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Abstract: This paper proposes a C/X/Ku/K band 6-bit digital step attenuator (DSA) which employs
a variety of improved attenuation cells to achieve a wide bandwidth, stable amplitude variation,
stable phase variation, and small area. In this paper, the improved T-type, π-type, and switched-path
type topologies are analyzed theoretically and applied to different attenuation values to achieve the
optimal attenuator performance. In addition, in order to reduce the complexity and to improve the
stability of the overall radar system, the logic control circuit is integrated in the DSA chip in this paper.
Finally, the proposed attenuator is implemented in 0.15µm GaAs technology, which has a maximum
attenuation range of 31.5 dB with 0.5 dB steps. The proposed DSA exhibits a root-mean-square
(RMS) attenuation error of less than 0.15 dB and an RMS phase error of less than 3◦, at 4–24 GHz.
The insertion loss (IL) and the area of the DSA are 4.3–4.5 dB and 1.5 mm × 0.4 mm, respectively.
Benefiting from the improvements of the attenuation cells and the characteristic of GaAs technology
with strong resistance to radiation and power processing capability, the proposed DSA is suitable for
spaceborne radar systems.

Keywords: digital step attenuator (DSA); GaAs; spaceborne; root-mean-square (RMS); T/π-type

1. Introduction

In modern active phased-array systems, a high beam-pointing accuracy requires
effective sidelobe suppression. Therefore, a large number of power radiation distributions
with sidelobe suppression have been proposed, such as the constrained least squares
distribution [1], Bayliss n-bar distribution, and Taylor n-bar distribution [2]. These power
radiation modes are achieved by precisely controlling the power amplitude of different
array elements, which directly determine the beam formation effect of the active phased-
array radar systems or multi-T/R component systems. The main amplitude control circuits
are variable gain amplifiers and digital step attenuators. Variable gain amplifiers are
effective devices in controlling the amplitude; however, the high-power dissipation, narrow
bandwidth, and nonlinearity are the bottlenecks of their development [3–5]. By contrast,
digital attenuators are emerging in phased array systems in virtue of their high linearity
and low power dissipation [3,4,6].

Thanks to the rapid development of CMOS and SiGe BiCMOS technologies, the cost
and performance of devices based on these technologies have been improved to a great
extent. Recent research confirms that it is possible to achieve high-performance attenuators
using CMOS technology [7,8]. However, compared with CMOS, GaAs technology indeed
has certain advantages, e.g., a lower insertion loss (IL), a more stable phase error, a stronger
resistance to irradiation, and a better power handling capability [9]. With the improvement
and optimization of the attenuation cell, the area of the attenuator becomes smaller in GaAs
technology. Therefore, GaAs technology is still preferred for spaceborne radar systems.

The conventional digital step attenuation cells are shown in Figure 1 and mainly con-
tain distributed type [10], switched-path type [11,12], and π-type/T-type [7,8,13–15]. These
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attenuation cells have different characteristics depending on their topologies. Distributed
attenuators usually have low IL because they do not have series switches; however, in this
topology, the number of quarter-wavelength transmission lines increases linearly with the
number of attenuation states, leading to a large chip area. Therefore, the distributed atten-
uators are not suitable for low-frequency applications and GaAs technology [10,16]. The
switched-path attenuation cell is more suitable for large attenuation levels in broadband
and precision systems. As shown in Figure 1b, this attenuation cell divides the reference
and attenuation states into two separate paths capable of increasing the degree of freedom
for a phase adjustment and obtaining small phase variation. However, the area and IL
of this cell are larger [11,17]. π-type attenuation cells can achieve large attenuation levels
and small IL, while the large phase variation of the conventional π-type attenuation cell
makes it unsuitable for wideband systems [4,6]. Similarly, T-type attenuation cells also
have the problem of a large phase variation in large attenuation levels, while the simple
structure of the T-type makes it appropriate for small attenuation levels [7,18]. In summary,
to achieve a wide bandwidth, low amplitude variation, low phase variation, and compact
attenuator simultaneously, it is necessary to select reasonable attenuation cells for different
attenuation levels and to provide improvements to some of the attenuation cells. Recently,
some improved π-type/T-type attenuation cells with phase compensation techniques, en-
hancing the performance of the attenuator, have been proposed [7,8,11–17]. However,
most of these attenuators use only one or two topologies, without rational analyses for all
topologies, which cannot achieve the best performance. Therefore, there is still much room
for improvement regarding the currently proposed attenuators.
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Figure 1. Topology of digital step attenuation cells. (a) Distributed step attenuator. (b) Switched-

path attenuator. (c) T-type attenuation cell. (d) π-type attenuation cell. 
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Figure 1. Topology of digital step attenuation cells. (a) Distributed step attenuator. (b) Switched-path
attenuator. (c) T-type attenuation cell. (d) π-type attenuation cell.

