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Abstract: Entity linking is a process of linking mentions in a document with entities in a knowledge
base. Collective entity disambiguation refers to mapping of multiple mentions in a document with
their corresponding entities in a knowledge base. Most previous research has been based on the
assumption that all mentions in the same document represent the same topic. However, mentions
usually correspond to different topics. In this article, we proposes a new global model to explore the
extraction of multitopic coherence in the same document. Herein, we present mention association
graphs and candidate entity association graphs to obtain multitopic coherence features of the same
document using graph neural networks (GNNs). In particular, we propose a variant GNN for our
model and a particular graph readout function. We conducted extensive experiments on several
datasets to demonstrate the effectiveness to the proposed model.

Keywords: entity linking; graph neural network; graph attention network

1. Introduction

The fundamental aspect of the entity-linking task is to correctly link entity mentions
extracted from a document to the corresponding entity objects in the knowledge base. Entity
linking is an essential part of natural language processing. It is a prerequisite step in many
natural language processing tasks, such as question answering [1], relation extraction [2],
and knowledge base-based question-and-answer systems [3].

Most current entity-linking tasks use a combination of two-stage models, i.e., local
and global models [4–8]. The local model models the context of each mention in the
document. In contrast, the global model considers all mentions in the entire document
and models the global coherence of topics across all mentions [9]. During the modeling
process, the similarity of entity mentions and candidate entities is calculated in terms of
multiple features. In current, deep-learning-based entity-linking research, the most used
features for ranking candidate entities are prior popularity, context similarity, and topic
consistency. Prior popularity refers to the probability that a mention is linked to a candidate
entity without considering to the context of the mention; the use of popularity alone can
achieve an accuracy of more than 70% [5]. With the context similarity method, in order to
obtain more hidden information about the current mentions and calculate the similarity
with the candidate entity descriptions, the entity mentions and the corresponding contexts
are encoded using a neural network to obtain the embedding of the current entity mention
contexts. Under the topic consistency method, the two abovementioned features mentioned
are the local similarity between the entity mention and one of the corresponding candidate
entities. Each entity mention in the document can be independently connected to the
corresponding candidate entity according to the two features mentioned above. These
features are also called local features. According to Cucerzan, an increasing number of
entities can be connected [10], with a focus on the global topic consistency among the
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mentions of the document ensemble and the uniform association of these entity mentions.
The global topic consistency feature is based on the assumption that mentions appearing
simultaneously in the same document are topologically consistent entities and model the
global consistency of topics in all mentions [9]. Most previous work tasks assumed that the
topics in the same document are coherent and that there is one and only one topic [11,12].
Here, we consider the possibility of two or more topics appearing in the same document
at the same time. That is, there may be two or more inconsistent topological structures in
the same document. Entity mentions in a document can belong to different topological
structures, and the embedded features extracted by the neural network for each topological
structure may be inconsistent. For example, in the sentence, “Apple’s Steve Jobs likes to eat
apples made by Dole.” Contains two topics. One is the topic of Apple, the company. The
first mention of Apple and the mention of Steve Jobs belong to this topic. The second is
the topic that represents apple (the fruit) and the mention (Dole); and the second mention
of apple falls under this topic. However, the current global topic consistency model only
considers globally unique topics that may affect the linking of entities. If only globally
unique topics are considered, the model will likely to connect both apple mentions to the
candidate entity Apple based on globally unique features. Such errors accumulate and lead
to suboptimal results in the final global linking.

To address the shortcomings of existing global models, we propose a multitopic coher-
ence extraction model to account for a high probability of sharing similar or identical topics
between mentions in documents. The proposed global approach is designed to integrate
the features between all candidate entity pairs. The collective underlying information
between these highly similar mentions can be used as critical information to obtain a coher-
ent feature representation of the hidden topic. In this model, we consider both mentions,
their contextual information, and entity information in the target knowledge base. The
model is divided into two parts. First, we assume that there are multiple topics in some
documents. The mentions are composed of different mention association graphs according
to the similarity between the mentions in the same document. Each mention association
graph is a topic in the current document. The features of this mention association graph are
obtained using a GNN. The second part forms a candidate entity association graph with all
the candidate entities of all mentions under the current mention association graph. For this
graph, we use another GNN to capture the globally consistent features of the current topic.

