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Abstract: Impulse-Radio Ultra-Wide Band (IR-UWB) over Fiber (IR-UWBoF) has been proposed
to interconnect IR-UWB-based deployments separated by hundreds of meters or even kilometers.
IR-UWB transmissions must comply with spectral masks provided by radio spectrum regulatory
agencies. The maximum transmit power of an IR-UWB signal is adversely affected by the presence
of spectral lines in its Power Spectral Density (PSD). Thus, it is desirable that the PSD of signals
generated by IR-UWBoF systems does not show spectral lines. Previous works have shown the
feasibility of deploying of optical-wireless IR-UWBoF systems. However, most of these proposals
report PSDs showing spectral lines. To the best of our knowledge, spectral line suppression has
not been previously studied for optical-wireless IR-UWBoF systems. This work shows the design
and implementation of optical-wireless IR-UWBoF systems generating signals with Spectral Line-
Free (SLF) PSDs. The proposal considers the use the use of a specifically designed convolutional
code combined with Binary Phase Shift Keying (BPSK) or Quaternary Biorthogonal Pulse Position
Modulation (Q-BOPPM) to provide a SLF PSD in IR-UWBoF systems. A testbed consisting of 30 km
of single-mode optical fiber (SMF) concatenated to a 20 cm wireless link was physically implemented.
The results show that a SLF PSD is achieved for both the optical and the wireless transmissions, even
when the binary data source feeding the system is not perfectly random.

Keywords: UWB systems; IR-UWB over fiber systems; power spectral density; spectral line suppres-
sion; IM/DD method; convolutional coding

1. Introduction

Recent advances in microelectronics, sensors, protocols and wireless technologies have
led to new ways of sharing information between humans and things, either locally or glob-
ally, through the Internet, [1–6]. At present, wireless services such as ultra-high-definition
video and immersive media, high-speed massive file transfers, and telemonitoring systems
are becoming ubiquitous, [7,8]. Most of these wireless services use mature technologies
operating in the Industrial, Scientific and Medical (ISM) frequency bands. Thus, technolo-
gies such as Wi-Fi, Bluetooth and ZigBee have been extensively used to deploy wireless
local and personal area networks (WLAN/WPAN) in households, buildings, airports, bus
stations, shopping malls, etcetera. Furthermore, the Internet of Things also considers the
use of ISM wireless technologies to collect data generated by sensors [9]. Therefore, a rapid
ISM frequency band saturation is expected in the near future, e.g., Cisco predicts that more
than 500 billion devices will be connected to the Internet by 2030, [10]. Several wireless
devices transmitting concurrently over the same radio coverage areas and frequency bands
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cause the well-known radio frequency (RF) interference problem, degrading the wireless
link performance for all users [11–13].

In recent years, improvements at physical (PHY) and medium access control (MAC)
layers of ISM and alternative wireless technologies have been proposed to mitigate the
problems caused by the saturation of ISM frequency bands, [14–20]. One of these proposals
is Impulse-Radio Ultra-Wideband (IR-UWB), which enables the deployment of robust
short-range wireless networks with high node density, low complexity, high tolerance
against interference and low power consumption, [14,21–25].

Wireless transmission of IR-UWB signals is regulated by maximum transmit power
limits defined by regulatory agencies in the form of spectral masks, [23–25]. The spectral
masks aim is to enable harmonious coexistence between UWB systems and previously
deployed wireless communication systems. For example, the Federal Communications
Commission (FCC) UWB spectral masks define that the power spectral density (PSD)
of UWB signals must not exceed a power limit of −41.3 dBm/MHz from 3.1. GHz to
10.6 GHz, [22]. In this context, the analysis, estimation, and shaping of the PSD of IR-UWB
signals is a topic of major interest for the design of compliant IR-UWB systems.

Typically, IR-UWB systems use short pulses (of the order of nanoseconds) to convey
information using On-Off Keying (OOK), Pulse Position Modulation (PPM), Binary Phase-
Shift Keying (BPSK), or Biorthogonal PPM (BOPPM), among others, [23,25]. Additionally,
IR-UWB signals are commonly designed to have a very low-duty cycle. Because of this
characteristic, its low transmit power (as required for spectral mask compliance) and its
robustness against interference, the use of IR-UWB technology has been proposed for the
deployment of low-power, short-range, multi-hop wireless sensor networks (WSN) with
high node densities. Although an UWB-based WSN can be used to collect data generated by
sensors deployed in a particular area of interest, solutions such as those reported in [26–31]
require information to be exchanged between two or more IR-UWB networks separated by
hundreds or thousands of meters. For this reason, several IR-UWB-over-fiber (IR-UWBoF)
systems have been previously proposed in the literature to interconnect high- and low-data
rate UWB deployments, [32–52] (also see Table II in [41]).

