al. [5], including MHRED and AMHRED. (3)
Methods that adopt attention mechanisms, including UMD and OAM. (4) Models incor-
porating domain knowledge such as KMD and MAGIC. (5) The method MATE utilizes
transformers in this field. Details about these baselines have been introduced previously in
Related Work.

4.3. Evaluation Metrics

We adopted different metrics to evaluate TMID on the textual response generation
task and the image response selection task. For the textual response generation task, we
utilized the BLEU-N [29] and NIST [30] as our evaluation metrics, which measure the
similarity between the generated responses and the target responses. BLEU-N indicates
the number of n-gram overlaps between the target and the generated responses. Higher
BLEU-N scores represent more overlaps and higher similarity. Since the length of around
20% target responses is less than 4, we calculated BLEU-1 to BLEU-4 for the textual response
evaluation. Based on BLEU, NIST considers the weights of n-grams dynamically where
the weight of an n-gram is proportional to its rareness. Note that all textual responses,
including those knowledge-aware textual responses, were evaluated together. As for the
image response selection task, we followed the practice in [5,12] and used Recall-m (1 to 3
in TMID) where the selection is correct only if the positive product is ranked in the top-m
ones. We used the same evaluation scripts as MAGIC [8].

4.4. Experimental Results
4.4.1. Textual Response Generation Task

Table 1 summarizes the performance of TMID and baselines on the task of textual
response generation. We have the following observations from Table 1. First, TMID has
superior performance compared to the baselines on both BLEU and NIST scores, which
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demonstrates the effectiveness of the TMID architecture. Specifically, TMID outpeforms the
state-of-the-art model MATE on BLEU-1, BLEU-2, BLEU-3, BLEU-4 and NIST by 8.26, 10.20,
11.76, 13.53 and 2.77, respectively. The improvements by TMID are the largest compared
to previous studies in the field of multimodal task-oriented dialogue systems [5–9,17]. In
addition to the great improvements on all BLEU scores, we find that TMID has particularly
improved the performance on generating longer textual responses compared to the baslines.
We can see that the improvement on BLEU-N compared to MATE increased as the length
of the responses N increased with BLEU-4, achieving a stunning 13.53 improvement. This
demonstrates that the transformer-based multimodal encoder with information infusion can
extract textual and visual semantics much better. Furthermore, similar to previous studies,
TMID has achieved a relatively high score of 64.81 on BLEU-1 since it can generate more
accurate short responses such as “Yes” and “No” to many knowledge-aware questions, e.g.,
“Does this bag go well with the T-shirts?”, which expect short responses. Moreover, TMID
without the cross-attention mechanism has also achieved the same level of performance as
TMID with it, though it has slightly lower BLEU and NIST scores.

Table 1. Performance comparison between TMID and baseline models on textual response generation.

Method Framework BLEU1 BLEU2 BLEU3 BLEU4 NIST

Text-only Seq2seq 35.39 28.15 23.81 20.65 3.3261
Text-only Seq2seq 35.44 26.09 20.81 17.27 3.1007
MMD Benchmarks MHRED 32.6 25.14 23.21 20.52 3.0901
MMD Benchmarks AMHRED 33.56 28.74 25.23 21.68 2.4600
Attention UMD 44.97 35.06 29.22 25.03 3.9831
Attention OAM 48.3 38.24 32.03 27.42 4.3236
Domain Knowledge MAGIC 50.71 39.57 33.15 28.57 4.2135
Transformer MATE 56.55 47.89 42.48 38.06 6.0604
Transformer † TMID † 64.69 57.92 54.09 49.45 8.7131
Cross attention ‡ TMID ‡ 64.81 58.09 54.24 51.59 8.8317

‡ The best performance, † second best performance.

Additionally, the improvement by the cross-attention mechanism was greater for
longer responses, as BLEU-4 has the largest improvement among all BLEU scores. Improve-
ment on NIST was also relatively considerable for longer responses.

4.4.2. Image Response Selection Task

The performance comparison of TMID and baselines on the image response selection
task is summarized in Table 2. We have the following observations from Table 2. First,
TMID outperformed all baselines on Recall@m of the best image selection task achieving
a stunning 100% of Recall@2 and Recall@3. Recall@1 is also very close to 100%, which
indicates TMID’s excellent capability of selecting the best image response to user queries.
We also see that TMID—using the Contrastive Loss for optimization—achieves higher
Recall@1.

