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Abstract: Recently, as a wearable-sensor-based approach, a smart insole device has been used to
analyze gait patterns. By adding a small low-power sensor and an IoT device to the smart insole,
it is possible to monitor human activity, gait pattern, and plantar pressure in real time and evaluate
exercise function in an uncontrolled environment. The sensor-embedded smart soles prevent any
feeling of heterogeneity, and WiFi technology allows acquisition of data even when the user is not
in a laboratory environment. In this study, we designed a sensor data-collection module that uses a
miniaturized low-power accelerometer and gyro sensor, and then embedded it in a shoe to collect
gait data. The gait data are sent to the gait-pattern classification module via a Wi-Fi network, and the
ANN model classifies the gait into gait patterns such as in-toeing gait, normal gait, or out-toeing gait.
Finally, the feasibility of our model was confirmed through several experiments.

Keywords: gait analysis; artificial neural network; abnormal gait pattern; smart shoes

1. Introduction

Changes in gait pattern such as fluctuations in walking speed or swaying of the body
are often used as early indicators of cognitive impairment. This is because gait pattern is
determined by individual gait characteristics such as lifestyle and differences in skeletal
muscles. In addition, walking is an inherent human behavior that constantly changes
from infancy to old age, but individual gait patterns are often fixed in childhood if poor
habits develop. Therefore, it is necessary to identify an abnormal gait pattern and treat it
early. Such findings have increased interest in the design of gait-pattern monitoring and
assessment methods [1–6].

Gait-pattern monitoring and assessment systems can be classified into two different
types: marker-based and wearable-sensor-based. The marker-based approach obtains
walking-motion data using body-attached sensor systems using accelerometer [7,8] or
EMG [9], video-based systems [10], active magnetic trackers [11], or optical-marker sys-
tems [12]. However, these cannot be used outside the laboratory environment, invade
privacy, and are expensive. The wearable-sensor-based approaches [13,14] use accelerom-
eter sensors, pressure sensors, or biosensors worn on clothing or shoes equipped with
low-power devices and portable memory for long-term ambulatory monitoring. It is possi-
ble to capture and analyze gait information in real time over relatively long distances and
outside the laboratory environment [12].

Recently, as a wearable-sensor-based approach, a smart-insole device that has a sensor
embedded in the insole has been used to analyze gait patterns [15–18]. Such insoles can
be put into any shoe, have the advantage of being compact and inexpensive, and can
easily be integrated into small electronic devices. Therefore, smart insoles are currently
among the best wearable devices to obtain gait information. In particular, by adding a
small low-power sensor and an IoT device to the smart insole, it is possible to monitor the
wearer’s activity, gait pattern, and plantar pressure in real time, and to evaluate exercise
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function in uncontrolled environments. The wearer is not aware of being “tested” because
the gait information is obtained during daily life, so any effect of “testing” on his or her
walking is minimized, and the data obtained reflect his or her natural gait well.

This paper presents a gait-pattern monitoring device that uses a smart insole, a Wi-Fi
network, and an artificial neural network (ANN)-based abnormal gait pattern classification
method for use in uncontrolled environments. The sensor-embedded smart soles prevent
any feeling of heterogeneity, and Wi-Fi technology allows acquisition of data even when
the user is not in a laboratory environment. In this study, we designed a sensor data-
collection module that uses a miniaturized low-power accelerometer and gyro sensor, and
then embedded it in a shoe to collect gait data. The gait data are sent to the gait-pattern
classification module via a Wi-Fi network, and the ANN model classifies the gait into gait
patterns such as in-toeing gait, normal gait, or out-toeing gait.

The rest of the paper is organized as follows. Section 2 shows the implementation
of the gait-pattern monitoring system using smart shoes with an accelerometer and gyro
sensor. A method to classify gait types using an ANN is proposed, and the experimental
setup is described in Section 3. Finally, conclusions and plans for future work are presented
in Section 4.

2. Implementation and Experimental Evaluation of a Gait-Pattern Monitoring System
Using Smart Shoes
2.1. Characteristics of Toe-Out Angle according to Gait Pattern

Gait is defined as the process of moving the body forward while maintaining the
center of the body constant. The movement from the time one heel touches the ground to
the time the other heel touches the ground is called a step. The movement from the time
one heel leaves the ground to the time it touches the ground again is called a stride. The
distance between these points is called the stride length. As the various muscles and joints
of both legs act organically and repeatedly, the gait progresses with a balance between the
left and right feet [19].

