
Citation: Fang, N.; Fang, X.; Lu, K.

Anomalous Behavior Detection

Based on the Isolation Forest Model

with Multiple Perspective Business

Processes. Electronics 2022, 11, 3640.

https://doi.org/10.3390/

electronics11213640

Academic Editor: Manuel Mazzara

Received: 22 September 2022

Accepted: 3 November 2022

Published: 7 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Anomalous Behavior Detection Based on the Isolation Forest
Model with Multiple Perspective Business Processes
Na Fang 1,2 , Xianwen Fang 1,2,* and Ke Lu 1,2

1 School of Mathematics and Big Data, Anhui University of Science and Technology, Huainan 232001, China
2 Anhui Province Engineering Laboratory for Big Data Analysis and Early Warning Technology of Coal Mine

Safety, Huainan 232001, China
* Correspondence: xwfang@aust.edu.cn

Abstract: Anomalous behavior detection in business processes inspects abnormal situations, such as
errors and missing values in system execution records, to facilitate safe system operation. Since anomaly
information hinders the insightful investigation of event logs, many approaches have contributed to
anomaly detection in either the business process domain or the data mining domain. However, most of
them ignore the impact brought by the interaction between activities and their related attributes. Based
on this, a method is constructed to integrate the consistency degree of multi-perspective log features and
use it in an isolation forest model for anomaly detection. First, a reference model is captured from the
event logs using process discovery. After that, the similarity between behaviors is analyzed based on the
neighborhood distance between the logs and the reference model, and the data flow similarity is measured
based on the matching relationship of the process activity attributes. Then, the integration consistency
measure is constructed. Based on this, the composite log feature vectors are produced by combining the
activity sequences and attribute sequences in the event logs and are fed to the isolation forest model for
training. Subsequently, anomaly scores are calculated and anomalous behavior is determined based on
different threshold-setting strategies. Finally, the proposed algorithm is implemented using the Scikit-learn
framework and evaluated in real logs regarding anomalous behavior recognition rate and model quality
improvement. The experimental results show that the algorithm can detect abnormal behaviors in event
logs and improve the model quality.

Keywords: integration consistency measure; anomalous behavior detection; isolation forest model;
attribute matching; process discovery

1. Introduction

Business process management analyzes system execution records to detect and op-
timize information systems. In the era of Big Data, information systems generate many
execution records, bringing a wealth of data for business process management. However,
these data are not entirely usable and are mixed with behaviors that deviate from those
defined by business processes. They occur infrequently but can jeopardize system security
and hinder the progress of analysis, such as fraud detection, data leakage, and intrusion
detection. Therefore, how to detect and remove these deviations is of vast concern to
enterprises. The anomalous behavior is related to the sequence of process activities, the
relationship between activities, or attribute non-compliance, therefore the anomaly detec-
tion (outlier detection) techniques in the field of data mining are struggling to be applied
to business processes. Anomalous behavior detection is a popular automated business
process management technique that ensures data availability by identifying deviations
from standard specifications by learning process rules based on the behavior that has
occurred and serves as an essential task in business process management [1].

There are three types of anomalous behaviors in practical scenarios which are as
follows: (1) anomalous behaviors caused by events that deviate from the normal situation

Electronics 2022, 11, 3640. https://doi.org/10.3390/electronics11213640 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics11213640
https://doi.org/10.3390/electronics11213640
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-9920-6003
https://orcid.org/0000-0001-8531-7215
https://doi.org/10.3390/electronics11213640
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics11213640?type=check_update&version=1

Electronics 2022, 11, 3640 2 of 24

at the control flow level; (2) anomalous behaviors caused by control flow levels that are
legal, such as legal in process structure and sequence but not legal in data attributes; and
(3) anomalous behaviors caused by events with legal data attributes (e.g., conforming to
the value range of data) but illegal in their associated process structure. Current anomalous
behavior detection algorithms mainly determine whether the activities in the event log con-
form to expectations from the control flow perspective. Conformance-checking techniques
are a common approach to detecting deviations from expectations by aligning the event log
and the reference model [2]. In addition, there are many anomaly detection methods based
on numerical fluctuation patterns, such as relative density-based anomaly detection [3],
clustering-based anomaly detection [4], and distance (or density)-based anomaly detec-
tion [5]. These algorithms ignore the impact of data attributes or activity relationships in
event logs on anomalous behavior detection.

To address this, an isolated forest model based on fused consistency features and
an anomalous behavior detection method is constructed. The isolated forest model is
constructed by analyzing activity–behavior and attribute-matching relationships from
control and data flow perspectives. Then, the integration consistency measure is proposed
by analyzing the multi-view log feature. The composite log feature vector is constructed by
mining historical information to achieve business process anomalous behavior detection
based on different threshold-setting strategies. The research method in this paper consists
of three main steps (Figure 1).

Electronics 2022, 11, x FOR PEER REVIEW 2 of 25

There are three types of anomalous behaviors in practical scenarios which are as fol-

lows: (1) anomalous behaviors caused by events that deviate from the normal situation at

the control flow level; (2) anomalous behaviors caused by control flow levels that are legal,

such as legal in process structure and sequence but not legal in data attributes; and (3)

anomalous behaviors caused by events with legal data attributes (e.g., conforming to the

value range of data) but illegal in their associated process structure. Current anomalous

behavior detection algorithms mainly determine whether the activities in the event log

conform to expectations from the control flow perspective. Conformance-checking tech-

niques are a common approach to detecting deviations from expectations by aligning the

event log and the reference model [2]. In addition, there are many anomaly detection

methods based on numerical fluctuation patterns, such as relative density-based anomaly

detection [3], clustering-based anomaly detection [4], and distance (or density)-based

anomaly detection [5]. These algorithms ignore the impact of data attributes or activity

relationships in event logs on anomalous behavior detection.

To address this, an isolated forest model based on fused consistency features and an

anomalous behavior detection method is constructed. The isolated forest model is con-

structed by analyzing activity–behavior and attribute-matching relationships from con-

trol and data flow perspectives. Then, the integration consistency measure is proposed by

analyzing the multi-view log feature. The composite log feature vector is constructed by

mining historical information to achieve business process anomalous behavior detection

based on different threshold-setting strategies. The research method in this paper consists

of three main steps (Figure 1).

b

c

d

User

Resource

Time-stamp

e

Control

perspective

Data

perspective

Event log

a bModle

a btrace

(1)Process

discovery

(2)Behavioral

similarities

(3)Attribute

Distances

1st 2nd
Process model

Trace Attributes

k-th neighborhood

Attribute Alignment

Isolation Forest

composite

log feature

vectors

(5)Threshold

setting

strategies

Anomalous

behavior

(4)integrated

consistency degree

(6)Judging

anomalous

behavior

Figure 1. Overview of research methods, inputs, and outputs.

(1) Based on the control flow perspective, the K-order neighborhood behavioral

relationships between the model and the log activities are analyzed. The activities oc-

curring in the traces are mapped to the corresponding ones in the model. The joint neigh-

borhood of each activity is found based on the behavioral relationship between the activ-

ities. The neighborhood consistency value of the activity is then calculated using the

neighborhood distance. Further, the behavioral consistency degree of the current trace

and the model is calculated.

(2) Calculate the attribute distance by classification alignment based on the data

flow perspective. The attribute information corresponding to each event is extracted from

the model based on the control flow constraint. Based on the trace and the execution trace

where the activities in the model are located, the data attribute information of each event

is matched one by one based on the idea of alignment. Then, the cost of mismatch between

the trace and the model based on the data attributes is calculated based on the standard

Figure 1. Overview of research methods, inputs, and outputs.

(1) Based on the control flow perspective, the K-order neighborhood behavioral
relationships between the model and the log activities are analyzed. The activities oc-
curring in the traces are mapped to the corresponding ones in the model. The joint
neighborhood of each activity is found based on the behavioral relationship between the
activities. The neighborhood consistency value of the activity is then calculated using the
neighborhood distance. Further, the behavioral consistency degree of the current trace and
the model is calculated.

(2) Calculate the attribute distance by classification alignment based on the data flow
perspective. The attribute information corresponding to each event is extracted from the model
based on the control flow constraint. Based on the trace and the execution trace where the
activities in the model are located, the data attribute information of each event is matched one by
one based on the idea of alignment. Then, the cost of mismatch between the trace and the model
based on the data attributes is calculated based on the standard cost function of alignment. After
obtaining the mismatch cost and normalizing it, the attributes’ degree of consistency in the trace
and the model based on the data flow perspective can be calculated.

Electronics 2022, 11, 3640 3 of 24

(3) Construct a composite trace vector and use an isolation forest model for anoma-
lous behavior detection based on different threshold strategies. The degree of behavioral
consistency from the control flow perspective and the degree of attribute consistency from
the data flow perspective are considered together to obtain the degree of trace- and model-
based integrated consistency. Next, a composite feature vector is constructed based on the
logs’ integrated consistency degree and other information. Three different setting strategies
select the threshold and the proposed vector is used as input data to train the isolation
forest model and perform anomalous behavior detection.

2. Problem Statement

A Petri net structure of the insurance claims process (Figure 2) depicts some of the
activities in the insurance claims process. The circle represents a place. The rectangle
represents a transition and the words in a rectangle indicate an activity performed in the
current event. A dashed line connects each variation to a dashed box, describing the data
attributes carried by executing the current event.

Electronics 2022, 11, x FOR PEER REVIEW 3 of 25

cost function of alignment. After obtaining the mismatch cost and normalizing it, the at-

tributes’ degree of consistency in the trace and the model based on the data flow perspec-

tive can be calculated.

(3) Construct a composite trace vector and use an isolation forest model for anom-

alous behavior detection based on different threshold strategies. The degree of behav-

ioral consistency from the control flow perspective and the degree of attribute consistency

from the data flow perspective are considered together to obtain the degree of trace- and

model-based integrated consistency. Next, a composite feature vector is constructed based

on the logs’ integrated consistency degree and other information. Three different setting

strategies select the threshold and the proposed vector is used as input data to train the

isolation forest model and perform anomalous behavior detection.

2. Problem Statement

A Petri net structure of the insurance claims process (Figure 2) depicts some of the

activities in the insurance claims process. The circle represents a place. The rectangle rep-

resents a transition and the words in a rectangle indicate an activity performed in the cur-

rent event. A dashed line connects each variation to a dashed box, describing the data at-

tributes carried by executing the current event.

customer

report

User: client

Resource: certifications

Time-stamp: Mon.-Sun.