Table 2. Performance comparison between TMID and baseline models on image response selection.

Method Framework@2 Recall@3

Text-only Seq2seq 0.5926 0.7395 0.8401
Text-only Seq2seq 0.4600 0.6400 0.7500
MMD Benchmarks MHRED 0.7200 0.8600 0.9200
MMD Benchmarks AMHRED 0.7980 0.8859 0.9345
Domain Knowledge KMD 0.9198 0.9552 0.9755
Domain Knowledge MAGIC 0.9813 0.9927 0.9965
Cross attention † TMID † 0.999858 1 1
Cross attention ‡ TMID (Contrastive Loss) ‡ 0.9999717 1 1

‡ The best performance, † second best performance.
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5. Discussion

TMID has achieved superior performance in both textual response generation and
image response selection tasks. Particularly, TMID with cross attention mechanism has even
achieved better performance. We argue the following conclusions from this observation:
(1) The majority of TMID’s improvement comes from the elevated multimodal, especially
the textual understanding of the dialogue context by transformers. Transformer is verified
to be considerably effective in the field of multimodal dialogue systems. (2) The cross-
attention mechanism can better infuse information from texts and images to increase
TMID’s mutlimodal understanding. (3) We claim that this superior performance on the
image selection task is because TMID uses the ResNet to directly extract the visual features
of the original product images and incorporates the product knowledge into the product
representations as MAGIC. (4) TMID with the Contrastive Loss for optimization achieving
higher Recall@ demonstrates that the Contrastive loss function can strengthen TMID’s
ability to distinguish positive and negative products.

We also found that TMID with cross-attention mechanism performs better on longer
responses with higher BLEU4 and NIST. Recall that NIST weighs more on the rare n-gram
responses. Since the MMD dataset has less long responses, higher NIST scores indicate
higher performance on long response generation. It is reasonable that the cross-attention
performs well for longer responses since short responses such as “Yes” or “No” do not
need much information from images. However, in long sentences, there exit certain words
that need attention to be macthed with the visual information. For example, if the user asks
“What is the material of the T-shirts?” and refers to a product image, then the model needs
to pay attention not only to the “material” and “T-shirts” in the question but also to the
product image the user refers to. Here, the cross-attention mechanism enables TMID to
infuse the textual and visual information appropriately so that its performance on longer
responses is improved.

5.1. Model Ablation Analysis

Through extensive experiments, TMID has demonstrated extraordinary performance
in multimodal dialogue understanding and generation, especially in the case with a cross-
attention mechanism applied. However, we are still uncertain if the boosted performance is
substantially caused by cross attention or other techniques we adopted in our framework.
Therefore, we have conducted granular ablation analysis to identify the major contributor
of improved performance. Table 3 has summarized the results of our ablation study. In
addition to utilizing cross attention in TMID, we have tested the the effect of text encoder
in our dialogue system. We replaced Transformer-based text encoder with a less effective
Bi-LSTM encoder of which the results are as expected. The BLEU scores of TMID with
Bi-LSTM text encoder have all dropped by more than 1 point compared to the original
TMID, especially for BLEU4, which dropped by 3.33. This indicates that Transformer-based
text encoder plays an important role in understanding the dialogues and generating proper
responses accordingly, particularly for longer responses. To investigate the impact of
utterance encoder on TMID performance, we have trained TMID with a Bi-GRU utterance
encoder, which has achieved comparable but slightly worse results compared to Bi-LSTM.
We further investigated the effect of domain knowledge on TMID performance. Without
domain knowledge in the decoder, we find out that the BLEU and NIST scores all slightly
decreased. To sum up, Transformer-text encoder and cross-attention mechanism have
major contributions to the superior performance of TMID, while domain knowledge has a
slight positive impact on TMID decoding.
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Table 3. Ablation study of TMID.