In this paper, a 6-bit digital step attenuator (DSA) is designed and implemented with
0.15µm GaAs pHEMT technology. The proposed attenuator uses a variety of improved
attenuation cells to achieve a wide bandwidth, high-accuracy attenuation, and small area.
In summary, the main contributions of this paper are as follows.

• This paper theoretically analyzes the attenuation characteristics of various attenuation
cells and their applicable attenuation levels.

• This paper simplifies the T-type attenuation cell, improves the π-type attenuation cell
in two different forms, expands the switched-path attenuation cell, and provides a
more reasonable cascade for these attenuation cells. These improvements enable the
attenuator to achieve a more excellent performance.

• In order to reduce the complexity of the whole radar system, an on-chip logic control
circuit is designed in this paper.
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• Finally, this paper designs a broadband precision compact 6-bit digital attenuator with
logic control circuits.

In addition, combined with the natural irradiation resistance and power handling
capability of GaAs technology, the designed DSA is suitable for spaceborne radar systems.
Section 2 provides an in-depth analysis and improvement of the attenuation cells with
different topologies. Section 3 introduces the design of the logic control circuit. The
complete attenuator circuit and experimental results are exhibited and demonstrated in
Section 4. Section 5 summarizes this paper.

2. Attenuation Cells Analysis and Design

This section introduces attenuation cells with different topologies such as T-type,
π-type, and switched-path type. These attenuation cells are sequentially analyzed and
improved to achieve better performance.

2.1. T-Type Attenuation Cell

Figure 2 shows the schematic of the conventional switched T-type attenuation cell.
The cell contains resistors R1 and R2 for attenuation and transistors M1 and M2 for state
switching. In the reference state, as shown in Figure 2b, M1 is on-state and equivalent to
a small resistor that provides a path for the signal from the input to the output. Under
an attenuation state, as shown in Figure 2c, M1 is off-state and equivalent to a capacitor
because of the coupling effect between the input and output, while M2 is on-state and
equivalent to a small resistor. In this state, R1 and R2 from the T-type network with on-state
M2 achieve the attenuation of the signal. For a required attenuation A (in decibels) and
characteristic impedance Z0, the ideal values of R1 and R2 are given by (1) and (2).

R1 = Z0 ∗
(

10A/20 − 1
10A/20 + 1

)
(1)

R2 = 2 ∗ Z0 ∗
(

10A/20

10A/10 − 1

)
− RM2 (2)
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For a conventional T-type attenuation cell with defined parameters, the transmis-
sion coefficients S21 for the reference and attenuation states can be obtained from the
transmission matrix as follows:

S21, T, R =
2Z0

(
jωCM2R2

1 + 2R1(1 + jωCM2R2) + RM1(1 + jωCM2R2)
)

(2 + jωCM2(R1 + 2R2 + Z0))(RM1Z0 + R1(RM1 + 2Z0))
(3)
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S21, T, A =
2Z0(R2 + RM2 + jωCM1R1(R1 + 2(R2 + RM2)))

(Z0 + (1 + 2jZ0ωCM1)R1)(Z0 + R1 + 2R2 + 2RM2)
(4)

After replacing R1 and R2 in (3) and (4) with the values in (1) and (2), it can be found
that the IL of the T-type attenuation cell will increase significantly and the amplitude
stability will deteriorate when the T-type network is applied to a large attenuation level,
as shown in Figure 3. Therefore, the T-type structure is not suitable for large attenuation
levels and is used only for 0.5 dB attenuation and 1 dB attenuation in most situations.
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Figure 3. The relative attenuation of the conventional T-type attenuation cell.

The IL of the conventional T-type attenuation cell is related to the resistance of the
series transistor in the on-state. Though increasing the gate width of the transistor can
reduce the unavoidable series resistance, the large coupling capacitance generated at the
same time severely degrades the phase stability of the T-type attenuation cell. Fortunately,
the same function can be achieved by removing the series transistor when using the T-type
structure for small attenuation cells, as shown in Figure 4. Removing the series transistor
not only reduces the IL of the T-type cell but also reduces the parasitic effect, allowing the
attenuation cell to achieve a wider bandwidth. As shown in Figure 5, the simplified T-type
attenuation cell exhibits accurate attenuation and stable amplitude variation.
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2.2. π-Type Attenuation Cell
2.2.1. Conventional π-Type Attenuation Cell

As shown in Figure 6, a conventional π-type attenuation cell consists of attenuation
resistors, R1 and R2, and state selection switches, M1 and M2. The attenuation level is
the difference in amplitude between the two states. In the reference state, M1 is on-state
and M2 is off-state, where M1 can be equated to a small resistor and M2 can be equated
to a capacitor, as shown in Figure 6b. Conversely, in the attenuation state, M1 is off-state
and M2 is on-state, providing a shunt path for the signal, as shown in Figure 6c. Indeed,
a good attenuator is expected to ensure that the two states have accurate attenuation
amplitudes and the same phase variation over a wide frequency band. The reference and
attenuation states of the conventional π-type attenuation cell are represented by Figure 6b,c,
respectively, and the transmission coefficient S21 is calculated from the transmission matrix.
The calculation results are given in (5) and (6), respectively.