In the first part, the entity mentions in a document are fully connected as the nodes of
the graph. The embedding similarity between the mention pairs is calculated as the edge
weight to form a fully connected entity mention association graph. The key aspect of the
problem is how to divide the fully connected entity association graph into one or more
topic subgraphs based on the topic consistency between mentions. Considering multiple
global topics, if we choose to divide the topics in the text according to a fixed number, it is
very likely that there will be too many or too few split topics, which will significantly affect
the topic feature extraction. Therefore, we adopt the method of dynamically determining
the number of topics. That is, by calculating the similarity of all entity mentions, using
hyperparameters to compare with the similarity threshold, the entity mentions that exceed
the threshold are divided into the same topic, allowing the model to learn to determine
how many topics are contained in each document. Numerous experiment prove that our
dynamic approach can effectively classify topics with coherent entity mentions into the
same topic.

In the second part, after obtaining the feature of the mention association graph, we do
not use the feature directly as the topic feature of the current topic. The feature is associated
with all candidate entities under all entity mentions associated with the current topic to
obtain the candidate entities association graph. Feature extraction is performed on the
graph to obtain the accurate feature vector of the current topic. Finally, we take the obtained
topic consistency feature as the main feature to participate in the final global model result
calculation to obtain the ranking of candidate entity mentions for each entity.
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Because we are only constructing the global model, we compare the baseline model
with the same local model. A large number of experiments on multiple datasets demon-
strate the validity of our model.

Our contributions are summarized as follows:

1. We propose a new hypothesis that there may be more than one topic consistency
topology in a document. We propose a multitopic global consistency extraction model.
The model adopts a new method of constructing an entity mention association graph
and candidate entity association graph.

2. We adopt a new graph readout approach and a variant version of a GNN for our
model to construct a mention association graph.

3. Extensive experiments using our global model on a benchmark with the same local
model show that our global model achieves competitive results.

2. Problem Definition

Assume a document (D) containing entity mentions set M = {m1, m2, . . . , mT}, where

for each mention, mi(1 ≤ i ≤ T), the candidate entity is Γ(mi) =
{

e1
i , e2

i , . . . , e
Nj
i

}
(Ni ≥ 1).

The purpose of entity linking is to connect each mention ofmi to its corresponding gold
entity, e∗i ∈ Γ(mi). Entity-linking tasks are usually divided into two steps. The first step

generates the set of possible candidate entities, Γ(mi) =
{

e1
i , e2

i , . . . , eNi
i

}
(Ni ≥ 1). The

second step is to sort the candidate entities. The candidate entities are sorted based on
the combination of the local ranking score and global ranking score. The local ranking
score is obtained from the local model, and the global ranking score is obtained from the
global model.

3. Related Work

In this section, we focus on local and GNN modeling methods. Our work focuses on
the construction of a global model, and the local model uses the local model proposed by
Ganea and Hofmann [5].

3.1. Local Model

The local model was proposed by Ganea and Hofmann [5]. An attention mechanism
is used based on the assumption that only part of the keyword information in the mention
context can be exploited for the representation of mentions. These words help to reduce
the noise of mentions and improve the ambiguity of mentions. In this study, a keyword is
defined as a word in the mention context that is closely related to at least one candidate
entity of the given mention.