The toe-out angle refers to the angle formed by the foot in the direction in which
the body is moving. This angle represents the degree of internal or external rotation of
the lower extremity during the stance phase. The toe-out angle is affected by hip-joint
movement, the degree of distortion of the tibia and astragalus, and structural abnormalities
of the lower extremities. In addition, this angle is used to determine the efficiency and
type of walking. When the toes point inward or outward beyond what is normal, the force
that pushes the body forward tends to be distributed in the direction in which the toes are
pointing, not in the direction of desired movement.

Figure 1 shows the classification of gait patterns by toe-out angle. Here, the x-axis was
defined as the direction of walking, the y-axis was defined as the direction toes go out, and
the z-axis was defined as the opposite direction to the sole of the shoe. Here, the toe-out
angle (yaw angle) was defined as an angle rotated in the y-axis direction of both feet with
respect to the z-axis. Normal gait is when the angle of both feet is within the range 0–6.9◦;
the person’s waist is straight, and the two feet are spread slightly outward. In-toeing gait is
when the angle of the two feet is within the range of −19.9 to 0◦, and the toes are pointed
inward. When viewed from the side, the upper body is inclined slightly forward and the
lower body slightly upwards. This aggravates the knees and easily fatigues the lower body,
causing hip osteoarthritis. Because the insides of the walking shoes are weighted, flat feet
and X-legs are often noticed.

Out-toeing gait is when the angle of the two feet is within the range 6.9–31.9◦. In other
words, it features a step in which the toes extend outwards. An out-toeing gait twists the
thigh and calf bones of the leg; the degree of distortion varies depending on the type of
movement and the age of the person. If the hip and knee joints are deformed, the outer
cartilage is damaged. Severe kyphosis with persistent injuries can shorten and weaken the
external thigh muscles [20,21].
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Figure 1. Gait pattern according to toe-out angle.

2.2. Implementation of Smart Shoes to Measure Toe-Out Angle

Figure 2 shows the smart shoes used to measure toe-out angle. The left side of Figure 2a
shows the shoes and the embedded data-collection module. The three-axis acceleration
and three-axis gyro sensor data are transmitted over the Wi-Fi network to the gait pattern
classification module. The right side of Figure 2a shows the configuration of the gait
pattern classification module. The acceleration and gyro sensor data collected by the smart
shoes are denoised using a Kalman filter. The angular velocity of the gyro sensor is then
integrated with respect to the time axis and estimated as an angle. Thereafter, the angle
value is divided into one-step units and input to the ANN classification model, which
determines whether a gait pattern is normal or abnormal.
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Figure 2. Gait pattern classification module. (a) Schematic diagram of the overall system. (b) The
smart shoes with the data-collection module.

Figure 2b shows the data-collection module embedded in a shoe. The module incor-
porates sensors and batteries, and the shoe is designed to be charged using a dedicated
charger. In the figure, the accelerometer is built into the heel of the shoe; the module
measures the foot angle based on that between the heel and the second toe.
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In this system, a six-axis motion sensor (MPU6050) capable of measuring three-axis
acceleration and three-axis gyro sensor values are used. At this time, the x-axis direction
of the sensor is the walking direction, the y-axis is the lateral direction, and the z-axis is
the height. The sensor values are measured when the wearer is walking on a flat surface,
to identify the gait pattern as normal or abnormal.

2.3. Experimental Evaluation for Measurement of Toe-Out Angle

The values of the x, y, and z-axis accelerometers and gyro sensors measured by the
experimental gait-pattern classification system are shown in Figure 3. To collect sensor
values, test subjects were allowed to walk freely for a while before the experiment began
and then data measurement commenced after a period of rest. The sensor values were
collected over the Wi-Fi network while the subjects were walking straight at normal walking
speeds. Via this process, natural walking information can be obtained in uncontrolled
environments.
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Figure 3. Collected raw data of the accelerometer and gyro sensor.

The collected sensor values are truncated step-by-step and automatically stored in the
form of step 0, step 1, . . . , step N. When the absolute value of the sum of the signal strength
of the three-axis acceleration and three-axis gyro sensors exceeds a predefined threshold
of 5000 (output value of 10-bit ADC), it is judged that a new step has begun. Over time,
the absolute value of the signal strength falls below the predefined threshold, which is set
as the end point of the step. Then, the rotation angular velocities of the x, y, and z axes
are integrated and converted into the rotational angles of the x, y, and z axes. Here, the
angle of the start point of each step always starts at 0◦ and is provided as an input to the
classification module for each one-step unit.