S21, π, R =
2Z0(1 + jωCM2R2)

2(R1 + RM1)

(1 + jωCM2(Z0 + R2))(2Z0(1 + jωCM2R2)RM1 + R1(2Z0 + RM1 + jωCM2(Z0RM1 + R2(2Z0 + RM1))))
(5)

S21, π, A =
2Z0(1 + jωCM2R2)(R1 + RM1)

2

(Z0 + R2 + RM2)(2Z0(R2 + RM2) + R1(Z0 + (1 + 2jZ0ωCM1)R2 + RM2 + 2jZ0ωCM1RM2))
(6)
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Figure 6. (a) The schematic of the conventional switched π-type attenuation cell. (b) Reference state.
(c) Attenuation state.

From (5) and (6), the insertion phase of the reference state and the attenuation state
can be calculated as:

θπ,R ≈ − tan−1 2Z0ωCM2(Z0RM1 + Z0R1 + R1RM1)

2Z0RM1 + 2Z0R1 + R1RM1
(7)
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θπ,A ≈ tan−1 ωCM1R2
1(Z0 + R2 + RM2)

2Z0(R2 + RM2) + R1(Z0 + R2 + RM2)
(8)

where Z0 is the characteristic impedance. For simplified calculations, ω2C2 and higher-
order variables are omitted. As a good attenuator, the phase difference between the two
states is expected to be zero.

∆θπ = θπ,A − θπ,R = 0 (9)

However, in this case, it is impossible for the two states to exhibit a phase less than
zero or greater than zero simultaneously; thus, the insertion phase of both states is expected
to be zero to ensure that the phase difference is zero.

θπ,A = θπ,R = 0 (10)

For a practical design, the insertion phases of both states cannot be zero, because there
exists parasitic capacitance in either series or parallel branches, which leads to the genera-
tion of a non-zero phase and deteriorates the bandwidth of the attenuator. Therefore, in
order to achieve broadband and accurate attenuation, two effective improvement schemes
for π-type attenuators are proposed in this paper.

2.2.2. π-Type Attenuation Cell with Tail Capacitors

To solve the problem that the conventional π-type is a low-pass network in the refer-
ence state and a high-pass network in the attenuation state, an effective method is to add a
tail capacitor to the shunt branch to keep the low-pass characteristic in the attenuation state.
The π-type attenuation cell with tail capacitor compensation is shown in Figure 7, whose
state is controlled in the same way as the conventional π-type. The reference state is where
M1 is on-state, and the attenuation state is where M1 is off-state. When the attenuation cell
is in the reference state, a low-pass path is provided by an off-capacitor of M2, R2, and a
tail capacitor Ctail . Similarly, in the attenuated state, a low-pass network is also provided
by the tail capacitor. The transmission coefficients S21 for the reference and attenuation
states of the improved π-type attenuation cell are calculated using the transmission matrix;
such calculations are shown in (11) and (12), respectively.

S21, π,tail, R =
2Z0(R1 + RM1)

1 + jω
CM2Ctail

CM2 + Ctail
(Z0 + R2)

×

(
1 + jω

CM2Ctail
CM2 + Ctail

R2

)2

2Z0

(
1 + jω

CM2Ctail
CM2 + Ctail

R2

)
RM1 + R1

(
2Z0 + RM1 + jω

CM2Ctail
CM2 + Ctail

(Z0RM1 + R2(2Z0 + RM1))

) (11)

S21, π,tail, A =
2Z0(1 + jωCM1R1)

1 + jωCtail(Z0 + R2 + RM2)

× (1 + jωCtail(R2 + RM2))
2

2Z0 + 2jZ0ωCtail(R2 + RM2) + R1(1 + jωCtail(Z0 + R2 + RM2) + 2jZ0ωCM1(1 + jωCtail(R2 + RM2)))

(12)

The insertion phases of these two states are calculated by (11) and (12):

θπ,tail,R ≈ − tan−1 2Z0ωCM2Ctail(Z0R1 + Z0RM1 + R1RM1)

(CM2 + Ctail)(2Z0RM1 + 2Z0R1 + R1RM1)
(13)

θπ,tail,A ≈ − tan−1 ω
(
2Z2

0Ctail + 2Z0Ctail R1 − CM1R2
1
)

2Z0 + R1
(14)
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where ω2C2 and higher-order variables are omitted to simplify the calculations. Finally, the
phase variation can be represented by the difference between the insertion phases of the
two states:

∆θπ,tail = θπ,tail,A − θπ,tail,R (15)
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Figure 7. (a) The schematic of the switched π-type attenuation cell with tail capacitors. (b) Reference
state. (c) Attenuation state.