We assume a local context for mentioning, and for each of its candidate entities, the
local ranking score is calculated as follows:

Ψ(mi, e
Nj
i ) = f (h

e
Nj
i

Bhci ) (1)

where h
e

Nj
i

is the embedding vector of the candidate entity, B is the diagonal matrix, a

trainable parameter, and hci represents the embedding mention in the local context. f (·) is
a function for which the attention mechanism is used. Ganea and Hofmann believe that
only a few words in the context of entity mentions are effective for interpreting vague
information about entity mentions. The values in the diagonal matrix represent the weight
values of different words. Through this model, we can obtain the similarity score of each

entity mention (mi) with each candidate entity (e
Nj
i ). The candidate entity with the highest

score is ultimately selected as the target entity. In this process, each entity mention and its
candidate entities are calculated independently, and the feature information of other entity
mentions and other candidate entities is not considered.
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3.2. Global Model

According to Ganea and Hofmann [5], each candidate entity is fully connected to
another candidate entity in pairs, a joint probability distribution is defined using conditional
random fields, and the marginal probabilities are directly optimized using truncated fitted
LBP propagation applied to a fixed number of iterative message passes.

Le and Titov [6] pointed out that a single bilinear form score is too simple to uncover
the complex semantic association information between entities. Therefore, they proposed
the addition of multiple relations for each entity the use of different forms to assign different
weight values to the relations, on top of the same LBP is added to achieve more competitive
results at a lower cost.

3.3. Graph Neural Networks

The concept of graph neural networks was originally proposed by Gori et al. [13]. The
concept of a complete graph neural network was subsequently developed and by Massa
et al. [14]. Early approaches to graph neural networks mainly used recurrent neural units to
aggregate information from the collocated nodes and eventually generated a representation
of the target node. The concept of a spectral convolutional neural network (GCN) was
proposed by Defferrard et al. [15]. Later, message-passing neural networks generalized
these GCN-based approaches, defining a new paradigm for graph neural networks con-
sisting of two steps: message passing and graph readout. Later, researchers proposed the
concept of a graph-gated neural network (GGNN) [16]; the biggest modification of this
neural network is the use of gated neural units and fixed T-step cycles. In the aggregation
phase of message passing, the gating unit is used to control which features of the leader
nodes should be aggregated.

The current GGNN is suitable for the sequence graph model. In order to adapt to
our task, we improve the GGNN, from the previous order of information transfer to only
consider the information of the node in degree. Because our entity mentions each node in
the association graph, each node is bidirectionally associated, which cancels the sequence
information. The information of each node can also be transmitted to the neighbor node
for information aggregation.

The current graph readout function is a simple linear addition of the features of all
nodes, resulting in the loss of a considerable amount of original feature information of the
nodes; therefore, it is not conducive to capturing the entire graph feature. We propose a
new graph readout method, which will be described in detail in the following chapters.

Cao et al. [17] applied a graph convolutional network (GCN) to the entity-linking
task, which proved effective. Fang et al. [18] used a graph attention network to capture
global topic coherence. The graph attention network can dynamically obtain important
information about different neighbor nodes through a special self-attention mechanism.
The existence of the graph structure can combine the same topic. All candidate entities are
associated with each other, so the correlation information between candidate entities can
be better captured.

Junshuang et al. [12] proposed a dynamic GCN model, arguing that entity mention
connectivity graphs should consider the contextual information of entity mentions and
the structural information of entity mention relatedness. We propose a dynamic GCN
paradigm applied to entity connectivity, whereby the graph structure input into the GCN
is dynamically computed and modified during the model training process.

4. Multitopic Coherence Model

The overall framework of our model consists of two main parts: the mention associ-
ation graph and the candidate entity association graph. The mention association graph
is generated from the mention full connectivity graph and represents the classification
relationship of the topic. Different mention association graphs can be used to extract the
potential semantic features of the mention collected by our variant GNN. Furthermore,
this semantic feature is used as the association feature of the current topic. The candidate
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entity association graph comprises all the candidate entities under the current topic and
the obtained mention entity association graph features. Then, the global coherence features
of the current topic are obtained through the graph attention network (GAT). Finally, the
global score of each candidate entity under the current mention set is calculated based on
the similarity between the coherence feature of the current topic and the representation
vector of each candidate entity. The overall architecture of our model is illustrated in
Figure 1.
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Figure 1. The overall architecture of our model. Assume that the current document (D) has six
mentions, and each mention has four candidate entities.