Duration:24h

case

acceptance

public

assessment
dispatching

survey

processing

verify loss

case

handling

failed

apply for

payment

User: staff

Resource: archive

Time-stamp: Mon.-Fri.

Duration:8:00-17:00

User: staff

Resource: loggers

Time-stamp: Mon.-Fri.

Duration:8:00-17:00

User: staff

Resource: evaluation

Time-stamp: Mon.-Fri.

Duration:8:00-17:00

User: staff

Resource: check

Time-stamp: Mon.-Fri.

Duration:8:00-17:00

User: staff

Resource: quoted price

Time-stamp: Mon.-Fri.

Duration:8:00-17:00

User: manager

Resource: client

Time-stamp: Friday

Duration:8:00-17:00

User: manager

Resource: \

Time-stamp: Friday

Duration:8:00-17:00

User: client

Resource: bank card

Time-stamp: Mon.-Fri.

Duration:8:00-17:00

Figure 2. Petri net of insurance claim processes with data attributes of the activities. Figure 2. Petri net of insurance claim processes with data attributes of the activities.

While there is various data attribute information of events in real life, only four types
of attribute information are shown in the Petri diagram of this paper: User, Resource,
Timestamp, and Duration. In this example, the User is divided into three roles: client, staff,
and manager. The Resource is the material the User requires to execute the current event.

Electronics 2022, 11, 3640 4 of 24

The Timestamp refers to the days in a week when the current event can be performed. The
Duration refers to the time of day when the current event can be executed. For example,
the first transition customer report in the diagram indicates the execution of a customer
report activity. The event is performed by the client, requires the submission of relevant
certifications, and can be reported anytime from Monday to Sunday. Similarly, a case
handling indicates that a case handling activity is performed, which is executed by the
client’s manager, who has to negotiate with the client on the claim amount, and the manager
only handles the case between 8:00 and 17:00 on Friday.

The Petri net shows that each event’s data attribute is critical to the current execution
activity and the relationship between the data attribute and the execution activity cannot
be ignored. Table 1 gives a fragment of the event log in the system, where three facts,
User, Resource, and Timestamp, are considered. For example, if we look at event 673, it
corresponds to the activity failed present in the model. There is no exception if we consider
only the control flow. However, when looking at its dataflow properties, we can see that it
occurs on Thursday (“Thursday”), which does not match the timestamp property Friday
(“Friday”), where the activity “failed” appears in the model. Similarly, the activity "case
handling" corresponding to the event 680 is consistent with the model. However, when
considering its resource attribute ("staff "), it is not consistent with its counterpart ("client")
in the model. Therefore, the activities executed in events 673 and 680 are consistent with
the expected behavior. However, they are anomalous because the Timestamp or Resource
attributes in the events are incompatible with the data attributes of the corresponding events
executed in the model. In summary, both activities and attributes can lead to anomalous
situations. Therefore, Anomalous Behavior Detection should focus on the activities for
each event in the control flow perspective and consider the attribute information in the
data flow perspective.

Table 1. Event log fragments.

Event Id Case Id Activity User Resource Timestamp

.
671 476 a client certifications Monday
672 476 b staff archive Monday
673 477 h manager \ Thursday
674 476 c staff loggers Tuesday
675 477 e staff check Wednesday
676 478 a client certifications Monday
677 476 e staff check Wednesday
678 476 f staff quoted price Thursday
679 478 b staff archive Tuesday
680 476 g manager staff Friday
681 477 d staff evaluation Tuesday
.

3. Related Works

Diverse system runtimes, such as system failures or suboptimal resource behavior,
can cause the event log to be error-prone. Errors in event logs hinder the extraction of
helpful process details from event log analysis. Consequently, many scholars have focused
on detecting anomalies in event logs. To address the problem that consistent alignment
techniques prioritize the control flow perspective and ignore data attribute constraints, a
deviation detection algorithm based on a customizable cost function is proposed [6]. Fani
Sani et al. propose a data preprocessing method for detecting and repairing anomalous
behavior that uses activity occurrence probabilities and behavioral context information
to identify and repair anomalies and experimentally verify that the proposed method
can provide more reliable input to existing process mining algorithms [7]. To address
the problem of anomaly detection in business processes, an autoencoder-based anomaly
detection method DAE was proposed, which can analyze the causes of business process

Electronics 2022, 11, 3640 5 of 24

anomalies in events at a fine-grained level and can detect information such as the type of
anomaly and the time of occurrence [8]. Bezerra et al. analyzed three anomaly detection
algorithms, threshold, iterative, and sampling, and used accurate event logs to evaluate
the three methods and arrive at the best detection algorithm [9]. The threshold algorithm
considers event traces below a threshold value as anomalous; the iterative algorithm con-
siders minimal consistency as anomalous; and the sampling algorithm considers activities
that are not present with the sample model as anomalous. These three methods ignore the
effect of data attributes from the control flow perspective.

Process anomaly detection methods focus only on individual deviating activities,
ignoring the correlation between anomalous behaviors and the impact of parallel relation-
ships. An anomaly frequent pattern extraction method is proposed to solve this problem,
which applies to anomaly detection of parallel activities [10]. Van Zelst et al. proposed
a prefix-aligned online consistency detection method. To solve the shortest path-solving
problem, two path-solving methods based on optimal efficiency and memory performance
balancing were designed to improve the consistency detection efficiency significantly [11].
A frequent pattern-based anomaly detection method is proposed to detect behavioral de-
viations in event logs and process models. The method mines the expected behaviors in
the process and constructs partial models by clustering and frequent pattern approaches to
detect the anomalies present in the model and event log [12]. A clustering-based anomaly
detection method is proposed for the problems of memory and domain knowledge limita-
tions online, which uses a recursive approach to detect anomalous behaviors in traces [13].
Supervised and semi-supervised scenarios are considered, and online learning techniques
are combined to achieve early detection of anomalies, which significantly improves the
efficiency of anomaly detection [14]. A combined online learning technique and trace
anomaly detection method is proposed to achieve real-time monitoring of incomplete
traces, calibrating anomaly thresholds by multiple parameters to meet the online anomaly
detection needs in different scenarios [15].

Because of the limited control flow knowledge, some studies have focused on addi-
tional constraints from the data flow level. A chronological anomaly detection method is
proposed to address the problem similar to fraudulent combination attacks. Execution time
anomalies are detected in multiple directions by detecting the differences in temporal be-
havior between historical traces and traces being executed, taking into account the temporal
dependencies between the current event and the preceding and following activities [16]. A
DBPMN model was designed based on BPMN and DMN (decision table) to interact with
processes and decisions, which combines behavioral decision-making with data perception
and paves the way for studying behavior and attribute dependencies [17]. Tavares et al.
implemented real-time monitoring of business processes using online event stream input,
dynamically extracting relevant information from event logs. Based on clustering methods,
real-time detection of anomalous behavior in business processes enables the processing of
dynamic data [18]. Ebrahim et al. proposed an unsupervised anomaly detection method
based on an organizational perspective and control flow perspective, which differs from
traditional anomaly detection methods by not treating low-frequency events as anomalies
but detecting illegal user executions and events not executed according to the regular
model [19].

However, existing studies have limited utilization of inter-activity dependencies or
data-level constraints, therefore, in this paper, we take the activity information of control
flow as the main body and fuse the attribute alignment relationships at the data flow
level for analysis, to achieve isolated forest model construction and anomalous behavior
detection under multi-perspective constraints.

4. Preliminary

This section introduces the basics used in this paper, including the concepts of event
logs, traces, log-based sequential relationships, Petri net, and its weak behavioral relation-

Electronics 2022, 11, 3640 6 of 24

ships. In addition, we briefly introduce the common terminology and steps for anomaly
detection based on the isolation forest model.

4.1. Behavioral Relationships in Event Logs

Often, information systems record in great detail what specific activities were per-
formed by a running instance of a process (also called a case) at a point in time. Process
mining techniques aim at analyzing such data, i.e., event logs, mainly in a static/posterior
setting, i.e., only for completed cases. In Table 1, each row indicates that an event was
executed in the context of an insurance claim process, identified by the event id (Event-id);
similarly, this instance is recorded by the case id (Case-id). An event contains several data
attributes, such as Event-id, Case-id, the activity executed, the User, the Resources used by
the User, and the Timestamp.

Observe the events associated with the case id 476. The first event, with an event
id of 671, describes that the client (client) performed the activity reported by the client.
Subsequently, the case is accepted by the staff (Staff) (Event-id 672). Next, the staff conducts
a public assessment of the case (Event-id 674), checks the details of the case (Event-id 677),
and performs a verification of the loss (Event-id 678). Finally, the manager registers a
case and communicates with the customer about the payment measures (Event-id 680).
In Table 1, it can be seen that event 673 is executed between events 672 and 674, which is
related to case id 477, thus indicating that several process instances can run in parallel.

In addition to the behavioral relationships between the executed activities in the
control flow, we need to introduce information about the attributes contained in each event.
We use the capital letter E for the complete set of events, C for the full set of case identifiers,
A for the complete set of activities, U for the set of users, and R for the set of resources used
by users in performing activities, and T for the set of timestamps. Two projection functions
are assumed to represent the case identifier and the executed activity in the event, namely
πC : E→ C , and πA : E→ A , respectively. The concept of event log and trace is formally
identified in Definition 1.

Definition 1 (event, event log, trace) [20]. Let character E denote the set of events, character A
represents the set of activities, and character C means the set of case identifiers. An event e ∈ E
describes an activity executed in the context of some process instance. The trace t associated with the
case c ∈ C is a sequence σ ∈ E∗, for which:

(1) ∀1 ≤ i ≤ |σ|, πC(σ(i)) = c, indicating that the events δ are associated with the case c;
(2) ∀e ∈ E, πC(e) = c⇒ ∃1 ≤ i ≤ |σ|(σ(i) = e) , indicating that every event associated with

c is in σ;
(3) ∀1 ≤ i ≤ j ≤ |σ|, σ(i) 6= σ(j), all events in δ are unique;
(4) Use the symbol f rea(σ) to denote the frequency of occurrence of the activity a ∈ A in the

trace σ.

In the following, the definition of sequential relations in the event log is given accord-
ing to Definition 1.