Figure 4 shows the toe-out angles of five steps for an in-toeing gait, a normal gait, and
an out-toeing gait. The toe-out angle for each step is slightly different. The test subjects
knew that measurements were being made; these values will differ from those of their
original gait because they feel they are being measured and then are hesitant to walk.
If walking data are obtained only after the test subjects have first been allowed to walk for
a sufficient predetermined time, the data will be reliable enough to determine the subjects’
normal gait patterns. Figure 4a shows the left foot angle of the x-axis estimated from the
gyro-sensor data. In the case of a normal gait, the toe-out angle gradually increases as the
foot is lifted from the ground and decreases as it returns to the ground. The maximum
toe-out angle of in-toeing, normal, and out-toeing gaits differs slightly, but the overall
patterns have a similar shape.
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Figure 4. Toe-out angles of the left foot; (a-1–a-3) toe-out angle of x-axis for an in-toeing gait, a normal
gait, and an out-toeing gait, respectively, (b-1–b-3) toe-out angle of y-axis for an in-toeing gait,
a normal gait, and an out-toeing gait, respectively, (c-1–c-3) toe-out angle of z-axis for an in-toeing
gait, a normal gait, and an out-toeing gait, respectively.
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Figure 4b shows the angle of the left foot of the y-axis. In the case of a normal gait, the
toe-out angle increases initially and then decreases slightly, then gradually increases to the
highest point. This pattern occurs because the heel movement does not proceed in a straight
line when lifting the foot but turns slightly outward and then goes back inward. In the
case of an in-toeing gait, the toe-out angle increases rapidly at the start of walking, reaches
a maximum, and then increases again when stepping onto the foot. The reason for this
pattern is that the movement of the heel turns from outside to inside while walking. In the
case of an out-toeing gait, the toe-out angle decreases initially and then gradually increases;
the shape has a peak at the end of the stride. This pattern is because the heel moves from
inside to outside. Figure 4c shows the angle of the z-axis. When the foot is lifted from the
ground, the toe-out angle gradually increases, reaches a maximum, and then gradually
decreases. As for the x-axis, the maximum value and fluctuation differ depending on the
gait pattern, but it can be seen that the three gait patterns have similar tendencies.

The data confirm that the toe-out angle of the y-axis varies slightly with the gait
pattern. Based on the changes in the toe-out angle over time, an abnormal gait pattern can
be identified. However, as there are differences in the muscle use of each person and as
the change in the toe-out angle varies slightly from step to step, a method is needed to
determine the gait pattern in various situations.

Figure 5 shows the relationship between the left foot and the right foot in terms of the
y-axis toe-out angle. From the figure, it can be seen that the shape of the toe-out angle of
the left and right feet is symmetrical with respect to the x-axis. Of course, the maximum
value differs because there is a difference in the movements of the right foot and the left
heel, but the overall pattern is similar. Based on these characteristics, it is clear that the
same method can be used to determine the gait patterns of the left and right feet.
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angle of right foot.

3. Implementation and Experimental Evaluation of the ANN-Based Gait-Pattern
Classification Model
3.1. Implementation of Classification Model

In this paper, we propose an ANN classification model that can determine whether a
pedestrian’s gait pattern is an in-toeing gait, a normal gait, or an out-toeing gait as revealed
by acceleration-sensor values measured in smart shoes. Figure 6 shows the abnormal gait
pattern classification model using the ANN. In the ANN model, the number of nodes in
the input layer is set to 30, the number of nodes in the hidden layer is set to 10, and the
number of nodes in the output layer is set to 3.
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First, the angular velocity of the y-axis obtained from the smart shoes on the left and
right feet is estimated as an angle, and then divided into steps (xi, i = 1, . . . , n). We then
acquire 30 angle-data points, the starting point of each step, and store them as a single
dataset (xin, n = 1, . . . , 30). One angle is acquired per sampling period. The 30-angle dataset
(i.e., the dataset for training) is used as the input for each node of the input layer of the
ANN model. Since each gait pattern has its own characteristics, the toe-out angle of the
y-axis with time can be used to classify gait patterns, using only the angle information
acquired from about 30 sampling times initiated by the start of a single step.