As previously mentioned, one of the main constraints in the design of UWB systems is
compliance with spectral masks. In this sense, previous studies addressing the design of
IR-UWBoF systems usually report measured and/or analytical PSDs and compare them
with spectral masks such as the one defined by the FCC [32–52]. Notoriously, most of the
PSDs reported in these works exhibit spectral lines. The problem with the presence of
spectral lines is that, in order to comply with the spectral mask limits, a UWB signal whose
PSD shows spectral lines will have to be transmitted with less power than a UWB signal
with a spectral line-free (SLF) PSD. Therefore, in order to achieve maximum transmit power
in the wireless link while fulfilling the spectral mask requirements, it is desirable to design
IR-UWBoF systems with a SLF PSD.

Theoretically, if a BPSK IR-UWB system transmits perfectly random binary data
with uniform distribution, the PSD of the transmitted signal will not show any spectral
lines, [25]. However, spectral lines in the PSD of BPSK IR-UWB signals appear when the
binary data stream is not perfectly random (i.e., nonuniformly distributed) [25], which
is the most common case in practical sensor network applications. Furthermore, even
though the IR-UWBoF systems proposed in [33,47,50,52] use BPSK schemes with very long
pseudorandom sequences (i.e., resembling a perfectly random binary data stream with
uniform distribution), the experimental PSDs reported in these works show spectral lines.
These spectral lines could have been caused by the photonic configuration implemented
in the reported setups. However, the spectral line presence should be avoided in order to
maximize the transmit power while maintaining compliance with the spectral masks (as
previously mentioned). Thus, it is desirable to design BPSK IR-UWBoF systems whose
PSD is SLF, even when the data stream consists of nonuniformly distributed bits (i.e.,
non-perfectly random binary data streams).
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Previously in [40], we reported the practical implementation of a SLF IR-UWBoF
system. However, the results reported in [40] only covered the effects of the optical link
over the PSD. This work extends the design and analysis of spectral line-free IR-UWBoF
systems by evaluating a concatenated optical-wireless channel. The proposed system
was experimentally evaluated considering a 30 km SMF link connected to a short-range
wireless transmission. The practical setup was used to show that a SLF PSD over the
wireless link can be achieved when using the BPSK/quaternary BOPPM (Q-BOPPM) IR-
UWBoF system proposed in this work, even when the input to the systems consists of
a nonuniformly distributed binary data stream. To the best of our knowledge, there is
no similar approach reported in the literature for IR-UWBoF systems. To further support
this, Table 1 summarizes the main characteristics of previous art dealing with IR-UWBoF
systems that report simulated or measured PSDs relevant to this work.

Table 1. Previous art of IR-UWB over fiber systems.

Ref Type of
Study

Data
Rate

(Gbps)

Optical
Channel

(km)

Wireless
Channel

(cm)

IR-UWB
Modulation

Scheme

Channel
Coding

Spectral
Line-Free PSD

[33] Analytical
Simulation 1.0/5.0 SMF

(60/120) 0 BPSK/OOK FEC NO

[34] Analytical
Simulation 2.0 GI-MMF (1) 0 OOK, PPM,

PSM NO NO

[35] Analytical
Experimental No reported No reported 10, 20, 30 No reported NO NO

[36] Simulation 2.0 SMF (10) 0 OOK NO NO

[37] Simulation 1.0/0.5 SMF +
SOA (160) 0 OOK/PPM NO NO

[38] Analytical
Simulation 1.25 SMF (60) 40 OOK NO NO

[39] Analytical
Experimental 0.004 SMF (30) 0 16-PPM CC NO

[40] Analytical
Experimental 1.0 SMF (30) 0 BPPM, BPSK,

Q-BOPPM CC YES
SLF-CC

[42] Experimental 1.0 SMF (23) 40 OOK NO NO

[44] Experimental 1.25 NZDSF (20) 35 OOK NO NO

[45] Experimental 2.5 SMF (59.2) 0 OOK LPDC NO

[46] Experimental 2.0 NZDSF (20) 800 OOK NO NO

[47] Experimental 0.625 SMF (20) 10 OOK/BPSK NO NO

[48] Experimental 1.25 SMF (25) 45 OOK NO NO

[49] Experimental 3.125 SMF (25) +
IDF (25) 310 OOK NO NO

[50] Analytical
Experimental 0.625 SMF (20) 1,5,10,20 OOK, BPSK,

PSM, PAM NO NO

[52] Experimental 1.0 SMF (20) 5 OOK, BPSK NO NO

SMF: Single-Mode fiber; GI-MMF: Graded Index Multimode Fiber; NZDSF: Nonzero dispersion shifted fiber;
IDF: inverse dispersion fiber; SOA: Semiconductor Optical Amplifier; OOK: On-Off Keying; PPM: Pulse Position
Modulation; BPSK: Binary Phase-Shift Keying; PAM: Pulse Amplitude Modulation; PSM: Pulse Shape Modulation;
Q-BOPPM: Quaternary Biorthogonal PPM; FEC: Forward Error Correction Code; CC: Convolutional Codes; LPDC:
Low-Density Parity-Check Code.

The rest of the paper is structured as follows. Section 2 presents the methodology,
system model and experimental setup of the optical-wireless SLF IR-UWBoF system in-
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troduced in this work. The Results and Discussion are presented in Section 3. Finally,
conclusions are provided in Section 4.