Figure 8 shows the relative phase difference of the two states with and without the
tail capacitor. It can be seen that the introduction of the tail capacitor indeed achieves the
broadband phase balancing characteristic.
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Figure 8. Comparison of the relative phase variation between the conventional and improved
π-type attenuation.

2.2.3. π-Type Attenuation Cell with Shunt Capacitors

The purpose of adding a tail capacitor to the shunt branch of the π-type attenuation
cell is to provide a low-pass network for the attenuation state, which makes the reference
and attenuation states have almost the same insertion phase. Another way to achieve a
low-pass network for the attenuation state by compensating capacitors is to add shunt
capacitors to the branches, as shown in Figure 9. By adding the shunt capacitors, the
whole attenuation cell can be transformed into a two-pole, two-zero system. Therefore, the
amplitude and phase variations can be minimized by adjusting the position of the zero and
the pole in broadband. The reference and attenuation states of the π-type attenuation cell
with shunt capacitance are shown in Figure 9b,c, respectively. The transmission coefficients
S21 can be calculated from the transmission matrix of the two different states, as shown in
(16) and (17).
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S21, π,shunt, R

=
2Z0(R1 + RM1)

1 + jωCcR2 + jωCM2(Z0 + (1 + jωZ0Cc)R2)

× (1 + jω(Cc + CM2)R2)
2

2Z0(1 + jω(Cc + CM2)R2)RM1 + R1(2Z0 + RM1 + jωCcR2(2Z0 + (1 + jωZ0CM2)RM1) + jωCM2(2Z0R2 + (Z0 + R2)RM1))

(16)

S21, π,shunt, A

=
2Z0(1 + jωCM1R1)

(Z0 + RM2) + R2(1 + jωCc(Z0 + RM2))

× (RM2 + R2(1 + jωCcRM2))
2

2Z0RM2 + R2(2Z0 + 2jωZ0CcRM2) + R1(Z0 + (1 + 2jωZ0CM1)RM2 + R2(1 + 2jωZ0CM1 + jωCc(Z0 + (1 + 2jωZ0CM1)RM2)))

(17)
Electronics 2022, 11, 3620 8 of 16 
 

 

Vc

M1

Vc Vc

R1

R2

M2 M2

R2 Cc

R1

RM1

CM2 CM2

R2Cc R2 Cc

R1

CM1

RM2 RM2

LPF

R2 R2 CcCc

 
(a) (b) (c) 

Figure 9. (a) The schematic of the switched π-type attenuation cell with shunt capacitors. (b) Refer-

ence state. (c) Attenuation state. 

𝑺𝟐𝟏,𝝅,𝒔𝒉𝒖𝒏𝒕,𝑹

=
𝟐𝒁𝟎(𝑹𝟏 + 𝑹𝑴𝟏)

𝟏 + 𝒋𝝎𝑪𝒄𝑹𝟐 + 𝒋𝝎𝑪𝑴𝟐(𝒁𝟎 + (𝟏 + 𝒋𝝎𝒁𝟎𝑪𝒄)𝑹𝟐)

×
(𝟏 + 𝒋𝝎(𝑪𝒄 + 𝑪𝑴𝟐)𝑹𝟐)

𝟐

𝟐𝒁𝟎(𝟏 + 𝒋𝝎(𝑪𝒄 + 𝑪𝑴𝟐)𝑹𝟐)𝑹𝑴𝟏 + 𝑹𝟏(𝟐𝒁𝟎 + 𝑹𝑴𝟏 + 𝒋𝝎𝑪𝒄𝑹𝟐(𝟐𝒁𝟎 + (𝟏 + 𝒋𝝎𝒁𝟎𝑪𝑴𝟐)𝑹𝑴𝟏) + 𝒋𝝎𝑪𝑴𝟐(𝟐𝒁𝟎𝑹𝟐 + (𝒁𝟎 + 𝑹𝟐)𝑹𝑴𝟏))
 

(16) 

𝑺𝟐𝟏,𝝅,𝒔𝒉𝒖𝒏𝒕,𝑨

=
𝟐𝒁𝟎(𝟏 + 𝒋𝝎𝑪𝑴𝟏𝑹𝟏)