4.1. Mention Association Graph and Feature Extraction

We start by categorizing the possible topics. Selectkleft neighbor words
ci,l =

{
wi,l1, wi,l2, . . . , wi,lk

}
; k right neighbor words, ci,r =

{
wi,r1, wi,r2, . . . , wi,rk

}
; and

mi own words, ci,m =
{

wi,m1, wi,m2, . . . , wi,mk
}

, in the local context. Then, we embed these
words into the same vector space. We first sum the word vectors in each of the three parts
to obtain the vectors of the three parts: hcl , hcm , hcr ∈ Rd. Then, we concatenate the three
parts, embedding the vectors into one vector (hmi ∈ Rd×3) as the representation vector of mi.
First, we use the a two-layer multilayer perceptron (MLP) to reduce the dimensionality of
hmi , and then use the self-attention mechanism to obtain the final representation (xmi ∈ Rd)
of mi:

xmi = α ·V (2)

α = softmax(
QKT
√

dk
) (3)

Q = WQ · h′mi (4)

K = WK · h′mi (5)

V = WV · h′mi (6)

where WQ, WK, WV is the matrix that can be learned; we obtain h′mi ∈ Rd by using a
two-layer MLP:

h′mi = Dropout(Wlinear,1σ(Wlinear,2(hmi ))) (7)

where Wlinear,1, Wlinear,2 are learnable parameters, and σ is the activation function; here, we
use Tanh. The model (xmi ) is obtained as shown in Figure 2.
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Figure 2. The architecture of the mention representation layer.

After obtaining the set of all mention hidden representations (Sxm = {xm1 , xm2 , . . . , xmT})
of the current document (D), the full mention connection graph (Gm = (Vm, Em)) is built.
We use the mention set (M) of the current document (D) as the node (Vm) of the graph. The
set
{
(mi, mj)

∣∣mi, mj ∈ M
}

is obtained by making a Cartesian product of M with itself as a
set of edges (Em). The weight value of each edge in the graph is obtained by calculating the
cosine similarity between the two mention representation vectors. The final composition of
the full connection mention graph is shown in Figure 3a.
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Figure 3. The whole process of mention graph construction. We assume that the current document
(D) has six mentions. (a) A fully connected graph of mentions. (b) Sparse graph after maximum
pooling. (c) Mention association graph after adding global nodes and unique edges.

We define a similarity threshold (λ) to break the edge if the weight value of the edge in
the graph is lower than λ. Finally, multiple sparse mention association graphs are obtained,
as shown in Figure 3b. We define the number of obtained sparse graphs as the number of
topics in the current document. The whole mention set of document D is split into different
M1 ∪M2 ∪ . . . ∪Mn according to the situation of sparse connection, where n is the number
of mention association graphs after sparse connection (if a node has no connected edges
with other nodes, then we treat this node as an entire graph).

Earlier GNN graph readout methods used linear methods, such as summing and
averaging of all graph nodes, to obtain a full graph representation. However, this method
loses a considerable amount of feature information. Therefore, we propose a new approach
to graph readout. We add a global node (sn

m) to each graph. Furthermore, we construct a
unique edge between each mention node and the global node; this edge only points from
the mention node to the global node, as shown in Figure 3c. Therefore, when we use our
variant GNN, the nodes at both ends of this unique edge indicate that the information can
only flow from the mention node to the global node. After the multilayer GNN, our global
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node can represent the information of the whole graph. The initial representation of the
global node is defined as follows:

x(0)sn
m

=
1
T

T

∑
i=1

x(0)mi (8)

Existing GGNN networks [16] are mainly applied to graph structures with sequence
structures. In order to adapt to our task, we modified the GGNN so it only focuses on in-
degree information of the graph neural network (FIGNN). Specifically, we modify the form
of the adjacency matrix in the GGNN from the original form considering the splicing of
the in-degree adjacency matrix and the out-degree adjacency matrix to a form considering
only the in-degree adjacency matrix. Considering the information-capturing capability of
GRU, we only use a single-layer linear transformation as the message-passing function
and update function in the GNN. Ein(i) = [(j1, i), (j2, i), . . . , (jdi