2. Materials and Methods

Several optical implementations for transmitting UWB signals over optical fiber links
have been reported in the literature [32–52]. Nevertheless, Impulse Radio (IR)-UWBoF
systems that use the Intensity Modulation with Direct Detection (IM/DD) technique have
become relevant because they can be directly implemented in optical communication sys-
tems (OCS) and widely deployed [53]. Furthermore, recently IR-UWBoF-IM/DD systems
have been successfully integrated into Wavelength Division Multiplexing (WDM)-Passive
Optical Networks (PONs), demonstrating their applicability for next-generation optical
networks [33,38,41–43,47,51]. Considering the latter, the system proposed in this work uses
a Radio over Fiber (RoF) architecture based on the IM/DD technique to transmit optical
UWB signals [54].

2.1. Experimental Methodology

Prior to introducing the system model proposed in this work, this section provides
a brief overview of the methodology followed when performing the experiments. As
shown in Figure 1, the IR-UWBoF testbed was implemented by first generating an electrical
IR-UWB signal by means of MATLAB® and the Arbitrary Waveform Generator (AWG), and
then performing electrical to optical conversion. This approach allowed us to implement
different IR-UWB modulation schemes in a consistent way, as possible variations caused by
the physical implementation of particular pulse generators and modulators were minimized
(e.g., variations caused by tolerances of electronic components). Once the electrical IR-UWB
signal was generated, it was transmitted first through the optical link and then through
the wireless link. The same optical and electronic components were used in the testbed for
all performed experiments. This way, we are able to perform a fair comparison between
PSDs generated by different modulation schemes used in IR-UWBoF systems, as all IR-
UWB signals in the implemented testbed were generated and transmitted using the same
hardware.
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Figure 1. Optical-Wireless IR-UWBoF testbed.

In the following subsection, we provide a detailed description of the optical-wireless
SLF IR-UWBoF system model introduced in this work.

2.2. System Model

The system model proposed in this paper is presented in Figure 2. It consists of an
IR-UWB transmitter and an IM/DD RoF architecture. This optical configuration consists of
a Continuous Wave (CW) Laser, an External Intensity Modulator (EIM), several kilometers
of single-mode fiber, and a PIN-type photodetector. The CW and EIM are used to carry out
an electrical to optical conversion process (E/O), and the PIN photodetector is used as an
optical to electrical (O/E) converter. Once the electrical signal is obtained at the IM/DD RoF
architecture output, this signal is sent to a preamplification stage to compensate for power
losses originating from electrical to optical and optical to electrical domain conversions
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and optical fiber attenuation. Then, the UWB signal is filtered and transmitted through a
wireless channel by using a power amplifier connected to a commercial UWB antenna. The
wireless signal reaches an IR-UWB receiver, where the received signal is demodulated and
decoded to obtain the transmitted information. The mathematical model of the previously
mentioned elements is explained next.
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2.2.1. IR-UWB Transmitter Model

The system model for the IR-UWB transmitter is shown in Figure 3. It is assumed
that the binary data source (BDS) generates a data stream, yl , consisting of independent
identically distributed (iid) bits with the following probability mass function (pmf), [40]:

P[yl = 0] = p0, P[yl = 1] = 1− p0 = p1 (1)

where 0 ≤ p0 ≤ 1. It is important to mention that yl is considered to be a perfectly random
binary data stream when p0 = 1/2. However, as indicated in [50], this condition is hard to
achieve in practical systems.
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The binary data stream, yl , is fed to a rate 1/2 spectral line-free (SLF) convolutional
encoder (CE) such as those proposed in [25]. Thus, for the l-th information bit, yl , two
binary outputs, z(1)l and z(2)l , are generated by the convolutional encoder. The feedforward
and feedback polynomials of the encoder are (27,31)8 and (23)8, respectively. Figure 4 shows
the diagram of the SLF-CE used in this work. Equation (2) presents the mathematical model
for the SLF convolutionally coded signal at the output of the BPSK IR-UWB modulator, [40]:

xin(t) = ∑
l

{
(2z(1)l − 1)w(t− (2l − 1)Tr) + (2z(2)l − 1)w(t− (2l)Tr)

}
(2)

For SLF convolutionally coded Q-BOPPM IR-UWB signals, the mathematical expression at
the modulator output can be represented as shown in Equation (3), [40]:

xin(t) = ∑
l
(2z(1)l − 1)w(t− lTr − z(2)l Tβ) (3)



Electronics 2022, 11, 3496 6 of 16

For both, Equation (2) and Equation (3), l is the index of the binary data stream, yl ; xin(t)
is the IR-UWB transmitted signal; w(t) represents the pulse shape used; z(1)l and z(2)l are
the SLF-CE outputs; Tr is the mean repetition time between pulses; and Tβ is the PPM
modulation index.

