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Abstract: Electric vehicles (EV) are promising alternate fuel technologies to curtail vehicular emissions.
A modeling framework in a hybrid electric vehicle system with a joint analysis of EV in powering
and regenerative braking mode is introduced. Bidirectional DC–DC converters (BDC) are important
for widespread voltage matching and effective for recovery of feedback energy. BDC connects the
first voltage source (FVS) and second voltage source (SVS), and a DC-bus voltage at various levels is
implemented. The main objectives of this work are coordinated control of the DC energy sources of
various voltage levels, independent power flow between both the energy sources, and regulation
of current flow from the DC-bus to the voltage sources. Optimization of the feedback control in the
converter circuit of HEV is designed using an artificial neural network (ANN). Applicability of the EV
in bidirectional power flow management is demonstrated. Furthermore, the dual-source low-voltage
buck/boost mode enables independent power flow management between the two sources—FVS
and SVS. In both modes of operation of the converter, drive performance with an ANN is compared
with a conventional proportional–integral control. Simulations executed in MATLAB/Simulink
demonstrate low steady-state error, peak overshoot, and settling time with the ANN controller.

Keywords: hybrid electric vehicle (HEV); two battery sources; bidirectional DC/DC converter;
artificial neural network; internal combustion engine (ICE)

1. Introduction

Nowadays, transportation systems play a crucial role in the entire world. The majority
are automobiles with internal combustion engines (ICE). Using ICEs has resulted in acute is-
sues including air pollution, global warming, and rapid depletion of the world’s petroleum
resources [1]. The three types of vehicles suggested to replace conventional cars with ICE
are fuel cell vehicles (FCV) [2], electric vehicles (EV) [3] and hybrid electric vehicles (HEV).
The performance of fuel cell and electric vehicles falls well short of what is required. As
a result, the focus of advanced vehicle technology development has shifted to HEVs [4].
A hybrid vehicle has two or more forms of energy stored on board: one is a specific type
of gasoline is used as fuel in a conventional hybrid electric car. The other is an electrical
storage device that can be used in both directions. There are various methods to minimize
fuel consumption in hybrid electric vehicles [5]. By utilizing an energy storage system, hy-
brid electric vehicles can reduce fuel consumption in a variety of ways, including collecting
energy during braking, downsizing the engine, operating the engine more effectively, and
turning off the engine when it is not in use [6]. Regenerative braking is used in advanced
HEVs to convert the vehicle’s kinetic energy into electric energy rather than dissipating
it as heat energy as per standard brakes [7]. A few HEVs [8] produce energy by spinning
an electrical generator (also called a motor–generator), which is then used to charge their
batteries or directly power the electric drive motors. A hybrid electric car produces fewer
emissions from its ICE than a gasoline car of comparable size, further improving fuel
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economy. Moreover, it contains a component with a high energy density, such as a super
capacitor (SC), which avoids peak energy transience during acceleration and regenerative
braking systems [9]. SCs may store and release regenerative energy during deceleration
and acceleration, producing extra power. Figure 1 shows a basic block diagram for a hybrid
electric vehicle (HEV) power system.
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Power conversion efficiency is required by modern electronic equipment that operates
at lower voltages and higher currents. Power converters are a cost-effective way to obtain
a regulated voltage from a standard power source. Grid-connected power converters are
popular for providing uninterrupted power and improved power quality [10]. A DC–DC
converter using two back-to-back boost converters for bidirectional power flow in DC and
hybrid microgrids are presented in [11]. In [12] Yongseok Choi et al. (2007) looked at the
problem of energy conservation while taking into account the DC–DC converter’s power
consumption characteristics.

The main objective of the DC–DC converter is to adjust the output of the front-end
AC–DC converter and to charge the EV in the desired mode (CC or CV). The most common
DC–DC converter topologies include voltage-fed bridges; current-fed bridges; appropriate
combinations of these; and resonant converters [13,14]. The number of active switches,
and thereby device stress, is reduced in dual active voltage-fed full bridges in comparison
to voltage- and current-fed full-bridges. Unidirectional DC–DC converters were studied
in [15] for power decoupling between the fuel cell and DC-bus.