Methods BLEU1 BLEU2 BLEU3 BLEU4 NIST

Bi-LSTM text encoder 63.12 56.11 52.28 46.12 8.5816
No domain knowledge 64.31 57.57 53.92 49.04 8.6839
Bi-GRU utterance encoder 64.58 57.68 54.03 49.51 8.7082

TMID † 64.69 57.92 54.09 49.45 8.7131
TMID (Cross attention) ‡ 64.81 58.09 54.24 51.59 8.8317

‡ The best performance, † second best performance, also as baseline for ablation study.

5.2. Case Study

We extracted a few sample responses of all types generated by MATE and TMID, and
compared them against the ground truth summarized in Table 4. Note that these examples
are carefully selected to best represent the overall response generation ability. We can
see that in cases of general greetings, TMID’s responses are more accurate and have less
grammar mistakes than MATE. When asked on the different orientations of the product
image, both frameworks can correctly provide the answer but TMID is still more accurate
and close to the ground truth. However, when it comes to knowledge-ware response
generation, TMID has better performance. Regarding style tips, TMID can mention more
details than MATE. For instance, MATE only responded “it can go well with mocas style
footwear” but TMID additionally matches it with flexible style shorts, which is closer to the
ground truth. We found that TMID did particularly well in describing product attributes
compared to MATE and generated responses very similar to the ground truth. TMID can
also capture more accurate celebrity endorsement than MATE in most cases.

Table 4. Case study of TMID.

Methods Text Responses

MATE hi, please i help i with can help you
TMID hello, please tell me how can i help you
Ground Truth hello, please tell me what can i help you with?

MATE the similar looking ones are image from the front, right, back and left

TMID the similar looking ones are image from the front, right, back and left
orientations respectively

Ground Truth the similar looking ones are image from the front, right, back and left viewpoints
respectively

MATE absolutely . thats a thats a great choice
TMID absolutely . i think thats a great choice
Ground Truth absolutely, i think thats a great training shoes thank you for shopping with us

MATE it can go well with mocas style footwear

TMID it can go well with mocas style footwear and with flexible style, flexible with
shorts

Ground Truth it can go well with casual fitted, casual type trousers and with flexible style,
flexible fit shorts

MATE 2nd product will go well with it
TMID 1st product will go well with it
Ground Truth 1st product will go well with it

MATE regarding the second item, crocs, is a designer, of, for the, under the,

TMID for the second item, crocs, inc. is a rapidly growing designer, manufacturer and
retailer of footwear for men, women and children under the crocs brand

Ground Truth
regarding the second item, crocs, inc. is a rapidly growing designer,
manufacturer and retailer of footwear for men, women and children under the
crocs brand

MATE celebrities cel_2644 endorses this kind of slippers
TMID celebrities cel_193 endorse this kind of slippers
Ground Truth celebrities cel_578 and cel_193 endorse this kind of slippers
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6. Conclusions

This paper proposes a Transformer-based multimodal infusion dialogue system that
encodes and generates knowledge-aware multimodal responses to users’ queries. Specifi-
cally, we first adopt a transformer encoder to encode textual information and ResNet to
extract visual features. Then we employ a cross-attention mechanism to infuse the textual
and visual information to create multimodal representations, which will later be passed into
a sentence-level context encoder to obtain the context vector. We incorporate the knowledge
vectors into the textual decoder to generate knowledge-aware textual responses and utilize
an image decoder with a constrative loss function to select the best image response based
on the context vector and the product representations.

Although the proposed model has achieved excellent performance on both the textual
response generation task and the best image selection task, there is still a gap between the
study and the industrial application. First, the MMD dataset only covers a tiny portion
of the products in the retail domain and is restricted to retailing. Hence, the model might
have limitations in other domains or new products. Second, the model only focuses on
two tasks in the field of multimodal dialogue systems. However, there are other tasks such
as image response generation in cases where the system does not have relevant products
but wants to generate an image to see if it meets the user’s need. Reinforcement learning
for Multimodal Image Retrieval could be useful in this case [31]. Moreover, it is more
comprehensive to include product images from real-life settings where models actually
wear the products in different scenarios such as in the street or doing sports. To well
capture the visual information, pose tracking and image boundary should be tackled in
the embedding process [32–34]. Last, there are still a lot of noise in the image selections in
dialogues. We need to pay close attention to the impact of noise labels in both text [35] and
visual embedding of Multimodal dialogue systems. In the future, we will further explore
the aforementioned issues and extend our current model.
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