Definition 2 (log-based sequential relation, �L) [21]. Given a set of events e ∈ E, there
is a partial order relationship between the events in the event log L., i.e., �L= (e,�). For
∀1 ≤ i ≤ j ≤ |σ|(σ(j) � σ(i)), it is shown that all the events in σ need to obey their order and
a, b ∈ A, a �L b when ∃σ = a1a2 . . . an, i ∈ {1, 2, . . . , n− 1} : σ ∈ L ∧ ai = a ∧ ai+1 = b.

Next, the definition of Petri nets in the process model and their behavioral weak order
relations are presented.

Definition 3 (Process model Petri net) [22]. The process model Petri net PN = (P, T, F, C) is
a quaternion that satisfies the following conditions:

(1) P is a finite set of places and T is a finite set of transitions;

Electronics 2022, 11, 3640 7 of 24

(2) P 6= ϕ, T 6= ϕ and P ∩ T = ϕ;
(3) F = (P × T) ∪ (T × P)) denotes the flow relation of PN and (P ∪ T, F) is a strongly

connected graph;
(4) dom(F) ∪ cod(F) = P ∪ T, where: dom(F) = {x ∈ P ∪ T|∃y ∈ P ∪ T, (x, y ∈ F)}, and

cod(F) = {x ∈ P ∪ T|∃y ∈ P ∪ T, (y, x) ∈ F};
(5) C = {and, xor, or} is the structure type of the process net.

There is a weak sequential relation in the process model Petri net PN that contains
T × T all the variation pairs (x, y) if there exists a sequence of occurrences δ = t1t2 · · · tn,
when i ∈ {1, 2, . . . , n− 1}, i < j ≤ n has ti = x, and tj = y, x � y. The definition of
behavioral weak order relations is given below.

Definition 4 (Behavioral weak order relation, �) [23]. Let (N, M0) be a net system on a
variation set T, where N = (P, T, F) and the weak order relation �⊆ T× T contains all variation
pairs (x, y). If there exists a sequence of occurrences σ = t1t2 · · · tn, when (N, [i])[σ >, j ∈
{1, . . . , n− 1}, j < k ≤ n, and then let tj = x, tk = y.

4.2. Anomaly Detection Based on the Isolation Forest Model

Isolation forest [24] is a method based on decision tree integration (ensemble). Since its
introduction, it has been highly favored in industry and academia for its excellent accuracy
and linear time complexity, and it plays a vital role in anomaly detection.

The core idea of isolation forest is that anomalous behavior is significantly different
from other data points in some characteristics. In this setting, the anomalous samples can
be quickly filtered out from the selection set by different subtrees (i.e., binary search tree
structure). As shown in Figure 3, x1 can be divided into a separate space with only one
operation. In contrast, x2 goes through seven times before it is divided into a separate space.
Therefore x1 is more likely to be anomalous behavior than x2. If the majority of subtrees in
the isolation forest agree that the sample is an outlier, the decision has high confidence.

Electronics 2022, 11, x FOR PEER REVIEW 8 of 25

1
x

2
x

Figure 3. Division of sample points.

Precisely, anomaly detection using isolation forests consists of two main steps: con-

structing the isolation forest structure and scoring the samples. In the first step, we need

to train t subtrees iTree from the samples to build the isolation forest model. First, n sam-

ples are randomly selected from the sample set and placed in the tree’s root node. Then,

the current data are segmented based on some feature (chosen randomly). Using this split-

ting point as the boundary, samples less than and greater than or equal to this value are

placed on both sides as their left and right child nodes, respectively. The cyclic segmenta-

tion process produces t isolation trees until a limited number of times is reached or the

child nodes cannot continue the segmentation.

In the second step, each sample is substituted in each iTree, and whether the data are

anomalous can be determined based on the average height and the set threshold. In addi-

tion, anomaly scores can be obtained.

Definition 5 (anomaly score) [25].

(())

()(,) 2

E h x

c ns x n
−

=

where E(h(x)) is denoted as:

1
()

(())

t

i
i

h x
E h x

t

==

c(n) is the average path length of an unsuccessful search in a binary search tree, denoted as

() 2 (1) (2(1) /)c n H n n n= − − − and H(i) is the summation number, which can be expressed as

() ()H i ln i = + , and is Euler’s constant. The value domain of the anomaly score is [0,1]. When

the value is close to 1, x is considered an anomaly. If the value is close to 0, it is considered normal

data.

5. Multi-View Process Similarity Metric

This section presents the consistency checking metrics based on the control flow be-

havioral perspective and the data flow attribute perspective. First, the behavioral relation-

ship between the event log and each activity in the model is investigated based on the

control flow perspective. The related activities are identified from the model based on the

activities occurring in the log trace, and then the joint neighborhood of the activities oc-

curring in each event and the related activities in the model are obtained. Next, the neigh-

borhood distance of the activities in each event is calculated from the common neighbor-

hood of the log trace and the model and the common neighborhood distance of the current

trace and the model can be obtained by summing them. The summed neighborhood val-

ues of the same activities in the log trace and the model are recorded as the Behavioral

Figure 3. Division of sample points.

Precisely, anomaly detection using isolation forests consists of two main steps: con-
structing the isolation forest structure and scoring the samples. In the first step, we need to
train t subtrees iTree from the samples to build the isolation forest model. First, n samples
are randomly selected from the sample set and placed in the tree’s root node. Then, the
current data are segmented based on some feature (chosen randomly). Using this splitting
point as the boundary, samples less than and greater than or equal to this value are placed
on both sides as their left and right child nodes, respectively. The cyclic segmentation
process produces t isolation trees until a limited number of times is reached or the child
nodes cannot continue the segmentation.

Electronics 2022, 11, 3640 8 of 24

In the second step, each sample is substituted in each iTree, and whether the data
are anomalous can be determined based on the average height and the set threshold. In
addition, anomaly scores can be obtained.

Definition 5 (anomaly score) [25].

s(x, n) = 2−
E(h(x))

c(n)

where E(h(x)) is denoted as:

E(h(x)) = ∑t
i=1 hi(x)

t
c(n) is the average path length of an unsuccessful search in a binary search tree, denoted as

c(n) = 2H(n− 1)− (2(n− 1)/n) and H(i) is the summation number, which can be expressed
as H(i) = ln(i) + γ, and γ is Euler’s constant. The value domain of the anomaly score is [0, 1].
When the value is close to 1, x is considered an anomaly. If the value is close to 0, it is considered
normal data.

5. Multi-View Process Similarity Metric

This section presents the consistency checking metrics based on the control flow behav-
ioral perspective and the data flow attribute perspective. First, the behavioral relationship
between the event log and each activity in the model is investigated based on the control
flow perspective. The related activities are identified from the model based on the activities
occurring in the log trace, and then the joint neighborhood of the activities occurring in
each event and the related activities in the model are obtained. Next, the neighborhood
distance of the activities in each event is calculated from the common neighborhood of the
log trace and the model and the common neighborhood distance of the current trace and
the model can be obtained by summing them. The summed neighborhood values of the
same activities in the log trace and the model are recorded as the Behavioral Consistency
Degree (BCD) in the current trace and the model based on the control flow perspective.

Second, the attribute relationships between the event log and the same event data in
the model are investigated based on the data flow perspective. We extract the attribute
information of each event from the model and study the attribute relationship between
the individual event data in the model. Then, the data attributes corresponding to each
activity are extracted from the log traces. The same activities in the trace and the model
were obtained in calculating behavioral consistency. The attribute information of the same
activities in the trace and the model are matched separately using the idea of alignment.
In turn, the cost of inconsistency between the trace and the model based on data attribute
information can be calculated based on the cost function of alignment. After obtaining
the cost of inconsistent data attributes in the log trace and the model, the value of the
alignment of the trace with the data attribute information in the model can be calculated
by normalizing it. Based on the data flow perspective, this value is noted as the Attribute
Consistency Degree (ACD) of the current trace with the model.

In the following, we describe the consistency checking methods used in this section
in detail. Section 5.1 focuses on the behavioral consistency measure based on the control
flow perspective. Section 5.2 describes the attribute consistency measure based on the data
flow perspective.

5.1. Behavioral Similarity Analysis Based on K-Order Neighborhoods

In this subsection, based on the model’s event log and the control flow perspective, the
behavioral relationships between the traces and the activities in the model are investigated,
and their behavioral consistency degrees are calculated based on the neighborhood contexts
of the activities. Firstly, the definition of a K-order neighborhood is given.

Electronics 2022, 11, 3640 9 of 24

Definition 6 (K-order neighborhood). If activity b is a neighborhood of activity a when and only
when the shortest path length from activity b to activity a is k, denoted as shortpathlength(a, b) =
k. Then, in the event log, the set of neighbors of order K (k ≥ 1) of activity aL is: ak

L =
{bL : shortpathlength = k}.

The sequence of activities occurring in the trace can be obtained by considering
only the control pop behavior according to the log of events occurring. We find the
K-order neighbors of each activity separately according to the sequence of subsequent
occurrences of each activity in the trace. Similarly, the activity sequences in the trace are
then projected into the model, and the set of K-order neighborhoods in the model based on
the trigger rules of the activities in the model can be obtained. Finally, based on the set of
activity neighborhoods obtained in the trace and the model, we found the K-order joint
neighborhood of each occurring activity in the trace and the model, which is denoted as Ck.

According to the trigger rules, the activities’ trigger sequence in the Petri net model
can be derived according to Figure 2, as shown in Figure 4a. We take the event trace with
case id 476 as an example and, based on the activities executed in the event trace, we can
obtain the sequence of activities occurring in the trace, as shown in Figure 4b.

Electronics 2022, 11, x FOR PEER REVIEW 10 of 25

Figure 4. K-order neighborhood.

Next, the K-order neighborhood of each activity is found according to the activities’

fire order in the trace. For example, if activity a in the event trace is the initial point, its

first-order neighborhood is: (a, b); the second-order neighborhood is: (a, c); the third-order

neighborhood is: (a, e); the fourth-order neighborhood is: (a, f); and the fifth-order neigh-

borhood is: (a, g). Therefore, there is an entire fifth-order neighborhood in the event trace

with activity a as the initial point, as follows:

1 3 5

2 4

5 {(,),(,), (,), (,), (,)}
st rd th

n
L

d th

a a b a c a e a f a g=

Similarly, based on the trigger sequence of each activity in the model, the kth-order

neighborhood of each activity in the model can be found. For example, if activity a is the

initial point in the model, its first-order neighborhood is: (a, b); the second-order neigh-

borhood is: (a, c), (a, d); the third-order neighborhood is: (a, e); the fourth-order neighbor-

hood is: (a, f); the fifth-order neighborhood is: (a, g), (a, h); and the sixth-order neighbor-

hood is: (a, i). Therefore, with activity a as the initial point, there are six order neighbor-

hoods as follows:

5
1 3

6

4 6
2

{(,), (,), (,) , (,) , (,), (,), (,) , (,)}

th
st rd

M
th th

nd

a a b a c a d a e a f a g a h a i=

Next, the sequence of activities in the event trace is projected into the model to find

the joint neighborhood of order K for each occurring activity in the trace and the model.