Considering the diverse vehicle driving settings, widespread voltage matching and
decoupling of real and reactive power are crucial. These can be effectively ensured with
the bidirectional DC–DC converter. Drawbacks in the operation of conventional BDCs
are reported in the literature [16,17] from different viewpoints, although this paper does
not aim to address them. Previous studies proposed several isolated and non-isolated
bidirectional topologies to improve dynamic performance, gain, efficiency, and operability
of BDCs for energy storage and renewable applications. In [18], a bidirectional DC–DC
converter for power decoupling in a distribution system with a PV system and electric
springs was investigated. A bidirectional DC–DC converter used to regulate the charging
current in a bidirectional EV charger is discussed in [19,20]. These operate with isolated and
non-isolated circuit arrangements. Another major benefit is reduction in volume, weight,
and cost of the charger. In this context, several topologies of bidirectional converters specif-
ically applied to electric vehicles have been investigated and reviewed [21]. A two-phase
interleaved bidirectional DC/DC converter was studied in [22]. A circuit configuration with
the aim of an increased voltage conversion ratio was proposed in [23]. In [24], a dual active
bridge bidirectional converter for enhanced power range for an ultracapacitor was designed.
A multi-port concept for a bidirectional power converter with a battery/supercapacitor
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was extensively simulated in [25]. A bidirectional DC/DC converter with dual-battery
energy storage for a hybrid electric vehicle system was developed in [26].

The main objectives of this work are coordinated control of the DC energy sources of
various voltage levels, independent power flow between both the energy sources, and reg-
ulation of current flow from the DC-bus to the voltage sources. This work aims to optimise
the converter control to investigate under diverse combinations of the voltage levels of the
sources, energy flow between the sources, modes of operation, and inductor currents.

Research by Kang et al. [27] on the charging system of a hybrid EV (HEV) detailed
the PI control methods for DC–DC converters to improve stability. A neural network
controller was employed to control the interleaved boost DC–DC converter associated with
a proton exchange membrane fuel cell in [28]. In [29], a neural network was implemented
in the energy management system in electric vehicles using ultra capacitors. Fuzzy neural
network PID control was developed in [30] in the pressure control of the EVs. In [31], Wang
et al. proposed a method using back propagation neural networks in estimation of the
state of health of the battery in electric vehicles. Reddy and Sudhakar et.al. [32] designed
an ANFIS-based controller in the EV drive train to extract maximum power from the fuel
cells. Wang et. al. [33] applied an adaptive sliding-mode control for current control in
the boost converters in EVs. Liu et al. [34] analysed the lithium-ion battery dynamics in a
multi-objective function framework.

In this paper, the objectives of the proposed bidirectional DC–DC converter and
its controller are regulation of the energy flow between voltage sources as well as the
mitigation of the ripples in inductor currents. The proposed solution deploys a neural
network controller to generate the required duty cycle. The advantage of a neural network
controller is its simplicity, with a limited number of tests required to construct it. Proposed
PWM allows minimizing the ripple of current for all voltage levels. This paper is organized
as follows: In Section 2, the architecture and operating modes of the dual converter are
elaborated on. The control technique of the converter is detailed in Section 3. In Section 4,
the validation of the proposed vehicle is projected with simulation results. Finally, a
comparison of PI and an ANN is presented in Section 5.

2. Architecture and Operating Modes

The illustration, VHB, VFVS, VSVS represents high-bus voltage, first voltage source
(FVS), and second voltage source (SVS), respectively. The FVS and SVS control loops were
turned on and off using two bidirectional power switches in this architecture. Voltage gain
between low-voltage sources VFVS and VSVS is developed using a pump capacitor (Ccp)
that separates the voltage with active switches (M1, M2, M3, M4) and two inductors (Lf, Ls).
Ccp reduces voltage stress across switches and thereby eliminates the need for an extremely
high duty ratio. As indicated in Figure 2, bidirectional switches (Sw, SFVS, SSVS) are MOS-
FETS connected in obverse direction. They enable the circuit’s four-quadrant functioning,
which allows the flow of power control between two low-voltage sources- VFVS and VSVS.
Additionally, they are responsible for the suppression of positive and negative voltages.
Table 1 describes the bidirectional concepts and operation modes of the circuit.