Note that when our proposed system uses a BPSK modulator, two UWB pulses are
generated to transmit the equivalent of one information bit. In contrast, when using Q-
BOPPM, just one UWB pulse is required to transmit one information bit. Thus, the SLF
convolutionally coded BPSK IR-UWBoF system only provides one-half of the data rate
offered by the SLF convolutionally coded Q-BOPPM IR-UWB system. As demonstrated
in [25], the statistics of the outputs, z(1)l and z(2)l , are such that when used to drive the
BPSK or Q-BOPPM IR-UWB modulators, the generated PSDs will not show any spectral
lines, even when the binary data stream, yl , has a pmf with p0 6= 1/2. However, these
capabilities have not been fully demonstrated in UWB transmissions over an optical fiber
link concatenated with a wireless channel transmission.
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2.2.2. Optical Transmitter Model

The intensity modulation with direct detection (IM/DD) radio over fiber (RoF) archi-
tecture proposed in this work can be divided into three blocks: electrical to optical (E/O)
conversion module, optical channel, and optical to electrical (O/E) conversion module.
The mathematical model of the E/O conversion module considers the modulation of a
continuous wave (CW) Laser by using an External Intensity Modulator (EIM) based on a
balanced arms Mach Zehnder Modulator (MZM). The optical power at the output of this
E/O-EIM module is given in Equation (4) as follows, [55],

xin−opt(t) =
Pout−laser

2

{
1± sin

(
πVRF(t)

2Vπ

)}
(4)

where xin−opt(t) is the optical signal generated by the E/O-EIM module; VRF(t) is the
electrical signal provided by the IR-UWB transmitter; Pout−laser(t) is the optical power of
a CW Laser; and Vπ(t) is the half-wave voltage of the MZM transfer function. This Vπ(t)
induces a 180◦ phase change of the optical beam traveling in one arm of MZM [54–56]. It is
well known that a sine transfer function can present high or low nonlinearity dependent
on the operation voltage. Specifically, bias voltages determine the degree of nonlinearity or
linearity of the MZM transfer function. For Microwave Photonics Modulations, biasing an
MZM in its linear region such as quadrature (QUAD) bias points (−Vπ/2,+Vπ/2) allows
transmission of RF broadband signals with multioctave bandwidth [56]. Therefore, care
must be taken to maintain and control the MZM bias point for a specific application.
Furthermore, it is important to mention that Equation (4) considers a limitless MZM
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bandwidth operating in the QUAD point of its transfer function (±Vπ/2). Thus, nonlinear
effects produced by the electrical to optical process are not considered.

The optical channel is formed by several kilometers of standard single-mode fiber
(SMF). This optical fiber is usually modeled as shown in Equation (5), [55]:

HSMF( f ) = exp
(

j
λ2D

c
f 2L
)
× exp

(
−

αopt−att

2
L
)

(5)

where D is the chromatic dispersion parameter; L is the length of the SMF; λ is the wave-
length of the optical carrier; c is the speed of light in a vacuum; and αopt−att is the attenuation
coefficient of the optical fiber. The signal at the optical channel output, xout−opt(t), can be
represented by Equation (6), [40]:

xout−opt(t) = xin−opt(t) ∗ hSMF(t) (6)

where hSMF(t) is the time response of SMF and “∗” is the convolution operator. It is worth
mentioning that the nonlinear effects of the waveguide are neglected in this fiber model.

Finally, the electrical signal at the optical-to-electric conversion module output, xout,
can be modeled by a PIN-type photodetector without frequency limitations. Equation (7)
mathematically models this stage as follows:

xout(t) = i(t) = <× xout−opt(t) (7)

where < is the responsivity of a typical PIN photodetector.

2.2.3. Wireless Transmission Model

The EIM/DD RoF architecture provides an attenuated electrical signal due to power
losses in conversion modules and SMF transmission. Therefore, this signal must be pream-
plified, filtered and amplified using a power amplifier before being injected into a UWB
antenna. Thus, the wirelessly transmitted UWB signal can be mathematically modelled as
follows:

xwTx(t) = xout(t) ∗ a f a(t) (8)

where xwTx(t) is the transmitted wireless UWB signal; xout(t) is the electrical signal given by
the RoF architecture; and a f a(t) are time responses of electrical modules such as amplifiers,
high pass filters and UWB antenna. On the other hand, the received wireless UWB signal,
xwRx(t), can be modelled as provided in Equation (9):

xwRx(t) = xwTx(t) ∗ hw(t) (9)

where hw(t) is the time response of a line of sight (LOS) wireless channel.

2.3. Optical-Wireless SLF IR-UWBoF Testbed Implementation

The setup diagram of the proposed SLF IR-UWBoF-EIM/DD system and the testbed
implementation are shown in Figure 5; Figure 6, respectively. Next, we provide a descrip-
tion of the hardware used to deploy the testbed.



Electronics 2022, 11, 3496 8 of 16Electronics 2022, 11, x FOR PEER REVIEW 8 of 16 
 

 

 
Figure 5. Setup diagram of the optical-wireless SLF IR-UWBoF IM/DD system. SLF: Spectral Line-
Free; UWBoF: Ultra-Wideband over fiber; IM: Intensity Modulation; DD: Direct Detection; SMF: 
Single Mode Fiber; PMF: Polarization-maintaining optical fiber; DFB: Distributed-Feedback Laser; 
MZM: Mach Zehnder Modulator; MBC: Modulator Bias Controller; OMD: Optical Modulator 
Driver; HPF: High Pass Filter. 