(𝒁𝟎 +𝑹𝑴𝟐) + 𝑹𝟐(𝟏 + 𝒋𝝎𝑪𝒄(𝒁𝟎 + 𝑹𝑴𝟐))

×
(𝑹𝑴𝟐 + 𝑹𝟐(𝟏 + 𝒋𝝎𝑪𝒄𝑹𝑴𝟐))

𝟐

𝟐𝒁𝟎𝑹𝑴𝟐 + 𝑹𝟐(𝟐𝒁𝟎 + 𝟐𝒋𝝎𝒁𝟎𝑪𝒄𝑹𝑴𝟐) + 𝑹𝟏 (𝒁𝟎 + (𝟏 + 𝟐𝒋𝝎𝒁𝟎𝑪𝑴𝟏)𝑹𝑴𝟐 +𝑹𝟐(𝟏 + 𝟐𝒋𝝎𝒁𝟎𝑪𝑴𝟏 + 𝒋𝝎𝑪𝒄(𝒁𝟎 + (𝟏 + 𝟐𝒋𝝎𝒁𝟎𝑪𝑴𝟏)𝑹𝑴𝟐)))
 
(17) 

The insertion phases of the two states can be easily obtained through the transmission 

coefficients of the two states: 

𝜃𝜋,𝑠ℎ𝑢𝑛𝑡,𝑅 ≈ −tan−1
2𝑍0𝜔𝐶𝑀2(𝑍0𝑅𝑀1 + 𝑍0𝑅1 + 𝑅1𝑅𝑀1)

2𝑍0𝑅𝑀1 + 2𝑍0𝑅1 + 𝑅1𝑅𝑀1

 (18) 

𝜃𝜋,𝑠ℎ𝑢𝑛𝑡,𝐴 ≈ −tan−1
𝜔 (𝐶𝑀1𝑅1

2(𝑅2 + 𝑅𝑀2)(𝑍0 + 𝑅2 + 𝑅𝑀2)
2 + 2𝑍0𝐶𝑐𝑅2

2(𝑍0(𝑅2 + 𝑅𝑀2) + 𝑅1(𝑍0 + 𝑅2 + 𝑅𝑀2)))

(𝑅2 + 𝑅𝑀2)(𝑍0 + 𝑅2 + 𝑅𝑀2)(2𝑍0(𝑅2 + 𝑅𝑀2) + 𝑅1(𝑍0 + 𝑅2 + 𝑅𝑀2))
 (19) 

where 𝜔2𝐶2 and higher-order variables are omitted to simplify the calculations. In order 

to obtain the minimum phase error, the phase difference between the two states is ex-

pected to be as small as possible in a wide range of bandwidth. 

Δ𝜃𝜋,𝑠ℎ𝑢𝑛𝑡 = 𝜃𝜋,𝑠ℎ𝑢𝑛𝑡,𝐴 − 𝜃𝜋,𝑠ℎ𝑢𝑛𝑡,𝑅 (20) 

Figure 10 illustrates the contribution of the shunt capacitor in reducing the phase 

variation. It can be seen that, in the attenuation of 8 dB, the attenuation cell with shunt 

capacitors shows a particularly small phase change. 

Figure 9. (a) The schematic of the switched π-type attenuation cell with shunt capacitors.
(b) Reference state. (c) Attenuation state.

The insertion phases of the two states can be easily obtained through the transmission
coefficients of the two states:

θπ,shunt,R ≈ − tan−1 2Z0ωCM2(Z0RM1 + Z0R1 + R1RM1)

2Z0RM1 + 2Z0R1 + R1RM1
(18)

θπ,shunt,A ≈ − tan−1
ω
(

CM1R2
1(R2 + RM2)(Z0 + R2 + RM2)

2 + 2Z0CcR2
2(Z0(R2 + RM2) + R1(Z0 + R2 + RM2))

)
(R2 + RM2)(Z0 + R2 + RM2)(2Z0(R2 + RM2) + R1(Z0 + R2 + RM2))

(19)

where ω2C2 and higher-order variables are omitted to simplify the calculations. In order to
obtain the minimum phase error, the phase difference between the two states is expected to
be as small as possible in a wide range of bandwidth.