Table 1. Conduction status of devices for various operation modes.

Operation Modes Switches in ON Switches in OFF Control Switches Synchronous Rectifiers (SR)

Dual low-voltage sources powering
mode (Accelerating, x1 = 1, x2 = 1) SFVS,SSVS Sw M3,M4 M1,M2

DC-bus energy-regenerative mode at
high-voltage (Braking, x1 = 1, x2 = 1) SFVS,SSVS Sw M1,M2 M3,M4

Dual low-voltage sources buck mode
(FVS to SVS, x1 = 0, x2 = 0) SFVS,SSVS M1,M2,M4 Sw M3

Dual low-voltage sources boost
mode (FVS to SVS, x1 = 0, x2 = 0) SFVS,SSVS M1,M2,M4 M3 Sw
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Figure 2. Dual-battery energy storage in BDC architecture.

2.1. Dual Low-Voltage Sources Powering Mode

Switches (SFVS and SSVS) are turned ON. Dual low voltage sources (VFVS, VSVS)
provide energy to connected loads and the DC-bus, as shown in Figure 3a. M3 and M4
switches on the bottom side are controlled by active switching with a 180◦ phase shift
angular position, whereas M1 and M2 switches on the top side are synchronous rectifiers.

Four circuit stages are featured in Figure 4. Dual-sources low voltage powering mode
steady-state waveforms with a duty ratio greater than 50%, as illustrated in Figure 3b, and
the operation, can be stated briefly as follows.

(a) Stage 1 [t0 < t < t1]: Time period at this point is (1 − Dt)Ts. As shown in Figure 4a,
switches M1 and M3 are ON, whereas switches M2 and M4 are OFF. Voltage across the
first inductor Lf, which drops linearly from its original value, is represented by the
differential between the charge pump voltage, VCP and the lower side voltage , VFVS.
Voltage across the second inductor Ls charged by the energy source, VSVS increases
linearly. Characteristic equations in stage 1 in terms of voltage across the inductors Lf
and Ls are denoted by Equations (1) and (2):

L f
diL f

dt
= VSVS − VCP (1)

Ls
diLs
dt

= VSVS (2)

(b) Stage 2 [t1 < t < t2]: Time interval during this stage is (Dt − 0.5)Ts. M3 and M4 switches
are ON, while M1 and M2 switches are OFF as shown in Figure 4b. Lower side voltages,
VFVS, VSVS , are located between the first and second inductors. Inductor currents
increase linearly. Characteristic equations in stage 2 in terms of voltage across the
inductors Lf and Ls are denoted by Equations (3) and (4):

L f
diL f

dt
= VFVS (3)

Ls
diLs
dt

= VSVS (4)

(c) Stage 3 [t2 < t < t3]: The time interval at this stage is (1 − Dt)Ts. M1 and M3 switches
are off, while M2 and M4 switches are on, as shown in Figure 4c. Characteristic
equations in stage 3, in terms of voltage across the inductors Lf and Ls, are denoted by
Equations (5) and (6):

L f
diL f

dt
= VFVS (5)

Ls
diLs
dt

= VCP + VSVS − VHB (6)
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(d) Stage 4 [t3 < t < t4]: Time interval at this stage is (Dt − 0.5)Ts. M3 and M4 switches
are on, while the M1 and M2 switches are off, as shown in Figure 4d. Characteristic
equations in stage 4, in terms of voltage across the inductors Lf and Ls, are denoted by
Equations (7) and (8):

L f
diL f

dt
= VFVS (7)

Ls
diLs
dt

= VSVS (8)
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Figure 4. Circuit stages of BDC’s dual low-voltage sources powering mode.