We take the same activity a in the trace and the model as the initial point, as shown in

Figure 4, using the red dashed box shows the joint neighborhood of the trace and the

model with activity a as the initial point. Its first-order joint neighborhood is (a, b); the

second-order joint neighborhood is (a, c); the third-order joint neighborhood is (a, e); the

fourth-order neighborhood is (a, f); and the fifth-order joint neighborhood is (a, g). There-

fore, the joint neighborhood with activity a as the initial point in the trace and model has

five orders, as follows:

a b c d }{ e f { g h } iModle:

a b c e f gtrace:

1st 2nd 3rd

4th 5th 6th

1st 2nd 3rd 4th 5th

(c)k-th order common neighborhood(Ck)

a b c d }{ e f { g h } iModle:

a b c e f gtrace:

(a)Activities occurring in the model

(b)Activities occurring in the trace

Figure 4. K-order neighborhood.

Next, the K-order neighborhood of each activity is found according to the activities’
fire order in the trace. For example, if activity a in the event trace is the initial point, its
first-order neighborhood is: (a, b); the second-order neighborhood is: (a, c); the third-
order neighborhood is: (a, e); the fourth-order neighborhood is: (a, f); and the fifth-order
neighborhood is: (a, g). Therefore, there is an entire fifth-order neighborhood in the event
trace with activity a as the initial point, as follows:

a5
L =

{
1st

(a, b), (a, c)
2nd

,
3rd

(a, e), (a, f)
4th

5th
, (a, g)

}

Similarly, based on the trigger sequence of each activity in the model, the kth-order
neighborhood of each activity in the model can be found. For example, if activity a is
the initial point in the model, its first-order neighborhood is: (a, b); the second-order

Electronics 2022, 11, 3640 10 of 24

neighborhood is: (a, c), (a, d); the third-order neighborhood is: (a, e); the fourth-order
neighborhood is: (a, f); the fifth-order neighborhood is: (a, g), (a, h); and the sixth-order
neighborhood is: (a, i). Therefore, with activity a as the initial point, there are six order
neighborhoods as follows:

a6
M =

1st

(a, b), (a, c), (a, d)︸ ︷︷ ︸
2nd

,
3rd

(a, e), (a, f)
4th

,

5th︷ ︸︸ ︷
(a, g), (a, h), (a, i)

6th

Next, the sequence of activities in the event trace is projected into the model to find the

joint neighborhood of order K for each occurring activity in the trace and the model. We take
the same activity a in the trace and the model as the initial point, as shown in Figure 4, using the
red dashed box shows the joint neighborhood of the trace and the model with activity a as the
initial point. Its first-order joint neighborhood is (a, b); the second-order joint neighborhood is
(a, c); the third-order joint neighborhood is (a, e); the fourth-order neighborhood is (a, f); and the
fifth-order joint neighborhood is (a, g). Therefore, the joint neighborhood with activity a as the
initial point in the trace and model has five orders, as follows:

C5 =

{
1st

(a, b), (a, c)
2nd

,
3rd

(a, e), (a, f)
4th

5th
, (a, g)

}

Here, only the joint neighborhood of order K with activity a as the starting point is
calculated, and so on. After projecting each occurring activity in the trace to the model, the
joint neighborhood of order K for the same occurring activity in the trace and the model
can be calculated.

To obtain the behavioral consistency between the trace and the model, we need to
calculate the matching degree between the trace and the active neighborhood context in the
model. Firstly, we need to calculate the model’s K-order neighborhood distance between
the trace and the corresponding activity. Secondly, we can obtain the matching value of
the current neighborhood by multiplying the K-order neighborhood distance value by the
corresponding neighborhood weight value; finally, we can sum up all the neighborhoods
to obtain the consistency of the current behavior between the trace and the model.

In this section, we use the vector space model (VSM) to calculate the match between
each active neighborhood in the trace and the model. The vector space model (VSM) usually
assumes that all objects can be transformed into vectors and then uses the distance between
vectors or the cosine of the angle between vectors to represent the similarity between two
things. In this paper, we use the cosine of the angle between vectors to calculate the K-order
neighborhood distance between the trace and the corresponding activity in the model.

Let E(aL)
k, E(aM)k be the set of regions active in aL ∈ T and aM ∈ M of the kth order

neighborhood, respectively. Then,
→

e(aL)
k,

→
e(aM)k is the vector of K-order neighborhood

frequency values corresponding to the activity in the trace and model.
That is:

E(aL)
k= {(x, y) : z(x, y) = k, (x, y ∈ T)}
= {(x1, y1), (x2, y2), . . . , (xm, ym)}

E(aM)k= {(p, q) : z(p, q) = k, (p, q ∈ M)}
= {(p1, q1), (p2, q2), . . . , (pr, qr)}

Correspondingly, their frequency weight vectors are:

→
e(aL)

k = (w(x1, y1), w(x2, y2), . . . , w(xm, ym))

→
e(aM)k = (w(p1, q1), w(p2, q2), . . . , w(pr, qr))

Electronics 2022, 11, 3640 11 of 24

Similarly, let ECk be the joint K-order neighborhood of the activities aL, aM. Similarly,
the vector of weights of the joint neighborhood of order K of the activity can be obtained,

noted as
→

eCk (aL),
→

eCk (aM).
Next, we use the VSM to compute the neighborhood distance dk between the activities

aL, aM in the K-order neighborhood, i.e.,

dk(aL, aM) =

→
eCk (aL)·

→
eCk (aM)∣∣∣∣∣

→
e(aL)

k

∣∣∣∣∣×
∣∣∣∣∣
→

e(aM)k

∣∣∣∣∣
The closer the neighborhood is, the stronger the influence on the current activity and

the behavioral relationship between them. Therefore, we need to consider the impact of
region weights on the current activity in neighborhood distance matching. In detail, in the
Kth order neighborhood, a smaller value of K indicates that the weight of the neighborhood
needs to be assigned a more significant value; an immense value of K indicates that the
weight of the neighborhood needs to be given a smaller value.

We use a polynomial function to calculate the neighborhood weight value wk, and let i
be the number of neighborhoods (1 ≤ i ≤ k) and k be the number of all neighborhoods to
be considered in the current active behavior, i.e., wk =

k+1−i
k .

From the weight polynomial, we can conclude that the weight of the nearest neighbor
is one and that of the farthest neighbor is 1/k.

Therefore, we take the neighborhood weights into account in the formula for the
neighborhood distance, which leads to the final formula for matching the activity occurring
in the trace to the model.

daL= ∑ wk × dk

=
2

k + 1
×

k

∑
i

k + 1− i
k

× di(aL, aM)

Finally, the matching degree of each activity (aL ∈ t) in the trace relative to the correspond-
ing activity (aM) in the model can be calculated and summed to obtain the consistency degree
of the current trace with the activity-based behavioral relationship in the model, which is the
BCD between the trace and the model. The BCD is calculated as follows:

BCD= ∑ daL

= ∑
aL∈t

[
2

k + 1
×

k

∑
i

k + 1− i
k

× di(aL, aM)]

We formalize the steps in this section for calculating the consistency degree of behavior
based on the control flow perspective as Algorithm 1, as follows.

The pseudo-code to calculate the consistency degree of the behavior based on the
control flow perspective in the trace and model is given in Algorithm 1. The algorithm
takes the occurring traces and models as input. First, for each activity in the event trace, we
need to compute the set of K-order neighborhoods for each activity (Algorithm 1: 2–4). The
activities occurring in the trace are projected into the model (Algorithm 1: 5). Similarly, the
set of K-order neighbors of the related activities must be found in the model (Algorithm
1: line 6). Based on the set of K-order neighborhoods obtained in the event trace and the
model, intersecting them yields a joint K-order neighborhood based on each occurring
activity in the trace and the model (Algorithm 1: 7).

Next, the neighborhood set of activities needs to be vectorized to find the neighborhood
distances of the corresponding activities in the trace and model. This paper uses the cosine
of the vector space’s angle to calculate the K-order neighborhood distance between the
trace and the corresponding activity in the model (Algorithm 1: 8–9). The exact formula is

Electronics 2022, 11, 3640 12 of 24

described in detail in the previous section. Since the closer the neighborhood reflects the
behavioral relationship with the current activity, we introduce the neighborhood weights to
calculate the K-order neighborhood distance to obtain a more suitable neighborhood match
between the trace and the model (Algorithm 1: 11). Finally, the behavioral consistency
degree between the current trace and the model based on the control flow perspective
can be obtained by summing each K-order neighborhood matching degree between the
trace and the corresponding activity in the model (Algorithm 1: 13). Finally, this algorithm
outputs the value of the behavioral consistency degree (Algorithm 1: 14).

Algorithm 1: Calculation of Behavioral Conformance Degree

Electronics 2022, 11, x FOR PEER REVIEW 12 of 25

The closer the neighborhood is, the stronger the influence on the current activity and

the behavioral relationship between them. Therefore, we need to consider the impact of

region weights on the current activity in neighborhood distance matching. In detail, in the

Kth order neighborhood, a smaller value of K indicates that the weight of the neighbor-

hood needs to be assigned a more significant value; an immense value of K indicates that

the weight of the neighborhood needs to be given a smaller value.

We use a polynomial function to calculate the neighborhood weight value kw , and

let i be the number of neighborhoods (1 i k) and k be the number of all neighbor-

hoods to be considered in the current active behavior, i.e.,
1

k

k i
w

k

+ −
= .

From the weight polynomial, we can conclude that the weight of the nearest neighbor

is one and that of the farthest neighbor is 1/ k .

Therefore, we take the neighborhood weights into account in the formula for the

neighborhood distance, which leads to the final formula for matching the activity occur-

ring in the trace to the model.