∆θπ,shunt = θπ,shunt,A − θπ,shunt,R (20)

Figure 10 illustrates the contribution of the shunt capacitor in reducing the phase
variation. It can be seen that, in the attenuation of 8 dB, the attenuation cell with shunt
capacitors shows a particularly small phase change.
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2.2.4. Improved π-Type Attenuation Cell Selection

It can be seen from the above discussion that both tail capacitors and shunt capacitors
can provide a low-pass network to achieve the effective compensation of the attenuation
cell. However, these two compensation methods are targeted to different scenarios. Adding
a tail capacitor to the attenuation cell is more capable of adjusting the phase difference be-
tween the two states to zero than adding a shunt capacitor, as shown in Figure 8. However,
it is worth noting that, as shown in Figure 7, when an attenuation cell with a tail capacitor
performs a large attenuation level, there will be an increase in R1 and a decrease in R2. In
this case, there will be more signal leakage for high frequencies than low frequencies, lead-
ing to a serious amplitude instability in the wide band. On the contrary, the compensation
method of adding shunt capacitors is implemented by adding a new path, which makes
the amplitude variation more robust to frequency. The amplitude variation remains stable
at large attenuation levels as well.

In order to achieve a better attenuator performance while taking into account ampli-
tude flatness, bandwidth, and area, the improved π-type attenuation cell with tail capacitors
is used to achieve 2 dB and 4 dB attenuation levels in this design. The improved π-type
attenuator with shunt capacitors is used to achieve an 8 dB attenuation level.

2.3. Switched-Path Type Attenuation Cell

The topologies proposed above are able to achieve effective attenuation, even in small
areas. However, these topologies also suffer from the same problem of not being capable of
achieving large attenuation levels over a wide bandwidth. Based on the previous analysis,
it can be concluded that these topologies have amplitude and phase instability at large
attenuation levels. For the design of attenuation cells with large attenuation levels, some
studies intend to use two identical attenuation cells for superposition [15]. For example,
to achieve 16 dB attenuation, two 8 dB π-type attenuation cells are used and switched at
the same state. However, this approach not only fails to demonstrate the advantages of
the compactness of the T-type and π-type but also increases the complexity of the system,
which creates the risk of system instability. More importantly, this approach does not
reveal prominent advantages compared to the switched-path type structure. Therefore, the
switched-path type structure is the better choice for large attenuation levels.

The switched-path type topology is shown in Figure 11, which divides the reference
state and the attenuation state into two independent paths. In the attenuation state, M1 is
on-state and M2 is off-state, and the signal flows from the input to the output through the
upper path. In the reference state, M2 is on-state and M1 is off-state, and the signal flows
from the input to the output through the lower path. The two independent paths allow the
parasitic effects of the switches in the two paths to cancel each other out and provide a low
phase error over a wide bandwidth.
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In order to better regulate the phase error in the broadband, the proposed switched-
path type attenuation cell uses a series inductor L1 in the reference state and two series
inductors L2 with three resistors in the attenuation state, as shown in Figure 11. This
structure provides more freedom for the phase regulation of the attenuation cell, making it
easier to achieve phase balance. In addition, this topology is desired to ensure two entirely
independent paths, i.e., one path should be completely cut off while the other path is
working. Therefore, the off-isolation of the two paths seems particularly important. In the
design of this paper, two leakage switches, M3 and M4, are added to the reference and
attenuation paths of the switched-path attenuation cell, respectively, as shown in Figure 11.
To ensure that the signal can be effectively leaked when the path is cut off, M3 and M4 are
in opposite states to M1 and M2, respectively. In this way, it is possible to ensure that the
signal passes through only one path, making the phase variation smaller and achieving
a broadband balance of phases. The phase variation between the reference state and the
attenuation state of the switched-path attenuation cell is shown in Figure 12, which shows
that the two paths both have similar phase variations and a small relative phase.
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2.4. Cascade of Attenuation Cells

The design of the attenuator should ensure that each attenuation cell has an accurate
attenuation level, a small phase variation, and a wide bandwidth. The performance of each
cell will eventually affect the root-mean-square (RMS) attenuation error, bandwidth, etc. of
the whole attenuator. The 6-bit DSA designed in this paper is shown in Figure 13, which
contains two T-type cells, two π-type cells with tail capacitor compensation, one π-type
cell with shunt capacitor compensation, and one switched-path cell, achieving 0.5 dB, 1 dB,
2 dB, 4 dB, 8 dB, and 16 dB attenuation, respectively. The 16 dB cell is placed in the middle
because this cell uses a switched-path topology and has better isolation. The 2 dB and 4 dB
cells have smaller attenuation levels with the improved π-type cells, so they have better
s-parameters and are placed at both ends. Using such a cascade sequence of attenuation
cells can improve the performance of the overall attenuator. Meanwhile, a large series
gate resistor is used to reduce the leakage of radio frequency (RF) signals and weaken the
coupling effect of the parasitic capacitor.