2.2. Regenerative Mode at High Voltage

In regenerative mode, the motor’s kinetic energy is returned to the voltage sources. Re-
generation energy can be more than the battery’s storage capability, wherein the additional
energy will be used to charge the storage devices. On the higher side, active switching
regulates the current through the inductors, i.e., M3 and M4 switches with 180◦ phase
shift angle. However, the lower side switches- M1 and M2, act as synchronous rectifiers,
increasing the converter’s conversion performance. This can be observed in Figure 5a.
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Figure 5. (a) Schematic Diagram. (b) Waveforms of BDC’s DC-bus high voltage energy-regenerative mode.

The duty ratio of the energy-regenerating mode for DC-bus high-voltage steady-state
waveforms is less than 50%. Their four circuit stages are illustrated through Figure 6a–d.
The stage-wise operation is explained in detail below:

(a) Stage 1 [t0 < t < t1]: This stage is indicated in Figure 6a. Time interval is DtTs. Switches
M1 and M3 are turned on, whereas switches M2 and M4 are turned off. Voltage across
the main inductor, Lm, drops linearly from its original value. It is represented by the
differential between the charge pump voltage, VCP and the lower side voltage, VFVS.
An auxiliary inductor, La is charged by the energy source VAVS. Voltage across the
auxiliary inductor, La increases linearly. Voltage across the inductors Lf and Lm in
stage 1 is denoted by:

L f
diL f

dt
= VFVS − VCP (9)
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Ls
diLs
dt

= VSVS (10)

(b) Stage 2 [t1 < t < t2]: Time interval in this stage is (0.5 − Dt)Ts. M3 and M4 switches
are ON, while M1 and M2 switches are OFF, as shown in Figure 6b. Positive lower
side voltages VMVS and VAVS are located between the first and second inductors,
respectively. These inductor currents increase linearly. Under stage 2, the voltages
between the inductors Lf and Ls are indicated by:

L f
diL f

dt
= VFVS (11)

Ls
diLs
dt

= VSVS (12)

(c) Stage 3 [t2 < t < t3]: Time interval is DtTs at this stage. Switches M1 and M3 are off.
M2 and M4 switches are on, as shown in Figure 6c. The differential between the lower
side voltages VFVS and the charge pump voltages VCP indicates the voltage across the
main inductor Lf, and the lower side voltage VSVS. Its level is negative. Under stage 3,
the voltages across the inductors Lf and Ls are denoted by:

L f
diL f

dt
= VFVS (13)

Ls
diLs
dt

= VSVS + VCB − VHB (14)

(d) Stage 4 [t3 < t < t4]: Time interval at this stage is (0.5 − Dt)Ts. M3 and M4 switches are
on, while the M1 and M2 switches are off, as shown in Figure 6d. Under stage 4, the
voltage across the inductors Lf and Ls is denoted by:

L f
diL f

dt
= VFVS (15)

Ls
diLs
dt

= VSVS (16)
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2.3. Buck/Boost Mode with Dual Low Voltage Sources

In this mode, energy stored in the first voltage source is transferred energy to the
second voltage source and vice versa, as we can observe in Figure 7a.
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source. This depicts the circuit stages in buck mode of the planned BDC with dual low-

Figure 7. BDC’s dual low-voltage sources buck/boost mode. (a) Schematic Diagram. (b) Buck-mode
stable-state waveforms. (c) Boost-mode stable-state waveforms.