, i)] represents the edge
from node jdi

to node i, where jdi
is the in degree of node i. After the mention association

graph is constructed, we use an FIGNN to capture the collective information of the mention
association graph. For the representation vector (x(l)mi ) of each node in graph Gm, the update
rule is defined as follows:

x(l+1)
mi = W(l)

g,1(x(l)mi

∣∣∣∣∣∣h(l)k ) (9)

where
{

h(l)k : 0 ≤ k ≤ di

}
is the GRU hidden state, and the initialization status (h(0)k ) is set

to the zero vector. The GRU is then used to aggregate information between the hidden
layer representation and the node representation passed through the message function:

h(l)k = GRU(l)(W(l)
g,2x(l)mjk

, h(l)k−1) (10)

After one layer of the FIGNN, we obtain the final representation of all nodes. We use
global node representation to represent the whole graph representation:

xGm = x(l)sn
m

(11)

4.2. Topic Coherence Feature

After obtaining the whole graph representation of the mention graph, we move to
the next stage, which is extraction of the global coherence feature of the current topic.
First, we construct the candidate entity association graph, Ge = (Ve, Ee). We construct a
central node. The representation of the central node is the representation of the previously
obtained mention graph. Consider all candidate entities in the mention set of the current
mention graph as nodes of the graph to obtain the final set of nodes of the candidate entity
association graph, Ve = {Sn

m, ei|ei ∈ Γ(Mn)}. We connect all candidate entity nodes to the
central node and obtain the set of edges as Ee = {Sn

m, ei|ei ∈ Γ(Mn)}. The final candidate
entity association graph is shown in Figure 4.
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Figure 4. The figure shows the candidate entity association graph. The red node is the central node.

After obtaining the candidate entity association graph, we use a multilayer, multi-
headed GAT to capture the global coherence feature of the current topic. The representation
for each node (x(l+1)

ei ) in the candidate entity association graph is defined as follows:

bij = a([W(l)
gat,1x(l)ei

∣∣∣∣∣∣W(l)
gat,2x(l)ej ]), j ∈ Ni (12)

where xei
is the representation vector of candidate entity ei, xej is the representation vector

of the neighbor nodes of candidate entity ei, a is a single-layer feedforward neural network,
W(l)

gat,1, W(l)
gat,2 are trainable parameters initialized with different parameters at each layer.

Then, we use Softmax to obtain the attention score of each node:

αi =
exp(LeakyReLU(bij

)
)

∑k∈Ni
exp(LeakyReLU(bik))

(13)

x(l)ei = Max(||Kk=1σ( ∑
j∈Ni

αijW
(l)
gat,3x(l−1)

ei )) (14)

x(l+1)
ei = x(l)ei + x(0)ei (15)

where K is the number of heads of the multihead graph attention network, and the max-
imum value of each head is the node representation. x(0)ei represents the initial node
representation of the candidate entity association graph. Here, the form of residual joints
is used.

To obtain the representation vector of the current graph, we use soft attention to
strive for the attention of the central node (Sn

m) with other nodes; the final graph level
representation is as follows:

hGe = ∑
ei∈Γ(Mk)

βix
(l+1)
ei (16)

βi = softmax(εi) (17)

εi = qTσ(Wlinear,3x(l+1)
ei + Wlinear,4x(l+1)

sn
m

+ r) (18)

where q, r ∈ Rd and Wlinear,3, Wlinear,4 are trainable parameters. Finally, we use the obtained
candidate entity association graph representation of the current topic as a global coherence
representation of our current topic. We perform a cosine similarity calculation using the
current feature with the embedding (xei ) of each candidate entity (ei ∈ Γ(Mk)) in the
currently mention set (Mk) to obtain the global score of each candidate entity:

Φ(ei) = cos inesmliarity(hGe , xei ) (19)
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5. Rank and Model Training

We focus on the global model, with the local model and the corresponding loss
function proposed by Ganea and Hofmann [5].