Electronics 2022, 11, 3620 11 of 16

Electronics 2022, 11, 3620 11 of 16 
 

 

which contains two T-type cells, two π-type cells with tail capacitor compensation, one π-

type cell with shunt capacitor compensation, and one switched-path cell, achieving 0.5 dB, 

1 dB, 2 dB, 4 dB, 8 dB, and 16 dB attenuation, respectively. The 16 dB cell is placed in the 

middle because this cell uses a switched-path topology and has better isolation. The 2 dB 

and 4 dB cells have smaller attenuation levels with the improved π-type cells, so they have 

better s-parameters and are placed at both ends. Using such a cascade sequence of atten-

uation cells can improve the performance of the overall attenuator. Meanwhile, a large 

series gate resistor is used to reduce the leakage of radio frequency (RF) signals and 

weaken the coupling effect of the parasitic capacitor. 

Vc

M1

Vc Vc

R1

R2 R2

M2 M2

Ctail1 Ctail1

Vc

M3

Vc Vc

R3

R4

M4 M4

Cc R4 Cc

Vc Vc

Vc Vc

Vc Vc

Vc Vc

M5 M5

M6 M6

L1

L2 L2

M7 M7

M8 M8

R5

R6 R6

R8

R7

Vc

Vc Vc

R9

R10 R10

M12 M12

Ctail2 Ctail2

Vc
M9

Vc
M10

M11

0.5 dB

1 dB

2 dB 4 dB8 dB 16 dB

M1:4×75 μm

M2:1×25 μm

Ctail1:29.7 fF

R1:11.42 Ω 

R2:206.13 Ω  

M3:4×40 μm

M4:1×25 μm

Cc:39.1 fF

R3:62.06 Ω 

R4:98 Ω  

M9:1×25 μm

M10:1×25 μm

R7:146.57 Ω 

R8:346.96 Ω  

M11:4×40 μm

M12:1×25 μm

Ctail2:34.2 fF

R9:32.62 Ω 

R10:39.96 Ω  

M5:4×45 μm

M7:2×70 μm

R5:285.34 Ω 

L1:0.496 nH 

M6:4×45 μm

M8:2×70 μm

R6:127.78 Ω 

L2:0.3035 nH 

 

Figure 13. The simplified schematic of the proposed 6-bit DSA. 

3. Logic Control Circuits 

The attenuators are often integrated in T/R modules, which have single-ended (pos-

itive) control voltages to make them uncomplicated, compact, and low-cost. However, 

most designs of GaAs-based microwave devices use GaAs pHEMT based on the negative 

bias voltage. Therefore, in order to improve the overall system performance, it is necessary 

to design logic control circuits to transfer the positive voltage to the negative voltage. In 

this paper, an on-chip integrated direct-coupled FET logic (DCFL) control circuit is de-

signed due to the low DC consumption, small chip area, and fast response [19,20], which 

is capable of converting 0/+5 voltages to −5/0 voltages. 

The designed logic control circuit is shown in Figure 14, which consists of E-mode 

pHEMT and D-mode pHEMT. The E-mode pHEMT determines the threshold value of the 

inverter, and the D-mode pHEMT acts as the load for the control circuit. The final output 

voltage is −5 or 0 V. In this figure, 𝑉𝑜𝑢𝑡1 and 𝑉𝑜𝑢𝑡2 are two complementary voltages. The 

results of the time domain transient simulation in the case of the input pulse voltage being 

5 V are shown in Figure 15. 

Vout1

Vout2

Vref

Vin

E1

E2

E3

E4

E5

D1 D2

R1

R2 R3 R3 R3 R3 R3

R4 R4 R4

R5

R1:100 kΩ 

R2:10 kΩ

R3:100 Ω

R4:60 kΩ

R5

R5:10 kΩ

Vref: -5 V

 

Figure 14. The schematic of the designed logic control circuit. 

Figure 13. The simplified schematic of the proposed 6-bit DSA.

3. Logic Control Circuits

The attenuators are often integrated in T/R modules, which have single-ended (posi-
tive) control voltages to make them uncomplicated, compact, and low-cost. However, most
designs of GaAs-based microwave devices use GaAs pHEMT based on the negative bias
voltage. Therefore, in order to improve the overall system performance, it is necessary to
design logic control circuits to transfer the positive voltage to the negative voltage. In this
paper, an on-chip integrated direct-coupled FET logic (DCFL) control circuit is designed
due to the low DC consumption, small chip area, and fast response [19,20], which is capable
of converting 0/+5 voltages to −5/0 voltages.