 
Figure 6. Experimental implementation of the optical-wireless SLF IR-UWBoF-EIM/DD system. 

2.3.1. Electrical IR-UWB Signal Generation 
First, the IR-UWB signals with different modulation schemes were generated in 

MATLAB®. Next, they were loaded into a 9.6 GHz bandwidth arbitrary waveform gener-
ator (AWG-7122C from Tektronix). At the output of the AWG (see Test Point A in Figure 
5), a 12 GHz electrical modulator driver was connected. This driver was used to match the 
AWG and the electro-optic modulator impedance.  

2.3.2. Optical IR-UWB Transmission Implementation 
The electrically generated IR-UWB signals modulate the output beam of a 1550 nm 

Continuous Wave (CW) Distributed Feedback (DFB) laser using an external Dual-parallel 
Mach Zehnder Modulator (DP-MZM) with 20 GHz electro-optic bandwidth. The optical 
links were SMF-28 reels of 20 km and 30 km. The IR-UWB signals were electrically recov-
ered at the optical fiber output through a UWB photoreceiver. Then the electrical signals 
were fed to the wireless testbed implementation. 

2.3.3. Wireless Testbed Implementation 
To compensate for power losses originating from SMF transmission, electrical to op-

tical and optical to electrical conversion processes, a 14 GHz bandwidth amplifier with 22 
dB of gain was connected at the photoreceiver output. The amplified signal was then fil-
tered using a UWB high pass filter (HPF). 

Figure 5. Setup diagram of the optical-wireless SLF IR-UWBoF IM/DD system. SLF: Spectral Line-
Free; UWBoF: Ultra-Wideband over fiber; IM: Intensity Modulation; DD: Direct Detection; SMF:
Single Mode Fiber; PMF: Polarization-maintaining optical fiber; DFB: Distributed-Feedback Laser;
MZM: Mach Zehnder Modulator; MBC: Modulator Bias Controller; OMD: Optical Modulator Driver;
HPF: High Pass Filter.

Electronics 2022, 11, x FOR PEER REVIEW 8 of 16 
 

 

 
Figure 5. Setup diagram of the optical-wireless SLF IR-UWBoF IM/DD system. SLF: Spectral Line-
Free; UWBoF: Ultra-Wideband over fiber; IM: Intensity Modulation; DD: Direct Detection; SMF: 
Single Mode Fiber; PMF: Polarization-maintaining optical fiber; DFB: Distributed-Feedback Laser; 
MZM: Mach Zehnder Modulator; MBC: Modulator Bias Controller; OMD: Optical Modulator 
Driver; HPF: High Pass Filter. 

 
Figure 6. Experimental implementation of the optical-wireless SLF IR-UWBoF-EIM/DD system. 

2.3.1. Electrical IR-UWB Signal Generation 
First, the IR-UWB signals with different modulation schemes were generated in 

MATLAB®. Next, they were loaded into a 9.6 GHz bandwidth arbitrary waveform gener-
ator (AWG-7122C from Tektronix). At the output of the AWG (see Test Point A in Figure 
5), a 12 GHz electrical modulator driver was connected. This driver was used to match the 
AWG and the electro-optic modulator impedance.  

2.3.2. Optical IR-UWB Transmission Implementation 
The electrically generated IR-UWB signals modulate the output beam of a 1550 nm 

Continuous Wave (CW) Distributed Feedback (DFB) laser using an external Dual-parallel 
Mach Zehnder Modulator (DP-MZM) with 20 GHz electro-optic bandwidth. The optical 
links were SMF-28 reels of 20 km and 30 km. The IR-UWB signals were electrically recov-
ered at the optical fiber output through a UWB photoreceiver. Then the electrical signals 
were fed to the wireless testbed implementation. 

2.3.3. Wireless Testbed Implementation 
To compensate for power losses originating from SMF transmission, electrical to op-

tical and optical to electrical conversion processes, a 14 GHz bandwidth amplifier with 22 
dB of gain was connected at the photoreceiver output. The amplified signal was then fil-
tered using a UWB high pass filter (HPF). 

Figure 6. Experimental implementation of the optical-wireless SLF IR-UWBoF-EIM/DD system.

2.3.1. Electrical IR-UWB Signal Generation

First, the IR-UWB signals with different modulation schemes were generated in
MATLAB®. Next, they were loaded into a 9.6 GHz bandwidth arbitrary waveform genera-
tor (AWG-7122C from Tektronix). At the output of the AWG (see Test Point A in Figure 5),
a 12 GHz electrical modulator driver was connected. This driver was used to match the
AWG and the electro-optic modulator impedance.

2.3.2. Optical IR-UWB Transmission Implementation

The electrically generated IR-UWB signals modulate the output beam of a 1550 nm
Continuous Wave (CW) Distributed Feedback (DFB) laser using an external Dual-parallel
Mach Zehnder Modulator (DP-MZM) with 20 GHz electro-optic bandwidth. The optical
links were SMF-28 reels of 20 km and 30 km. The IR-UWB signals were electrically recovered
at the optical fiber output through a UWB photoreceiver. Then the electrical signals were
fed to the wireless testbed implementation.