_
p (e
∣∣∣m) was also proposed by Ganea and

Hofmann [5].
_
p (e
∣∣∣m) is calculated using two indices; one index is the hyperlink count

statistics of mention entities in Wikipedia, and the other index is the hyperlink count
statistics of mention entities in a large predictor database; finally, the average probability of
these two indices is calculated.

5.1. Candidate Entity Ranking

Candidate entity ranking. After obtaining the global score of each candidate entity,
we concatenate the local score (Ψ(m, e)) and global score (Φ(e)) of each candidate entity
with the mention candidate entity prior probabilities (

_
p (e
∣∣∣m) ) and use a two-layer linear

transformation to obtain the score of each candidate entity:

ρi(e) = Wlinear,5(Relu(Wlinear,6[Ψ(m, e)
∣∣∣∣Φ(e)

∣∣∣∣ p̂(e∣∣m)])) (20)

5.2. Model Training

Model training. We use max margin loss, and the loss function is calculated as follows:

L(θ) = ∑
D∈D

∑
m∈D

∑
e∈Γ(mi)

h(mi, e) (21)

h(mi, e) = max(0, γ− ρi(e∗) + ρi(e)) (22)

where e∗ is the gold entity mention to mi, and γ is the hyperparameter. The objective of the
global model is to minimize this loss function (L(θ)).

6. Experiment
6.1. Datasets

We chose the following most popular datasets based on previous research as our
experimental datasets. AIDA-CoNLL [19] is an in-domain scenario dataset that contains
AIDA-train for the training data of our model, AIDA-A for validation, and AIDA-B for
testing. MSNBC, AQUAINT, and ACE2004 are used as out-domain scenario datasets,
which were compiled and uploaded by Guo and Barbosa [20]. The data statistics for the
datasets are shown in Table 1.

Table 1. Datasets statistics.

Dataset # Mention # Doc Mentions Per Doc Gold Recall

AIDA-train 18,448 946 19.5 -
AIDA-A 4791 216 22.1 97.3
AIDA-B 4485 231 19.4 98.3
MSNBC 656 20 32.8 98.5

AQUAINT 727 50 14.5 94.2
ACE2004 11,154 36 7.1 90.6

6.2. Candidate Entity Selection

For each mention (mi), We use
_
p (e
∣∣∣m) to obtain the 30 candidate entities with the

highest scores. Then, we keep the four candidate entities with the highest
_
p (e
∣∣∣m) and keep

the four candidate entities with the highest f (hT
e , ∑w∈ni

hw) scores, where he, hw ∈ Rd are
the embeddings of entities and words, andnirepresents the 50 contextual words in the local
window of mi. To prove the validity of the model, we use the same pretraining method as
in [5] to obtain the embeddings of entities.
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6.3. Hyperparameter Setting

We adapt our hyperparameters to the model’s performance in the AIDA-A validation
set. We set the embedding dimension of the model for words and entities to 300. We set
each batch to contain only one document. The rank margin is γ = 0.01. We use Adam [21]
as the optimizer and first set the learning rate to 1 × 10−4. We set the learning rate to
1 × 10−5 when the accuracy of our validation set exceeds 91.5%. Our FIGNN is set to two
layers, and the number of layers of the multiheaded graph attention network is set to four.
Each layer is initialized with different parameters of the GAT, and the number of heads
in each layer is set to six heads. The similarity threshold between mention pairs is set to
λ = 0.3.