2 1
(,)

1

La k k

k

i L M

i

d w d

k i
d a a

k k

=

+ −
=

+

Finally, the matching degree of each activity (
La t) in the trace relative to the corre-

sponding activity (
Ma) in the model can be calculated and summed to obtain the con-

sistency degree of the current trace with the activity-based behavioral relationship in the

model, which is the BCD between the trace and the model. The BCD is calculated as fol-

lows:

2 1
[(,)]

1

L

L

a

k

i L M

a t i

BCD d

k i
d a a

k k

=

+ −
=

+

We formalize the steps in this section for calculating the consistency degree of behav-

ior based on the control flow perspective as Algorithm 1, as follows.

The pseudo-code to calculate the consistency degree of the behavior based on the

control flow perspective in the trace and model is given in Algorithm 1. The algorithm

takes the occurring traces and models as input. First, for each activity in the event trace,

we need to compute the set of K-order neighborhoods for each activity (Algorithm 1: 2–

5.2. Alignment-Based Attribute Distance Metric

In the previous section, we introduced the method to derive the behavioral alignment
degree based on the control flow perspective of the event log and the model. In this
subsection, we focus on the data flow information in the event log and the model. Based on
the data flow perspective between the event log and the model, the attribute consistency
degree based on the data flow perspective is derived by analyzing the attribute relationships
in each event using the idea of alignment [26].

First, we can extract the attribute information corresponding to each event in the model.
The attribute information corresponding to each event in the model indicates the order of
occurrence of each activity and reveals the dependency relationship between the attributes. For
example, in Figure 2, each activity has its corresponding data attribute information, and the
corresponding data attributes vary from activity to activity. Similarly, the data attributes of
each event can be extracted from the event traces. Each event in the trace contains not only the
occurring activity but also the data attribute information of that event. For example, in Figure 2,
the activities in each event have corresponding data attributes.

Next, the data attributes corresponding to each event (eL ∈ t) in the trace are matched
with the attribute information of the corresponding event (eM) in the model. We use the
idea of alignment to match the data flow attributes of each event in the trace and the model
one by one. According to the alignment’s standard cost function, when the element in the
trace is not aligned with the model, we denote its cost as one (noted as: cost = 1).

Based on the idea of alignment, we match all the attribute information in the same
event when matching the event-based data attributes in the trace and model, i.e., all three
attribute information (User, Resource, and Timestamp) in the data stream need to be
matched one by one. When an event’s attribute does not match, it is counted, and the cost
of its inconsistency is calculated, as shown in Figure 5. Since the standard cost function is

Electronics 2022, 11, 3640 13 of 24

used, the cost of inconsistency is the number of attribute information mismatches in the
data stream (denoted as Cost = Count).

Electronics 2022, 11, x FOR PEER REVIEW 14 of 25

modle

log

(4)Time-stamp
inconsistency

modle

log

(8)User & Resource & Time-stamp
inconsistency

modle

log

(7)Resource & Time-stamp
inconsistency

modle

log

(6)User & Time-stamp
inconsistency

modle

log

(5)User & Resource
inconsistency

modle

log

(2)User inconsistency

modle

log

(3)Resource inconsistency

modle

log

(1)Consistency

:Resource:User :Time-stamp

Figure 5. Attribute Matching.

When matching User attributes in an event and the trace’s User attributes do not

match those in the model, the inconsistent values are counted as +1U UCount Count= .

Similarly, when matching the Resource or Timestamp attribute in the event, if the

Resource or Timestamp attribute in the trace does not match the corresponding attribute

information in the model, the inconsistent value should be recorded as: +1R RCount Count=

, +1T TCount Count= .

By recording the number of inconsistent attribute information in the data stream, we

can know how the event attribute information in the traces matches with the event attrib-

utes in the model, as shown in Figure 6. In the data stream, each attribute has a different

degree of influence on the current event, and the more critical attribute significantly influ-

ences the attribute relationship in the current event. If the User attribute of an event is

inconsistent, its corresponding Resource or Timestamp attribute may also be inconsistent.

Conversely, if the User attribute is consistent and the Resource attribute is inconsistent,

the Timestamp attribute may remain consistent; if the Timestamp attribute is inconsistent,

its corresponding Resource attribute may remain consistent. Therefore, we believe that a

more significant influence of the User attribute on the relationship of attributes in the

event in the data stream indicates that a more significant weight value needs to be as-

signed to that attribute.

Figure 5. Attribute Matching.

When matching User attributes in an event and the trace’s User attributes do not
match those in the model, the inconsistent values are counted as CountU = CountU+1.

Similarly, when matching the Resource or Timestamp attribute in the event, if the
Resource or Timestamp attribute in the trace does not match the corresponding attribute in-
formation in the model, the inconsistent value should be recorded as: CountR = CountR+1,
CountT = CountT+1.

By recording the number of inconsistent attribute information in the data stream, we
can know how the event attribute information in the traces matches with the event attributes
in the model, as shown in Figure 6. In the data stream, each attribute has a different degree
of influence on the current event, and the more critical attribute significantly influences the
attribute relationship in the current event. If the User attribute of an event is inconsistent,
its corresponding Resource or Timestamp attribute may also be inconsistent. Conversely, if
the User attribute is consistent and the Resource attribute is inconsistent, the Timestamp
attribute may remain consistent; if the Timestamp attribute is inconsistent, its corresponding
Resource attribute may remain consistent. Therefore, we believe that a more significant
influence of the User attribute on the relationship of attributes in the event in the data
stream indicates that a more significant weight value needs to be assigned to that attribute.

Electronics 2022, 11, 3640 14 of 24Electronics 2022, 11, x FOR PEER REVIEW 15 of 25

modle

log

(2)User movement

{(,), (,), (,)}U R R T Tm l m l m

{(,), (,), (,)}U R R T Tl l m l m

{(,), (,), (,)}R R T Tl m l m

modle

log

(4)Time-stamp movement

{(,), (,), (,)}U U R R Tl m l m m

{(,), (,), (,)}U U R R Tl m l m l

{(,), (,), (,)}U U R Rl m l m

modle

log

(5)User Resource movement

{(,), (,), (,)}U R T Tm m l m

{(,), (,), (,)}U R T Tl l l m

{(,), (,), (,)}T Tl m

modle

log

(6)User & Time-stamp movement

{(,), (,), (,)}U R R Tm l m m

{(,), (,), (,)}U R R Tl l m l

{(,), (,), (,)}R Rl m

modle

log

(7)Resource & Time-stamp movement

{(,), (,), (,)}U U R Tl m m m

{(,), (,), (,)}U U R Tl m l l

{(,), (,), (,)}U Ul m

{(,), (,), (,)}U U R R T Tl m l m l m

modle

log

(1)Synchronized movement

:User :Resource :Time-stamp

modle

log

(8)User & Resource & Time-stamp movement

},{(,), (), (,)

{(,), (,), (,)}U R Tm m m

},{(,), (), (,)U R Tl l l

modle

log

(3)Resource movement

{(,), (,), (,)}U U R T Tl m m l m

{(,), (,), (,)}U U R T Tl m l l m

{(,), (,), (,)}U U T Tl m l m

Figure 6. Possible movement when logs are aligned with models for properties.

We let be the weight value of the User attribute, and then the weight values of

the Resource and Timestamp attributes are: (1) / 2− .

After the traces are matched with the event attributes in the model one by one, from

the inconsistency count of each event attribute, we can obtain the cost of mismatching the

event data attributes in the current trace with the attributes in the model. Based on the

weight values assigned to each attribute, the final cost of mismatch between the trace and

the event-based data attributes in the model can be obtained, noted as:

(1) (1)

2 2
U R TCost Count Count Count

− −
= + +

Figure 6. Possible movement when logs are aligned with models for properties.

We let α be the weight value of the User attribute, and then the weight values of the
Resource and Timestamp attributes are: (1− α)/2.

After the traces are matched with the event attributes in the model one by one, from
the inconsistency count of each event attribute, we can obtain the cost of mismatching the
event data attributes in the current trace with the attributes in the model. Based on the
weight values assigned to each attribute, the final cost of mismatch between the trace and
the event-based data attributes in the model can be obtained, noted as:

Cost =
[

α× CountU +
(1− α)

2
× CountR +

(1− α)

2
× CountT

]

Electronics 2022, 11, 3640 15 of 24

Finally, we find the proportion of the cost of mismatch to all data attributes in the model
based on the cost of event attribute mismatch. By normalizing the proportion of mismatched
data-based attributes in the trace and model, we can obtain the Attribute Consistency Degree
(abbreviated as ACD) of the dataflow perspective-based attributes in the trace and model.
Therefore, the formula for the ACD based on the data flow perspective is:

ACD = 1− Cost
(|UeM |+ |ReM |+ |TeM |)

where |UeM |, |ReM |, |TeM | are the total number of each event attribute in the model.
We formalize the steps in this section for calculating the attribute consistency based

on the data flow perspective as Algorithm 2. Similar to Algorithm 1, this algorithm takes
the trace and the model as inputs. First, for each event in the trace, we need to extract the
information of each attribute in the event, i.e., UeL , ReL , TeL (Algorithm 2: 2–3). Similarly, it
is still necessary to extract the information about the data attributes corresponding to each
event in the model, i.e., UeM , ReM , TeM (Algorithm 2: 4).

Algorithm 2: Calculation of Attribute Conformance Degree

Electronics 2022, 11, x FOR PEER REVIEW 16 of 25

Finally, we find the proportion of the cost of mismatch to all data attributes in the

model based on the cost of event attribute mismatch. By normalizing the proportion of

mismatched data-based attributes in the trace and model, we can obtain the Attribute

Consistency Degree (abbreviated as ACD) of the dataflow perspective-based attributes in

the trace and model. Therefore, the formula for the ACD based on the data flow perspec-

tive is:

1
()

M M Me e e

Cost
ACD

U R T
= −

+ +

where , ,
M M Me e eU R T are the total number of each event attribute in the model.

We formalize the steps in this section for calculating the attribute consistency based

on the data flow perspective as Algorithm 2. Similar to Algorithm 1, this algorithm takes

the trace and the model as inputs. First, for each event in the trace, we need to extract the

information of each attribute in the event, i.e., , ,
L L Le e eU R T (Algorithm 2: 2–3). Similarly, it

is still necessary to extract the information about the data attributes corresponding to each

event in the model, i.e., , ,
M M Me e eU R T (Algorithm 2: 4).