2.3.3. Wireless Testbed Implementation

To compensate for power losses originating from SMF transmission, electrical to
optical and optical to electrical conversion processes, a 14 GHz bandwidth amplifier with
22 dB of gain was connected at the photoreceiver output. The amplified signal was then
filtered using a UWB high pass filter (HPF).
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The signal delivered by the UWB HPF was amplified using a 30 dB gain power
amplifier and transmitted through UWB antennas. In our experimental evaluations, the
transmit and receive antennas were separated by 20 cm. This separation was enough to
evaluate the spectral line suppression capabilities of the proposed system.

The hardware used for wireless transmission consisted of a 12 GHz amplifier with 30
dB gain, and two low-complexity monopole UWB antennas [57]. The Scattering parameters,
S11 and S21, of these electronic components were obtained by using a Vector Network
Analyzer (VNA). For electrical amplifiers (with port 1 as the input and port 2 as the output),
S11 is the input port voltage reflection coefficient describing the level of input-impedance
matching, while S21 is the forward voltage gain and describes the frequency response. On
the other hand, S21 for UWB antennas port 1 (input) and port 2 (output) are the transmitter
and receiver antennas, respectively. The antenna parameters also include the propagation
impairments of the wireless channel, which in the experimental setup is set to be a Line of
Sight (LOS) channel to obtain a frequency response reference.

Figure 7 shows the S11 and S21 scattering parameters of the electrical power amplifier.
Figure 7a.1 presents the magnitude of S11. It is of particular interest that in the frequency
interval from 50 MHz to 7.8 GHz, the magnitude value is below −13 dB. It is well known
that when S11 is smaller than −13 dB, the impact from the reflections on the transmitted
signal is negligible. On the other hand, the magnitude of the transmission parameter,
S21, is presented in Figure 7a.2. This magnitude plot shows variations below 3 dB in the
measured frequency band. Furthermore, it can be seen in Figure 7b.1 and 7b.2 that the
power amplifier has a linear phase for both parameters. Therefore, signal distortion is not
expected at the output of this electronic device.
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Figure 8 shows the S11 parameter (magnitude and phase) of low-cost monopole
commercial UWB antennas used in our setup. Figure 8a shows the S11 magnitude plot,
which is below −13 dB in the frequency interval from 3.3 GHz to 9 GHz. However, in
the same interval, there are nonlinearities in the phase (see Figure 8b). Therefore, signal
distortion would be expected when UWB signals are transmitted by using these antennas.
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The above is also supported in the UWB antenna datasheet, where the manufacturer
provides measurement plots showing that radiation pattern shape depends on frequency
and antenna position (see reference 4 from [57]). For example, signals transmitted at 2.5 GHz
and 4 GHz exhibit a classic toroidal radiation pattern. On the other hand, the antenna
radiation pattern has a butterfly wing shape when 6 GHz or 8 GHz signals are transmitted.
It is worth mentioning that the proposed SLF IR-UWBoF-EIM/DD system generates UWB
signals that occupy large bandwidths between 3.1 GHz and 9 GHz. Therefore, knowing
the frequency response of the wireless transmission setup link would be convenient for
designing and testing our proposed system with an aggressive antenna setup configuration
in the LOS scenario. Figure 9 presents the UWB positions considered in our tests: front-to-
front, back-to-back, side-to-side and front-to-side.
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The S21 (magnitude and phase) parameter of the Line of Sight (LOS) 20 cm wireless
link is presented in Figure 10. Figure 10a–d show the normalized magnitude for front to
front, back-to-back, side-to-side, and front-to-side UWB antenna setups, respectively.

Analyzing the plots, we find that the front-to-front and back-to-back configurations
provide a reduced bandwidth with notorious phase distortion. This bandwidth reduction
and nonlinearities in the phase could have a significant impact on the UWB signals provided
by the optical part.
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2.3.4. PSD Measurement Hardware

To measure the PSD of the IR-UWB signals transmitted through the concatenated
optical-wireless links, the output of the receiving antenna (Test Point C in Figure 5) was
connected to a 13 GHz real-time digital signal analyzer with 50 GSa/s and a 30 GHz
electrical spectrum analyzer (ESA). The ESA resolution bandwidth (RBW) was set to 1 MHz
to meet the criteria in [58]. Both instruments were used for digitizing and storing time and
frequency domain IR-UWB signals. Using this setup, we were able to obtain the PSD plots
introduced in Section 3.

It is worth mentioning that additional instruments were used in our setup to ensure
stable operation during extended work periods. For example, the bias drift phenomena,
caused by thermal effects, cause the transfer function of the MZM to drift over time and
change the optimum bias point setting, [56]. Therefore, a Mach–Zehnder Modulator Bias
Controller (MBC) was used to maintain the MZM bias voltages at the QUAD operational
point of its transfer function. As previously mentioned, biasing an MZM in its QUAD bias
point enables an electrical-to-optical conversion process with minimum nonlinear effects
(e.g., signal distortion) on the output signal.