Next, we set the number of nodes in the hidden layer to 10. Because angle-data points
of 30 tend to change linearly, the number of nodes in the hidden layer is not significantly
affected. Accordingly, the number of hidden rays was set to a minimum to minimize the
learning time. Finally, the output layer consists of three nodes, each of which assigns an
accuracy score of 0 to 1 for all in-toeing, normal, and out-toeing gaits. When the accuracy
score of one of the three output nodes is 0.6 or more and the other two are 0.4 or less, that
node determines the gait pattern. Gait is judged to be unknown if the scores of two or more
output nodes are 0.6 for or no node scores 0.6.

3.2. Experimental Evaluation for Gait Pattern Classification

In this study, the experimental environment shown in Figure 7 was constructed to
obtain the training dataset. The experiment was conducted with the oral consent of
11 healthy volunteers (two women, nine men, 27.8 ± 5.1 years old, and 166.7 ± 7 cm
tall). Before starting the experiment, all subjects walked freely for two minutes to relax.
All subjects wore shoes with built-in data-collection modules and walked 5 m in a straight
line to obtain a sampling period of 0.025 s. After recording the subject’s gait during the
experiment, the complementary angle was observed visually to confirm the gait pattern.
Through this process, 55 datasets were obtained for each of five steps of the 11 test subjects.

Figure 8 shows the learning error rate for the ANN model. Back-propagation was
used, and the target error rate was set to 0.01. The solid yellow line on the graph is the error
rate of the left foot, and the green dotted line is that of the right foot. The target error rate
was attained at 78,881 datapoints for the right foot and 95,295 datapoints for the left foot.
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Finally, to verify the performance of our classification model, the walking data of test
subjects who were not included in the training dataset were used. Table 1; Table 2 shows
the gait pattern determined by the ANN model. In the table, we verify that the test subject
A has out-toeing gait of left foot and normal gait of right foot. Additionally, we know that
left and right gait type of the test subject B is in-toeing and normal, respectively.
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Table 1. Output value of abnormal gait pattern classification model for test subject A.

Step of Left Foot Step of Right Foot
1 2 3 4 5 6 1 2 3 4 5 6

in-toeing 0.94 5.55 2.73 0.11 2.49 2.14 0.13 0.48 0.59 14.01 11.33 29.21

normal 0.03 0.44 0.02 0.47 0.68 0.75 97.31 98.58 99.97 99.17 99.13 97.03

out-toeing 99.39 83.81 99.15 99.67 89.72 92.98 6.84 1.31 0.03 0.02 0.03 0.03

Table 2. Output value of abnormal gait pattern classification model for test subject B.

Step of Left Foot Step of Right Foot
1 2 3 4 5 6 1 2 3 4 5 6

in-toeing 96.47 99.55 88.62 91.84 93.29 94.39 0.10 1.26 3.28 0.08 2.04 0.03

normal 0.01 0.36 1.06 0.02 0.02 0.01 95.95 83.78 92.47 95.16 94.25 92.47

out-toeing 0.45 0.01 0.07 1.61 1.01 1.11 11.83 4.64 3.28 15.71 1.09 3.28

In order to validate the performance between classification model’s gait pattern and
actual gait pattern, we experimentally checked the actual toe-out angle of test subjects.
Figure 9 shows the toe-out angle of the feet observed with the naked eye. In the figure,
we can verify that results of classification model’s and actual gait pattern is same. As a
result of verifying the two persons, it can be confirmed that the ANN classification model
proposed in this paper is working properly.
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4. Conclusions

In this study, we designed a smart shoe with a built-in accelerometer and gyro sensor
and proposed a gait-pattern classification system that can be used without the constraints
of a controlled environment. Additionally, to classify the gait pattern based on the collected
data, the step data were divided into one-step datasets.

As our gait data-collection system embedded in the smart shoes uses low-power
Wi-Fi and sensors, it has the advantage of increasing the subject’s freedom of walking,
unlike other measurement methods that impose restrictions. Additionally, an ANN-based
abnormal gait pattern model that can classify gait patterns was designed using this dataset,
gait data that are close to those of the normal gait can be acquired. Finally, we find that the
feasibility of our model was confirmed through several experiments.
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Nevertheless, this research has been limited to evaluating the feasibility of a smart
shoes with the classification model of gait pattern. Hence, we intend to develop a model that
can classify gait patterns even when the data are collected in various outdoor environments.
This would reveal the gait patterns of subjects in outdoor life, and healthy management of
gait would be possible. In addition, we intend to develop a system that uses a tactile sensor
to measure vertical and horizontal pressures to detect pathological signs in the ankles.
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