Next, the data attributes of the corresponding events in the trace and the model need

to be compared, and when their data attributes do not match, the data attributes of the

current comparison are counted. If the User attribute of the event in the trace does not

match the corresponding attribute in the model, the current attribute is counted (Algo-

rithm 2: 5–7). Similarly, we need to continue comparing the other two attributes of the

data. If the Resource attribute of the event in the trace does not match the corresponding

attribute in the model, the current attribute is counted (Algorithm 2: 8–10). If the

Timestamp attribute of the event in the trace does not match the corresponding attribute

in the model, the current attribute needs to be counted (Algorithm 2: 11–13).

Finally, we assign different weight values to each attribute according to its degree of

influence on the event. By substituting the weight values into the cost of data mismatch

between the trace and the model, the final cost of mismatch between the trace and the

event-based data attributes in the model can be calculated by multiplying the number of

each mismatched attribute by the corresponding weight and summing them (Algorithm

2: 15). In turn, the percentage of inconsistent data attributes in the trace and model can be

Next, the data attributes of the corresponding events in the trace and the model need to
be compared, and when their data attributes do not match, the data attributes of the current
comparison are counted. If the User attribute of the event in the trace does not match the
corresponding attribute in the model, the current attribute is counted (Algorithm 2: 5–7).
Similarly, we need to continue comparing the other two attributes of the data. If the
Resource attribute of the event in the trace does not match the corresponding attribute in
the model, the current attribute is counted (Algorithm 2: 8–10). If the Timestamp attribute
of the event in the trace does not match the corresponding attribute in the model, the
current attribute needs to be counted (Algorithm 2: 11–13).

Finally, we assign different weight values to each attribute according to its degree of
influence on the event. By substituting the weight values into the cost of data mismatch
between the trace and the model, the final cost of mismatch between the trace and the event-
based data attributes in the model can be calculated by multiplying the number of each
mismatched attribute by the corresponding weight and summing them (Algorithm 2: 15).
In turn, the percentage of inconsistent data attributes in the trace and model can be found

Electronics 2022, 11, 3640 16 of 24

and normalized to obtain the ACD based on the data flow perspective in the trace and
model. Finally, the output results in the value of the attribute consistency degree.

6. Anomalous Behavior Detection Using Isolation Forests

By combining the proposed methods for calculating the behavioral consistency degree
based on the control flow perspective and the attribute consistency degree based on the
data flow perspective in the trace and model, the Integration Consistency Degree (ICD)
based on the control flow behavior perspective and the data flow attribute perspective of
the trace and model can be obtained.

The value of the integration consistency measure is then used to set three threshold
strategies for anomaly detection, and when the integration consistency measure does not
satisfy the current strategy, the current trace can be determined to be anomalous.

First, the integrated consistency degree is calculated. The formulas for fusing the
behavioral and attribute perspectives are given as:

(BCD) + (ACD) = ∑
aL∈t

[
2

k + 1
×

k

∑
i

k + 1− i
k

× di(aL, aM)] + [1− Cost
(|UeM |+ |ReM |+ |TeM |)

]

Since the degree of integrated consistency is determined by behavioral and attribute
consistency, any change in one of the values strongly impacts the overall value. Therefore,
we set the weight parameter β (β ∈ (0, 1)) to control this effect. It also reflects the degree of
influence of the weight parameter on the anomaly detection results in the control pop-as
perspective or the data stream attribute perspective.

Substituting the weight parameters into the above equation, the trace’s ICD under the
behavior and the attribute perspective are obtained. It is defined as follows:

ICD= β× (BCD) + (1− β)× (ACD)

= β× ∑
aL∈t

[
2

k + 1
×

k

∑
i

k + 1− i
k

× di(aL, aM)] + (1− β)× [1− Cost
(
∣∣UeM

∣∣+ ∣∣ReM

∣∣+ ∣∣TeM

∣∣)]
Next, a composite trace vector is constructed based on the integration consistency

measure to train the isolation forest model and perform anomalous behavior detection.
The isolation forest is implemented randomly based on a certain feature each time the
data space is cut and it is not sufficient to consider only one feature. Moreover, feature
engineering in machine learning is crucial, therefore we also need to construct other features
based on logs as an aid.

Definition 7 (Composite trace vector). Given an event log L with n traces, the composite trace
vector corresponding to the event sequence σ of trace t is defined as follows:

V = Vact ·Vattr ·VICD

The meanings of the symbols in the above equation are as follows.
(1) Vact denotes the activity vector of the log. The typical encoding method in machine

learning is One-hot. However, each trace contains many events and mainly has a cyclic
structure, leading to a highly sparse trace vector and affecting the training results. Therefore,
this paper uses weighted binary encoding for the activities in the traces. The binary
encoding vector of the trace is defined as Vσ = [· · · , πA(σi), · · ·], i.e., if the activity appears
in the trace, its corresponding position is set to 1. Otherwise, it is 0. The frequency vector of
the trace is: Fresigma = [· · · , f re(σi), · · ·]. The trace activity vector can be defined by using
a weighted binary encoding of the trace as:

Vact = [· · · , Vσ(i)× Freσ(i), · · ·] = [· · · , πA(σi)× f re(σi), · · ·]

Electronics 2022, 11, 3640 17 of 24

(2) Vattr denotes the attribute vector of the log. The attributes in logs are classified into
discrete (e.g., resources, roles) and continuous (e.g., timestamps, funds). This paper uses
ordinal encoding [27] to map different attribute classes to different integers for discrete
attributes. For example, the resource sequence < r1, r2, r3, r1 > is encoded as [1, 2, 3, 1]. For
continuous type attributes, normalization is required. If the sequence of funds consumed
by each event in trace t p =< p1, · · · , pi, · · · , p|t| >, the normalization yields:

pi
′ =

pi −min(p)
max(p)−min(x)

(3) VICD denotes the integrated consistency vector of logs. We could compute a set of
integrated consistency vectors for each trace in the previous narrative.

By concatenating the above three vectors, we can combine the original features and
the reinforcement features to obtain the complete representational form of a trace, and
repeating the operation yields a composite trace vector for the whole log.

Regarding the threshold setting problem in anomalous behavior detection, three
different threshold (δ) setting strategies are given. When the integrated consistency of
traces and models does not satisfy a specific strategy, the current trace can be judged as
anomalous. In the following, the setting methods of the three different threshold strategies
are given.

(1) Empirical determination: This method sets a fixed threshold (set this threshold to
δ = 0.05) based on previous expert experience. When the integrated consistency of the
trace and the model is greater than the currently set fixed threshold, the current trace is
considered anomalous;

(2) Strict determination: we calculate the integrated consistency degree for each trace
and model, and the maximum integrated consistency degree (ICDmax) can be obtained
after the calculation. At this point, we give the anomaly determination function δ = f (x):
δ = f (x) = 0.05× (ICDmax). The trace can be judged as abnormal only when the integrated
consistency is greater than the current threshold;

(3) Relaxation decision: Similar to the decision in (2), the first step is finding each
trace’s integrated consistency and the model. In the following, the difference from (2) is that
we have to find the minimum value (ICDmin) based on the integrated consistency of the
traces and the model. We make the threshold δ = ICDmin. When the integrated consistency
is greater than the current threshold, the trace can be determined to be anomalous.

Based on the above elaboration, the algorithm in this section can be formalized as
Algorithm 3.

The pseudo-code for detecting anomalous traces is given in Algorithm 3. The al-
gorithm’s input is the event log L containing the anomalous behavior and the output is
the diagnosis result of the isolation forest model regarding the anomalous behavior. In
Algorithm 3: 1, we use the advanced process discovery method Split Miner to discover
a process model m from the event log. Then, analysis is performed for each trace in
the log (Algorithm 3: 2–16). For each trace t in the event log, Algorithms 1 and 2 are ap-
plied to calculate the behavioral consistency (Algorithm 3: 3) and attribute consistency
(Algorithm 3: 4) of t with the process model m.

Electronics 2022, 11, 3640 18 of 24

Algorithm 3: Detect anomalous behavior

Electronics 2022, 11, x FOR PEER REVIEW 19 of 25

Next, we construct the training data for the isolation forest model in Algorithms 3:

5–15. We introduce a weight parameter to construct integrated consistency features

(Algorithm 3: 5). Using a weighted binary encoding, the activity sequences in the traces

are encoded as activity feature modules in the trace vector (Algorithm 3: 6). The attributes

are classified into discrete and continuous data and processed using ordinal encoding and

normalization, respectively, to obtain the attribute feature modules in the trace vector (Al-

gorithms 3: 7–13). After that, the three modules are joined together to construct the trace

vectors and all the trace vectors together form the log vector, which is the training sample

data (Algorithm 3: 14–15).

Subsequently, we construct the isolation forest model and complete parameter learn-

ing and optimization on the training data (Algorithm 3: 17). When parameter tuning is

completed, this model is used to calculate anomaly scores on the training data (Algorithm

3: 18). Finally, we select thresholds according to three setting schemes and generate and

output judgment results based on them (Algorithm 3: 19–21) to complete anomalous be-

havior detection.

7. Evaluation

In this section, we implement the algorithm proposed in this paper using PM4Py and

Scikit-learn framework and evaluate it from the following three perspectives.

(1) The impact of anomalous behavior on business processes;

(2) The impact of using the integrated consistency degree on the isolation forest al-

gorithm;

(3) Comparison with the results of other anomaly detection methods.

Next, this section describes the relevant settings of the experiments and the results of

the experiments under different logs.

7.1. Experimental Setup

We use real logs provided by open-source data sites for evaluation, collected and

published by researchers worldwide.

The event logs used for the evaluation were:

Next, we construct the training data for the isolation forest model in
Algorithms 3: 5–15. We introduce a weight parameter β to construct integrated consistency
features (Algorithm 3: 5). Using a weighted binary encoding, the activity sequences in the
traces are encoded as activity feature modules in the trace vector (Algorithm 3: 6). The
attributes are classified into discrete and continuous data and processed using ordinal
encoding and normalization, respectively, to obtain the attribute feature modules in the
trace vector (Algorithms 3: 7–13). After that, the three modules are joined together to
construct the trace vectors and all the trace vectors together form the log vector, which is
the training sample data (Algorithm 3: 14–15).

Subsequently, we construct the isolation forest model and complete parameter learning
and optimization on the training data (Algorithm 3: 17). When parameter tuning is completed,
this model is used to calculate anomaly scores on the training data (Algorithm 3: 18). Finally,
we select thresholds according to three setting schemes and generate and output judgment
results based on them (Algorithm 3: 19–21) to complete anomalous behavior detection.

7. Evaluation

In this section, we implement the algorithm proposed in this paper using PM4Py and
Scikit-learn framework and evaluate it from the following three perspectives.