3. Results and Discussion

This section introduces power spectral density (PSD) measurements obtained from
the proposed SLF convolutionally coded BPSK/Q-BOPPM IR-UWBoF-IM/DD systems.
PSD measurements of traditional noncoded BPSK IR-UWBoF systems are also reported for
comparative purposes.
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The signal parameters used to evaluate SLF convolutionally coded BPSK/Q-BOPPM
IR-UWBoF-IM/DD systems are as follows: Tr = 1 ns, Tβ = 0.5 ns, and w(t) = 5th
derivative of a Gaussian pulse with pulse duration Tw ≈ 0.5 ns. For each PSD measurement,
a data stream, yl , consisting of 10,000 bits, was generated in MATLAB® using the method
reported in [31].

Measurements were made considering two probability distributions for the data
stream, one with p0 = 1/5 and another with p0 = 2/5. For the case of the noncoded
IR-UWB systems, the data stream, yl , is used to drive the BPSK UWB modulator. It is
worth mentioning that a maximum data rate of 1 Gbps can be achieved with the SLF
convolutionally coded Q-BOPPM IR-UWB-IM/DD system, whereas a maximum data rate
of 500 Mbps can be achieved with the SLF convolutionally coded BPSK IR-UWB system.
Once coded and noncoded IR-UWB signals were generated in MATLAB®, they were loaded
into the AWG7122C to generate the corresponding electrical signal. It is important to note
that the amplitude of the base pulse and the pulse generation rate was the same for all
experiments, i.e., all transmitted signals had the same transmit power.

Figure 11 shows measured PSDs of noncoded and SLF convolutionally coded IR-UWB
signals that follow Equations (2) and (3). These signals were measured at Test Point B (TPB)
in Figure 5. The light blue plots in Figure 11 correspond to the measured PSD of signals
where the data stream has a pmf with p0 = 1/5. The dark blue plots correspond to the
measured PSD of signals where the data stream has a pmf with p0 = 2/5. The dotted red
line indicates the FCC UWB spectral mask limits for indoor communications. As shown in
Figure 11a.1–a.3, the noncoded BPSK signals (labelled NC-BPSK in the figure) exhibit solid
spectral lines (SSLs) in the PSD. These spectral lines are observed because the data stream
used to generate the UWB signal is not perfectly random (p0 6= 1/2), as is the case in most
practical cases.
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Figure 11. Measured PSDs of signals generated by: (a) the noncoded -BPSK IR-UWBoF-EIM/DD
system (first row labelled as NC-BPSK—plots a.1, a.2, and a.3); (b) the SLF convolutionally coded
BPSK IR-UWBoF-EIM/DD system (second row labelled as C-BPSK—plots b.1, b.2, and b.3); and
(c) the SLF convolutionally coded Q-BOPPM IR-UWBoF-EIM/DD system (third row labelled as
C-Q-BOPPM—plots c.1, c.2, and c.3). The PSDs were obtained at Test Point B, pointed out in Figure 5,
after 0 km (first column—plots a.1, b.1, and c.1), 20 km (second column—plots a.2, b.2, and c.2) and
30 km (third column—plots a.3, b.3, and c.3) of SMF.

In contrast, PSDs of SLF convolutionally coded IR-UWB signals (labelled as C-BPSK
and C-Q-BOPMM in the figure) shown in Figure 11b.1–b.3,c.1–c.3, do not show solid spec-
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tral lines. These results agree with those reported in [40], where a spectral line suppression
condition is fulfilled over 30 km SMF transmission. It is important to mention that the
spectral line observed near 10 GHz comes from nonlinearities of the AWG. This spectral
line could be attenuated using a notch filter.

The proposed SLF convolutionally coded IR-UWBoF-IM/DD system was also eval-
uated over a concatenated channel formed by 20 km and 30 km SMF reels and a 20 cm
wireless link. The PSDs measured at the receiver stage, corresponding to test point C in
Figure 5, are shown in Figure 12. We can observe that for the noncoded BPSK system, the
SSLs are kept in the PSDs measured after wireless transmission.

For the convolutionally coded signals (labelled as C-BPSK and C-QBOPPM in Fig-
ure 12) the measured PSDs do not show significant spectral lines after wireless transmission.
These results demonstrate that the SLF condition is held by our proposed SLF convo-
lutionally coded IR-UWBoF-IM/DD scheme in concatenated optical-wireless channels.
Furthermore, it can be seen in Figure 12 that for the coded systems, the transmit power
can be increased by at least 8 dB without exceeding the spectral mask limits, which would
further improve the bit error rate (BER) performance. By comparing Figures 11 and 12, it
can be observed that a bandwidth reduction in the measured PSDs occurs after wireless
transmission. This is caused by the limited frequency response of the commercial high
pass filters and UWB antennas used in the experimental setup. Although these electronic
devices do not generate spectral lines, the UWB pulse broadening in the time domain could
reduce the maximum data rate achievable by the system.

Electronics 2022, 11, x FOR PEER REVIEW 13 of 16 
 

 

Figure 5, are shown in Figure 12. We can observe that for the noncoded BPSK system, the 
SSLs are kept in the PSDs measured after wireless transmission.  