If the duty cycle of active switch Sw is controlled, as shown in Figure 8, it operates as a
buck converter. It is because power flows from first voltage source to second voltage source.
This depicts the circuit stages in buck mode of the planned BDC with dual low-voltage
sources. If the duty cycle of switch M3 is regulated, the converter will operate in boost
mode, as shown in Figure 9. It depicts the boost mode of the expected BDC circuit stages
for the dual low-voltage sources. In this mode, power transfers from the second voltage
source to the first voltage source.
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3. Converter Control 

Figure 10 shows the block diagram of the feedback-loop control technique, which 

comprises choosing a vehicle strategic level and mode of BDC to govern pulse width mod-

ulation switching schemes. Several operating modes of the BDC controller are depicted in 

Figure 8. (a) Stage 1 (b) Stage 2.
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3. Converter Control

Figure 10 shows the block diagram of the feedback-loop control technique, which
comprises choosing a vehicle strategic level and mode of BDC to govern pulse width
modulation switching schemes. Several operating modes of the BDC controller are depicted
in Figure 11. As indicated in the closed loop controller architecture, the vehicular key level
necessitates power demand (PDem), vehicle voltage, and power management units. They
serve as input signals to BDC mode selection. Overall results of the power management
units improve the utilization of voltage sources to meet the power train’s power demand,
satisfying the requirements of the driver. In Figure 10 inductor currents, iLm and iLa are
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calculated and then compared to the reference converter currents. In this mode of controller
operation, different driving states of power demand (PDem) and voltage sources (VFVS,
VSVS) are used to determine the vehicle condition. Then, using an artificial neural network,
appropriate current references- iLmRe f or iLaRe f are selected to control the power switches-
Sw, M1, M2, M3 and M4. Pulse width modulation (PWM) switching methods transform the
duty cycle into regulated gate signals for the active switches (Sw, M1, M4), and the BDC
controller’s switch selectors (S1, S2).
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Figure 11. Flowchart for the planned BDC’s multiple working modes.

iLmRe f is used to regulate the power flowing from 2 LV to HV or HV to 2 LV on dual
low and high DC-buses voltage sources, whereas iLaRe f is also used to regulate the power
flowing from the first to the second voltage source and vice versa (i.e., from VFVS to VSVS
or from VSVS to VFVS).

When the vehicle is in moving state (PDem > 0), the control loop s = 1 in the controller
iLm is activated, and it operates in two modes: accelerating and braking, as seen in the
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controlled switches in Table 1. If both conditions are not met, it returns to the reassign mode
to operate the very next perception of switching mode. Furthermore, while the vehicle is
in a halting condition (PDem < 0), the control loop s1 = 0 in the controller iLa will work in
two modes, buck and boost, as illustrated in the controlled switches in Table 1. Voltages
VFVS (96 V) and VSVS (48 V) are used to perceive mode change in this halting condition.
During boost mode, i.e., when VFVS is less than 96 V and iLaRe f > 0, power flows from
the VSVS to the VFVS. During buck mode, i.e., when VFVS is less than 46 V and iLaRe f < 0,
power flows from VFVS to the VSVS. If neither of these conditions is met, the system reverts
to the reassign mode, which is used to process the next perception of mode switching.
Figure 12a,b show the various steps in modeling of an ANN controller implemented in
this research work.
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4. Discussion

A simulation model is provided in Figure 2 to validate the feasibility and performance of
the BDC converter topology with dual battery. It was modelled in MATLAB/Simulink and the
system’s four operation modes are investigated. Table 2 contains the system parameters.

A traction motor was powered by both sources, which increased the two input voltages,
as shown in Figure 14. As a result, the DC-bus voltage VHB of 430 V was influenced by
both sources. Performance in powering mode is illustrated in Figures 13 and 14 with
performance in regenerative mode shown in Figure 15.
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Table 2. Parameters and ratings of the HEV system.

Parameters Ratings

Inductors Lf = Ls = 250 µH
High-side capacitor CHB = 1880 µF
Low-side capacitor CFVS = CSVS = 400 µF
Charge-pump capacitor CCP = 10 µF
ESR of inductance RLf = RLs = RL = 50 mΩ
ESR of capacitance RCB = 20 mΩ, RFVS = RSVS = 50 mΩ
Line resistance RFVS = 12 mΩ, RSVS = 6 mΩ
First voltage source FVS = 96 V
Second voltage source SVS = 40 V
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Figure 13 show the gate pulses delivered to switches M1, M2, M3, and M4, in powering
mode and regenerative mode, respectively. Inductor currents iLF and iLS are shown in
Figures 14 and 15, respectively. Figure 15 illustrates inductor current and output voltage in
DC-bus energy-regenerative mode at high voltage.