(1) The impact of anomalous behavior on business processes;
(2) The impact of using the integrated consistency degree on the isolation forest algorithm;
(3) Comparison with the results of other anomaly detection methods.
Next, this section describes the relevant settings of the experiments and the results of

the experiments under different logs.

7.1. Experimental Setup

We use real logs provided by open-source data sites for evaluation, collected and
published by researchers worldwide.

The event logs used for the evaluation were:

Electronics 2022, 11, 3640 19 of 24

Sepsis: Mannhardt et al. recorded 1050 processes experienced by patients receiving
treatment in a hospital in the Netherlands from interactions in the emergency room, labo-
ratory, and finance departments and published them as the event log Sepsis [28]. The log
contains 14,420 events, 1050 cases, and 28 activities;

Helpdesk: this log records the ticketing process provided by a helpdesk in Italy and
contains 20,300 events, 4580 cases, and 27 activities;

BPIC13_closed_problems and BPIC20PrepaidTravelCost are two real case data from
Business Process Intelligence Challenge, the former contains 17,233 events, 2099 cases, and
53 activities, and the latter consists of 6352 events, 1487 cases, and 13 activities.

Inserting anomalous behavior: We use the six exceptions expanded by Nolle et al. as
a guide [1] to construct synthetic logs based on the above logs. These extended versions of
exceptions are defined as follows:

1. Skip: some required event (no more than 3) is skipped during execution;
2. Insertion: some random activity is added during execution (no more than 3);
3. Rework: during execution, some events are repeated (no more than 3);
4. Advance: during execution, some events occur earlier (no more than 2);
5. Delay: during execution, some events are delayed (no more than 2);
6. Attributes: during execution, the attributes of some events were incorrectly set (more

than 3).

Detection result metrics: Abnormal behavior detection aims to identify unintended
behaviors mixed with normal activities. Therefore, the ability to correctly identify abnormal
behavior is the algorithm’s focus. We use metrics commonly used in classification tasks to
evaluate the algorithm.

We introduce the Confusion Matrix to describe the possible scenarios in abnormal
behavior detection. The Confusion Matrix’s row data describes the case’s actual category,
and the column data describes the judgment category of the case. The meaning of each cell
in it is as follows (Table 2):

Table 2. Confusion matrix for abnormal behavior.

Judgment

Abnormal Normal

Actual
Abnormal TA FN

Normal FA TN

(1) TA (True Abnormal): the actual abnormal behavior is correctly determined by the
algorithm as abnormal behavior;

(2) FN (False Normal): the actual abnormal behavior. The algorithm incorrectly
determines it as normal behavior;

(3) FA (False Abnormal): the actual behavior is normal, but the algorithm incorrectly
determines it as abnormal;

(4) TN (True Normal): the actual behavior is normal, and the algorithm correctly
determines it as normal.

Based on the Confusion Matrix, multiple metric assessments can be better understood.
Precision: measures the percentage of actual abnormal behavior among the results

predicted as abnormal behavior.

Precision =
TA

TA + FA

Recall: recall measures the proportion of actual anomalous behavior that is detected.

Recall =
TA

TA + FN

Electronics 2022, 11, 3640 20 of 24

However, Precision and Recall are contradictory metrics that serve different purposes. The
weighted average F1 score of the two is analyzed for a comprehensive measure of the results.

F1− score =
2× Precision× Recall

Precision + Recall

The AUC (Area Under Curve) value is obtained by calculating the area under the ROC
(Receiver Operating Characteristic) curve (this graph is plotted with the true class rate and the
false positive class rate as coordinates). Ideally, the AUC indicator for detection results is 1.

Anomaly detection comparison method: we choose the classical anomaly detection
algorithm OC-SVM [29] and two recent deep learning faculty methods DAE (denoising
autoencoder) [8] and BINet [1].

7.2. Experimental Results

Taking BPIC13_closed_problems as an example, this section analyzes in detail the detection
capability of this paper’s algorithm for abnormal behaviors under different settings.

When only control flow constraints in events are considered, the number of features
is small, and it is not easy to obtain better detection results. We take one of the subtrees
of the isolation forest and plot it in Figure 7. At this time, the decision tree contains only
one feature (i.e., x2), and the detection results are easily influenced by anomalous behavior,
making it difficult to obtain accurate results.

Electronics 2022, 11, x FOR PEER REVIEW 21 of 25

However, Precision and Recall are contradictory metrics that serve different pur-

poses. The weighted average F1 score of the two is analyzed for a comprehensive measure

of the results.

2
1

Precision Recall
F score

Precision Recall

− =

+

The AUC (Area Under Curve) value is obtained by calculating the area under the

ROC (Receiver Operating Characteristic) curve (this graph is plotted with the true class

rate and the false positive class rate as coordinates). Ideally, the AUC indicator for detec-

tion results is 1.

Anomaly detection comparison method: we choose the classical anomaly detection

algorithm OC-SVM [29] and two recent deep learning faculty methods DAE (denoising

autoencoder) [8] and BINet [1].

7.2. Experimental Results

Taking BPIC13_closed_problems as an example, this section analyzes in detail the

detection capability of this paper’s algorithm for abnormal behaviors under different set-

tings.

When only control flow constraints in events are considered, the number of features

is small, and it is not easy to obtain better detection results. We take one of the subtrees of

the isolation forest and plot it in Figure 7. At this time, the decision tree contains only one

feature (i.e., x2), and the detection results are easily influenced by anomalous behavior,

making it difficult to obtain accurate results.

Figure 7. A subtree of the isolation forest when only the control flow constraint is considered.

The number of features and subtrees of the isolation forest is considered by increas-

ing the number of features to improve the algorithm’s detection capability. Figure 8 shows

the detection results of the isolation forest under different constraints, which include the

control flow-based consistency measure BCD and the fused control flow and data flow

consistency measure ICD. We also compare the constraints based on the One-hot encod-

ing of activity and attribute features. During these evaluations, all other parameters were

kept consistent. The results show that the detection results based on the integration con-

sistency measure have high AUC values and the detection results show an increasing

trend with a smoother increase. The detection results based on the behavioral consistency

measure were the second highest, but the results fluctuated more. The detection results

using One-hot coding have a minor numerical increase when adding data constraints, but

the curve alignment is smoother than the curve considering only the control flow. Two

conclusions can be drawn by combining the above four scenarios: (1) The detection results

with attribute constraints are better than those considering only the control flow, which

indicates that considering attribute constraints in the analysis process can improve the

AUC value to some extent and increase the robustness of the detection results. (2) The

anomaly detection results under the behavioral relationship of the fusion consistency

Figure 7. A subtree of the isolation forest when only the control flow constraint is considered.

The number of features and subtrees of the isolation forest is considered by increasing
the number of features to improve the algorithm’s detection capability. Figure 8 shows the
detection results of the isolation forest under different constraints, which include the control
flow-based consistency measure BCD and the fused control flow and data flow consistency
measure ICD. We also compare the constraints based on the One-hot encoding of activity
and attribute features. During these evaluations, all other parameters were kept consistent.
The results show that the detection results based on the integration consistency measure
have high AUC values and the detection results show an increasing trend with a smoother
increase. The detection results based on the behavioral consistency measure were the
second highest, but the results fluctuated more. The detection results using One-hot coding
have a minor numerical increase when adding data constraints, but the curve alignment is
smoother than the curve considering only the control flow. Two conclusions can be drawn
by combining the above four scenarios: (1) The detection results with attribute constraints
are better than those considering only the control flow, which indicates that considering
attribute constraints in the analysis process can improve the AUC value to some extent and
increase the robustness of the detection results. (2) The anomaly detection results under the
behavioral relationship of the fusion consistency characterization are better than those of
the One-hot characterization, which indicates that the integrated consistency metric has
improved discriminability.

Electronics 2022, 11, 3640 21 of 24

Electronics 2022, 11, x FOR PEER REVIEW 22 of 25

characterization are better than those of the One-hot characterization, which indicates that

the integrated consistency metric has improved discriminability.

Figure 8. Effect of different numbers of subtrees on detection results.

We reduce the trace vector of the event log to a two-dimensional space, as shown in

Figure 9. In this figure, the axis numbers indicate the coordinate components of the event

log in this dimension. We use the blue dashed line to indicate the learned detection

method. The contour line between the axes and the dashed line indicates the anomaly

score plotted according to the trained detection algorithm. The normal trace vector is con-

centrated in the central region with a high detection score. While the trace vectors in the

outer region further away from the blue dashed line have lower scores, i.e., anomalous

behavior.

Figure 9. Distribution of data based on anomaly score contour.

Figure 10 shows the ROC curve (left) and DET curve (right) of this log for detecting

abnormal behavior by the algorithm in this paper when the abnormal threshold is 0.05

and 0.2. As can be observed from the ROC curve graph (the blue diagonal line in the ROC

indicates that TPR = FPR, i.e., the model tends to predict at random.), the ROC curve of

the algorithm is located in the dominant position when the percentage of abnormal be-

havior is 0.05. The highest AUC value is 0.87 at this setting, while the ROC curve is the

next highest at the abnormal behavior ratio of 0.1 and 0.2. At this point, a comparison can

be made with the help of the DET graph, which reflects the detection error rate, and the

Figure 8. Effect of different numbers of subtrees on detection results.

We reduce the trace vector of the event log to a two-dimensional space, as shown in
Figure 9. In this figure, the axis numbers indicate the coordinate components of the event
log in this dimension. We use the blue dashed line to indicate the learned detection method.
The contour line between the axes and the dashed line indicates the anomaly score plotted
according to the trained detection algorithm. The normal trace vector is concentrated in
the central region with a high detection score. While the trace vectors in the outer region
further away from the blue dashed line have lower scores, i.e., anomalous behavior.

Electronics 2022, 11, x FOR PEER REVIEW 22 of 25

characterization are better than those of the One-hot characterization, which indicates that

the integrated consistency metric has improved discriminability.

Figure 8. Effect of different numbers of subtrees on detection results.

We reduce the trace vector of the event log to a two-dimensional space, as shown in

Figure 9. In this figure, the axis numbers indicate the coordinate components of the event

log in this dimension. We use the blue dashed line to indicate the learned detection

method. The contour line between the axes and the dashed line indicates the anomaly

score plotted according to the trained detection algorithm. The normal trace vector is con-

centrated in the central region with a high detection score. While the trace vectors in the

outer region further away from the blue dashed line have lower scores, i.e., anomalous

behavior.