For the convolutionally coded signals (labelled as C-BPSK and C-QBOPPM in Figure 
12) the measured PSDs do not show significant spectral lines after wireless transmission. 
These results demonstrate that the SLF condition is held by our proposed SLF convolu-
tionally coded IR-UWBoF-IM/DD scheme in concatenated optical-wireless channels. Fur-
thermore, it can be seen in Figure 12 that for the coded systems, the transmit power can 
be increased by at least 8 dB without exceeding the spectral mask limits, which would 
further improve the bit error rate (BER) performance. By comparing Figures 11 and 12, it 
can be observed that a bandwidth reduction in the measured PSDs occurs after wireless 
transmission. This is caused by the limited frequency response of the commercial high 
pass filters and UWB antennas used in the experimental setup. Although these electronic 
devices do not generate spectral lines, the UWB pulse broadening in the time domain 
could reduce the maximum data rate achievable by the system.  

 
Figure 12. Measured PSDs of signals generated by: (a) the noncoded -BPSK IR-UWBoF-EIM/DD 
system (first row labelled as NC-BPSK—plots a.1, a.2 and a.3); (b) the SLF convolutionally coded 
BPSK IR-UWBoF-EIM/DD system (second row labelled as C-BPSK—plots b.1, b.2 and b.3); and (c) 
the SLF convolutionally coded Q-BOPPM IR-UWBoF-EIM/DD system (third row labelled as C-Q-
BOPPM—plots c.1, c.2 and c.3) . The PSDs were obtained at Test Point C, pointed out in Figure 5, 
after 0 km (first column—plots a.1, b.1 and c.1), 20 km (second column—plots a.2, b.2 and c.2) and 
30 km (third column—plots a.3, b.3 and c.3) of SMF and wireless transmission. 

4. Conclusions 
The spectral line suppression capabilities of the proposed SLF convolutionally coded 

BPSK/Q-BOPPM IR-UWBoF-EIM/DD systems were thoroughly evaluated over optical 
and wireless channels. The results reported in Section 3 confirm that the proposed system 
can provide spectral line-free (SLF) PSDs over concatenated channels, even when nonu-
niformly distributed binary data streams are transmitted.  

Note in Figure 12 that the PSD maximum for the proposed SLF convolutionally coded 
BPSK/Q-BOPPM IR-UWBoF-EIM/DD systems is at least 10 dB below the PSD maximum 
observed for the noncoded system. Therefore, the transmit power of the system proposed 
in this work could be significantly increased while still maintaining spectral mask com-
pliance. This would improve the transmission range and BER performance of the pro-
posed system compared with the conventional noncoded system, even before considering 
any possible coding gain provided by the convolutional code. Detailed analysis of BER 

Figure 12. Measured PSDs of signals generated by: (a) the noncoded -BPSK IR-UWBoF-EIM/DD
system (first row labelled as NC-BPSK—plots a.1, a.2 and a.3); (b) the SLF convolutionally coded
BPSK IR-UWBoF-EIM/DD system (second row labelled as C-BPSK—plots b.1, b.2 and b.3); and
(c) the SLF convolutionally coded Q-BOPPM IR-UWBoF-EIM/DD system (third row labelled as
C-Q-BOPPM—plots c.1, c.2 and c.3). The PSDs were obtained at Test Point C, pointed out in Figure 5,
after 0 km (first column—plots a.1, b.1 and c.1), 20 km (second column—plots a.2, b.2 and c.2) and
30 km (third column—plots a.3, b.3 and c.3) of SMF and wireless transmission.

4. Conclusions

The spectral line suppression capabilities of the proposed SLF convolutionally coded
BPSK/Q-BOPPM IR-UWBoF-EIM/DD systems were thoroughly evaluated over optical and
wireless channels. The results reported in Section 3 confirm that the proposed system can



Electronics 2022, 11, 3496 14 of 16

provide spectral line-free (SLF) PSDs over concatenated channels, even when nonuniformly
distributed binary data streams are transmitted.

Note in Figure 12 that the PSD maximum for the proposed SLF convolutionally
coded BPSK/Q-BOPPM IR-UWBoF-EIM/DD systems is at least 10 dB below the PSD
maximum observed for the noncoded system. Therefore, the transmit power of the system
proposed in this work could be significantly increased while still maintaining spectral
mask compliance. This would improve the transmission range and BER performance
of the proposed system compared with the conventional noncoded system, even before
considering any possible coding gain provided by the convolutional code. Detailed analysis
of BER performance improvements achieved with the proposed SLF convolutionally coded
BPSK/Q-BOPPM IR-UWBoF-EIM/DD systems compared to traditional BPSK/Q-BOPPM
IR-UWBoF implementations will be addressed in future work.

Finally, we would like to mention that the reported systems could be used to inter-
connect IR-UWB WSN deployments separated by several tens of meters, even kilometers.
They could also be integrated into next generation networks such as WDM-PON systems
to offer wireless services within the Internet of Things and smart cities paradigms.
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