6.4. Contrast Models

We compare our model with the following existing methods. AIDA [7] designed a
global mapping algorithm that consists of two phases, as well as several consistent features,
which have some relevance in the domain or category. GLOW [8] uses SVM to combine
both local and global features for calculation. RI [22] proposes that there is a relationship
between entities and makes an inference. WNED [20] first constructs the disambiguation
graph and later uses random walks on this graph. The DEEP-ED [5] model uses LBP for
joint inference learning and entity embedding learning at the global level. Ment-Norm [6]
models multiple potential relationships that may exist between mentions and, achieving
satisfactory results. DGCN [12] proposes a dynamic GCN model that aggregates knowledge
from dynamic nodes to dynamically capture global document topic features.

6.5. Result

We evaluated our merged model on all public datasets. Because the main focus of the
present work is the global model, we focus on comparing methods with consistent local
models but inconsistent global models. These models are state-of-the-art methods under
consistent local models. We used micro F1 values for this measure.

The results are shown in Tables 2 and 3; our model achieves the most advanced results
on both MSNBC and ACE2004 datasets, proving the effectiveness of our global model.

Table 2. Micro F1 scores on five out-domain test datasets.

Method MSNBC AQUAINT ACE2004

Prior
_
p (e
∣∣∣m) 89.3 83.2 84.4

AIDA 79 56 80
GLOW 75 83 82

RI 90 90 86
WNED 92 87 88

DEEP-ED 93.7 88.5 88.5
Ment-Norm

DGCN
Our model

93.9
91.0

94.9 ± 0.2

88.3
89.4

88.4 ± 0.1

89.9
90.6

91.0 ± 0.1

Table 3. Comparison of performance scores of global models on the in-domain AIDA-B dataset.

Method In-KB acc. (%)

AIDA 84.8
GLOW 90.7

RI 71.51
WNED 89.0

DEEP-ED 92.22
Ment-Norm 93.07

DGCN 93.13
Our model 93.2
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On the in-domain dataset, our model outperforms Ment-Norm, benefiting from the
strong learning ability of our global model. For example, our model benefits significantly
from the use of the attention mechanism to embed the mention words and entities in the
same space.

6.6. Analysis
6.6.1. Mention Pair Similarity Threshold Value Learning

The similarity threshold value for mention pairs is crucial for our model. This threshold
value determines the number of mention association graphs for each document after max
pooling the fully connected mention graph with the number of topics in the same document.
The number of mention association graphs in the document is dynamically adjusted
according to the learning of the mention embedding vector, which partly weakens the
influence of the artificially defined threshold size on the model and enhances the robustness
of the model. The impact of the threshold size on the performance of our model is detailed
in Figure 5. According to Figure 5, the best results are obtained when the threshold value is
0.3 for both the domain and the cross-domain datasets. The corresponding edge in the fully
connected mention association graph is disconnected when the cosine similarity between
two entity mention pairs is less than 0.3. Through experimental observation, most of the
association graphs mentioned by fully connected entities are divided into two subgraphs,
with some small cases of three subgraphs. However, there are few cases with no division.
This confirms our suspicion that there are multiple topics in a document.
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6.6.2. The Impact of Residual Networks

The experimental results show that in terms of the representation of the fully connected
graph of candidate entities, using GAT with residual connections to represent the fully
connected graph of candidate entities can achieve improved results through deeper layers.
A multi-head GAT without a residual network (A) and fewer layers can achieve satisfactory
results. However, experiments show that using residuals in a deep multihead GAT results
in better performance than a shallow GAT without a residual network. We found that in
a deep GAT, if the multihead GAT does not use the residual network, the loss is reduced,
although performance on the AIDA-A validation set was reduced, demonstrating that the
deep multihead GAT overfit the model.

7. Conclusions

We hypothesize that a document may have more than one topic. Considering this
hypothesis, a global model for multitopic global consistency feature extraction is proposed.
We extract each topic’s final coherence features through a two-stage graph construction.
We creatively propose classifying different topics in the same document by mentioning the
similarity. We propose a variant GNN for our model and a new graph readout method.
A large number of experiments on public datasets demonstrate the effectiveness of our
global model. In future work, we will investigate the optimization of the local model and
the optimization of the training speed of the global model.
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