Power transfer from the DC-bus towards the main and auxiliary voltage sources is
shown in Figure 15. Input power flows in the opposite direction, as clearly postulated from
the inductor currents iLF and iLS. On the lower side output voltages, VFVS and VSVS were
about 96 V and 48 V, respectively.

Using dual low-voltage sources, simulated waveforms–gate signals, inductor currents
and output voltages during buck and boost modes are shown in Figures 16 and 17, re-
spectively. In Figure 16, the currents in the inductor are inverted from those in Figure 17.
This validates bidirectional power to flow between the second and first voltage sources.
Finally, all of the simulation results are consistent with the stable-state prediction study.
Waveforms of regulated current step variations for the conceptual design in the high voltage
energy-regenerative mode and the dual low-voltage sources-powering mode are displayed
in Figures 18 and 19, respectively. In order to transmit energy from the dual lower-side
sources to the higher-side DC-bus, the current in the inductor iLF and the higher-side
current iHB were adjusted, as illustrated in Figure 18. Negative current output waveforms
are indicated in Figure 19. The power flow was effectively inverted.
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Figures 20 and 21 show the waveforms of regulated current step variations for the
conceptual model for the dual low-voltage sources buck and boost modes, respectively.
The higher-side current iFVS and the inductor current iLS were altered to distribute energy
between two low-voltage source currents. Inductor current iLS and the first voltage source
current iFVS were controlled to transmit the power from the second voltage source to the
first voltage source. In Figure 20, the output waveforms of negative current were effectively
inverted, and in Figure 21, the power flow was effectively inverted.
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Comparison of PI and ANN Controller Output Waveforms

Figure 22 shows a comparison of output voltage in power sharing mode at low
voltage, while Figure 23 illustrates a comparison of output voltage in DC-bus high-voltage
regenerative mode. Figures 24 and 25 show controlled current step variation in inductor
currents in buck and boost modes of operation.
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Figure 25. Regulated current step variations in inductor currents during buck mode.

Comparative analysis highlights that an ANN controller has a significantly faster rising
time and processing speed than the PI controller, and the ANN controller has reduced
ripple content in the current signal.
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5. Conclusions

Dual battery voltage sources were integrated with higher-voltage DC-buses of varying
voltage levels using the BDC architecture. Various forms of power transfer were used
to discuss the circuit architecture and operational concepts of the BDC. To thoroughly
investigate the energy flow between the first and the second voltage sources under the
strong variations in voltage levels, regenerative mode, powering mode and inductor
currents, a controlled DC–DC voltage static converter with a neural network controller
was developed and implemented using MATLAB/Simulink. This controller was simpler
to implement, with a limited number of tests carried out in MATLAB. To corroborate the
robustness of the proposed converter with the neural network controller, strong variations
in voltage levels of the voltage sources, regenerative and powering modes were applied to
the hybrid electric vehicle. The simulation results show the effectiveness and the robustness
of both the proposed controller and converter to control the power flow between various
voltage sources and minimize the current ripples between DC-bus and voltage sources. As
a result, inductor current oscillations were reduced.

In future work, efficacy of the proposed BDC should be assessed in a realistic EV
domain, employing advanced controllers. Finally, as an obligatory experimentation to this
study, the practical implementation of the proposed DC–DC converter should be performed
in future research.
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Notations
Notations used throughout the paper are stated below:
VHB DC-bus high voltage
VFVS, VSVS Dual low-voltage sources
CCP Charge pump capacitor
M1, M2, M3, M4 Four active switches
Lf, Ls Phase inductors
iLf Main phase inductor current
iLs Auxiliary phase inductor current
SW, SFVS, SSVS Three bidirectional switches
iCP Charge pump current
CFVS First voltage source capacitor
CSVS Second voltage source capacitor
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