The designed logic control circuit is shown in Figure 14, which consists of E-mode
pHEMT and D-mode pHEMT. The E-mode pHEMT determines the threshold value of the
inverter, and the D-mode pHEMT acts as the load for the control circuit. The final output
voltage is −5 or 0 V. In this figure, Vout1 and Vout2 are two complementary voltages. The
results of the time domain transient simulation in the case of the input pulse voltage being
5 V are shown in Figure 15.
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4. Simulation and Measurement Results

The proposed 6-bit DSA has been fabricated in the 0.15 µm GaAs pHEMT technology,
which is a mature technology and has high-yield, low-noise, and low-cost characteris-
tics. The chip micrograph is shown in Figure 16. The core area of the attenuator is
0.4 mm × 1.5 mm, and the attenuator is measured on-wafer by using a Cascade Summit
1200 M probe station and a Keysight N5245A microwave network analyzer. In Figure 17, the
simulated and measured attenuation results of the major states are demonstrated. Although
the measured results exhibit larger IL due to the additional interconnect structure, they
still show a stable attenuation in 4–24 GHz. The simulated and measured relative phase
variations for major states are given in Figure 18, where the measured results are quite
similar to the simulated results. It can be seen that the designed attenuation cells all show
satisfactory performance. The measured results for S11 and S22 are shown in Figure 19a,b,
respectively. Thanks to good matching and cascade optimization, the input and output
reflection coefficients of all attenuation states are below −18 dB, which will increase the
overall stability of the system and reduce the IL of the attenuator. Figure 20 exhibits the
measured results of all attenuation states. The simulated and measured amplitude error
RMS and relative phase error RMS are given in Figure 21. The amplitude error RMS is
less than 0.15 dB and the relative phase RMS is less than 3◦ over the entire operating band,
which demonstrates great performance for processing. Table 1 summarizes the performance
of the proposed attenuator and compares it with the relevant state-of-the-art literature. In
this table, the III–V technology exhibits significant advantages in terms of insertion loss and
relative phase variation compared to silicon technology. More importantly, the attenuator
designed in this paper based on the III–V technology achieves a similar area with the silicon
technology, which demonstrates the high compactness of the proposed design. Compared
with other attenuators based on III–V technologies, the proposed attenuator exhibits su-
perior performance in many aspects due to the reasonable selection, improvement, and
cascading of attenuation cells.
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Reference [21] [22] [4] [8] [7] [13] [23] This Work

Technology GaAs
FET GaAs 0.13 µm

CMOS
65 nm
CMOS

0.13 µm SiGe
BiCMOS

0.13 µm SiGe
BiCMOS

0.13 µm SiGe
BiCMOS

0.15 µm GaAs
PHEMT

Topology Distributed
T-type T-type T-type T-type

π-type T-type T-type
π-type π-type

T-type
π-type

Switched-path

Bandwidth (GHz) DC-20 4–8 0–2.5 37–40 DC-20 33–41 28–40 4–24

Step (dB)/Bit 1.5/4 0.5/5 / 1/5 0.5/6 0.5/5 1/5 0.5/6

Attenuator Range
(dB) 22.5 15.5 42 31.5 31.5 15.5 31 31.5

IL (dB) 3.1–4.8 4.8 0.9–3.5 7 4 13 5.4–9.1 4.2–4.5

Return Loss (dB) >13 / >8.2 >12 >10 >10 >10 >18

RMS Attenuation
(dB) 0.5 0.2 / 0.27 0.37 0.2 0.43 0.15

RMS Phase (Deg.) / / / 3.7 4 2.5 5.4 3

Size (mm) 2.6 × 1.6 1.8 × 1.2 / 0.51 × 0.42 1 × 0.14 0.5 × 0.44 (0.21 mm2) 1.5 × 0.4

5. Conclusions

This paper proposes a broadband precision 6-bit DSA with 0.15 µm GaAs pHEMT tech-
nology. Compared with silicon technology, GaAs technology exhibits stronger advantages
in irradiation resistance and power handling capability. In our design, the characteristics of
various attenuation cells are analyzed theoretically, and suitable attenuation cells are se-
lected for different attenuation levels. In order to enhance the performance of the designed
attenuator, the selected attenuation cells are improved in various ways. These improved
attenuation cells are further optimized for cascading. As a result, a high-performance
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and compact attenuator with III-V technology is achieved, which has an amplitude er-
ror RMS below 0.15 dB, a phase error RMS below 3◦, and S11 and S22 below −18 dB in
4–24 GHz. At the same time, the on-chip logic control circuit is designed in this paper,
which greatly reduces the overall complexity and improves the stability of the radar system.
Unfortunately, the designed attenuator has a larger area compared to the attenuators with
silicon technology, though it has a relatively small area with III-V technology. The designed
attenuator has overlapped states below 1 GHz, which need to be improved in our future
research. Overall, the designed attenuator has the merits of accurate and stable attenuation
levels, a wide bandwidth, a strong irradiation resistance, and power handling capability.
Therefore, the designed attenuator is suitable for future broadband radar systems which
concentrate on multi-function, multiple operating modes, and MIMO.
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