Figure 9. Distribution of data based on anomaly score contour.

Figure 10 shows the ROC curve (left) and DET curve (right) of this log for detecting

abnormal behavior by the algorithm in this paper when the abnormal threshold is 0.05

and 0.2. As can be observed from the ROC curve graph (the blue diagonal line in the ROC

indicates that TPR = FPR, i.e., the model tends to predict at random.), the ROC curve of

the algorithm is located in the dominant position when the percentage of abnormal be-

havior is 0.05. The highest AUC value is 0.87 at this setting, while the ROC curve is the

next highest at the abnormal behavior ratio of 0.1 and 0.2. At this point, a comparison can

be made with the help of the DET graph, which reflects the detection error rate, and the

Figure 9. Distribution of data based on anomaly score contour.

Figure 10 shows the ROC curve (left) and DET curve (right) of this log for detecting
abnormal behavior by the algorithm in this paper when the abnormal threshold is 0.05
and 0.2. As can be observed from the ROC curve graph (the blue diagonal line in the ROC
indicates that TPR = FPR, i.e., the model tends to predict at random.), the ROC curve of the
algorithm is located in the dominant position when the percentage of abnormal behavior is
0.05. The highest AUC value is 0.87 at this setting, while the ROC curve is the next highest at
the abnormal behavior ratio of 0.1 and 0.2. At this point, a comparison can be made with the
help of the DET graph, which reflects the detection error rate, and the curve near the lower
left corner indicates the strong recognition ability of the algorithm. Comparing the DET
curves at an abnormal behavior rate of 0.1 and 0.2 reveals that the algorithm outperforms
the results at an abnormal rate of 0.1 compared to 0.2. This indicates that the detection
algorithm’s recognition ability decreases when the abnormal behavior content increases.
We further infer that if there are enough abnormal behaviors, it will cause the system to

Electronics 2022, 11, 3640 22 of 24

have difficulty discriminating abnormal behaviors from normal behaviors. Therefore the
anomalous behavior reduces the system’s robustness and the anomaly detection method
proposed can effectively identify anomalous behavior and improve the system’s reliability.

Electronics 2022, 11, x FOR PEER REVIEW 23 of 25

curve near the lower left corner indicates the strong recognition ability of the algorithm.

Comparing the DET curves at an abnormal behavior rate of 0.1 and 0.2 reveals that the

algorithm outperforms the results at an abnormal rate of 0.1 compared to 0.2. This indi-

cates that the detection algorithm’s recognition ability decreases when the abnormal be-

havior content increases. We further infer that if there are enough abnormal behaviors, it

will cause the system to have difficulty discriminating abnormal behaviors from normal

behaviors. Therefore the anomalous behavior reduces the system’s robustness and the

anomaly detection method proposed can effectively identify anomalous behavior and im-

prove the system’s reliability.

Figure 10. ROC and DET of Log BPIC2013_closed_issue.

Figure 11 compares various anomaly detection methods’ F1 scores and AUC values

of different data sets. The results of multiple experiments show that the anomaly detection

method based on the integrated consistency metric in this paper has the advantage of ro-

bustness in real logs. Specifically, (1) anomaly detection based on the integration con-

sistency measure obtains high F1 scores and AUC values in all test logs. For example, in

the Helpdesk and Sepsis logs, both metrics reach above 0.9. (2) Compared with other

anomalous behavior detection methods under the same settings, the method in this paper

significantly outperforms the DAE and OC-SVM methods, outperforms the BINet method

in some cases, and only slightly underperforms the F1 score of BPI20PrepaidTravelCost

and the AUC metrics of BPIC13_closed_problems in BINet.

Figure 10. ROC and DET of Log BPIC2013_closed_issue.

Figure 11 compares various anomaly detection methods’ F1 scores and AUC values
of different data sets. The results of multiple experiments show that the anomaly detec-
tion method based on the integrated consistency metric in this paper has the advantage
of robustness in real logs. Specifically, (1) anomaly detection based on the integration
consistency measure obtains high F1 scores and AUC values in all test logs. For example,
in the Helpdesk and Sepsis logs, both metrics reach above 0.9. (2) Compared with other
anomalous behavior detection methods under the same settings, the method in this paper
significantly outperforms the DAE and OC-SVM methods, outperforms the BINet method
in some cases, and only slightly underperforms the F1 score of BPI20PrepaidTravelCost
and the AUC metrics of BPIC13_closed_problems in BINet.

Electronics 2022, 11, x FOR PEER REVIEW 23 of 25

curve near the lower left corner indicates the strong recognition ability of the algorithm.

Comparing the DET curves at an abnormal behavior rate of 0.1 and 0.2 reveals that the

algorithm outperforms the results at an abnormal rate of 0.1 compared to 0.2. This indi-

cates that the detection algorithm’s recognition ability decreases when the abnormal be-

havior content increases. We further infer that if there are enough abnormal behaviors, it

will cause the system to have difficulty discriminating abnormal behaviors from normal

behaviors. Therefore the anomalous behavior reduces the system’s robustness and the

anomaly detection method proposed can effectively identify anomalous behavior and im-

prove the system’s reliability.

Figure 10. ROC and DET of Log BPIC2013_closed_issue.

Figure 11 compares various anomaly detection methods’ F1 scores and AUC values

of different data sets. The results of multiple experiments show that the anomaly detection

method based on the integrated consistency metric in this paper has the advantage of ro-

bustness in real logs. Specifically, (1) anomaly detection based on the integration con-

sistency measure obtains high F1 scores and AUC values in all test logs. For example, in

the Helpdesk and Sepsis logs, both metrics reach above 0.9. (2) Compared with other

anomalous behavior detection methods under the same settings, the method in this paper

significantly outperforms the DAE and OC-SVM methods, outperforms the BINet method

in some cases, and only slightly underperforms the F1 score of BPI20PrepaidTravelCost

and the AUC metrics of BPIC13_closed_problems in BINet.

Figure 11. F1 score and AUC for all data sets in the detection methods.

8. Conclusions

A multi-view online model enhancement method fusing data and control flow is
proposed. The method considers the effects of control flow-level behavioral relationships
and data flow-level resource attributes in online scenarios and uses deep clustering and

Electronics 2022, 11, 3640 23 of 24

association rule mining methods for analysis, respectively. First, the reference model is
analyzed to construct a multi-view hybrid confidence interval constraint in the offline
phase. From the control flow perspective, the behavioral relationships among activities are
studied using deep clustering methods. In addition, the resource co-occurrence relationship
is analyzed based on association rules from the perspective of resource flow. Next, an incre-
mental update algorithm for online scenarios is proposed to achieve model enhancement by
filtering event streams and iteratively optimizing credible intervals. Finally, the proposed
algorithm was implemented based on the PM4Py framework and the resulting model
quality and execution efficiency were evaluated using real logs. The results of several sets
of comparative experiments show that the algorithm improves the model’s robustness and
obtains desirable results under noise interference.

In future work, we plan to improve the corresponding capability of the algorithm so
that it can be applied to real-time scenarios. In addition, there are many threshold-setting
scenarios for implementing isolation forests and the experimental results in this paper are the
optimal values generated under many experiments. In the future, we will explore more efficient
threshold-setting strategies to improve the efficiency and accuracy of the experiments.

Author Contributions: N.F.: Conceptualization; Methodology; Software; Writing—original draft; Vi-
sualization. X.F.: Funding acquisition; Writing—review and editing. K.L.: Methodology; Software;
Writing—review and editing. All authors have read and agreed to the published version of the manuscript.

Funding: Supported by the National Natural Science Foundation, China (No. 61572035, 61402011),
the Key Research and Development Program of Anhui Province (2022a05020005), the Leading
Backbone Talent Project in Anhui Province, China (2020-1-12), and the Open Project Program of
the Key Laboratory of Embedded System and Service Computing of Ministry of Education (No.
ESSCKF2021-05).

Data Availability Statement: All the data in this paper were obtained from https://data.4tu.nl (accessed
on 21 September 2022) and the algorithms are implemented based on PM4Py and Scikit-learn. Experimental
data and code related to this paper can be obtained by contacting the corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Nolle, T.; Luettgen, S.; Seeliger, A.; Mühlhäuser, M. BINet: Multi-perspective business process anomaly classification. Inf. Syst.

2022, 103, 101458. [CrossRef]
2. Burattin, A.; Josep, C. A Framework for online conformance checking. In Business Process Management Workshops; Springer: Cham,

Switzerland, 2018; Volume 308, pp. 165–177. [CrossRef]
3. Breunig, M.M.; Kriegel, H.-P.; Ng, R.T.; Sander, J. LOF: Identifying density-based local outliers. In Proceedings of the 2000 ACM

SIGMOD International Conference on Management of Data—SIGMOD ’00, Dallas, TX, USA, 15–18 May 2000; Association for
Computing Machinery: New York, NY, USA, 2000; pp. 93–104. [CrossRef]

4. Christy, A.; Gandhi, G.M.; Vaithyasubramanian, S. Cluster Based Outlier Detection Algorithm for Healthcare Data. Procedia
Comput. Sci. 2015, 50, 209–215. [CrossRef]

5. Pillutla, M.R.; Raval, N.; Bansal, P.; Srinathan, K.; Jawahar, C.V. LSH based outlier detection and its application in distributed
setting. In Proceedings of the 20th ACM International Conference on Information and Knowledge Management—CIKM ’11,
Glasgow, UK, 24–28 October 2011; Association for Computing Machinery: New York, NY, USA, 2011; pp. 2289–2292. [CrossRef]

6. Mannhardt, F.; de Leoni, M.; Reijers, H.A.; van der Aalst, W.M.P. Balanced multi-perspective checking of process conformance.
Computing 2016, 98, 4. [CrossRef]

7. Sani, M.F.; van Zelst, S.J.; van der Aalst, W.M.P. Repairing Outlier Behaviour in Event Logs using Contextual Behaviour. Enterp.
Model. Inf. Syst. Archit. (EMISAJ) 2019, 14, 115–131. [CrossRef]

8. Nolle, T.; Luettgen, S.; Seeliger, A.; Mühlhäuser, M. Analyzing business process anomalies using autoencoders. Mach. Learn. 2018,
107, 1875–1893. [CrossRef]

9. Bezerra, F.; Wainer, J. Algorithms for anomaly detection of traces in logs of process aware information systems. Inf. Syst. 2013, 38,
33–44. [CrossRef]

10. Genga, L.; Alizadeh, M.; Potena, D.; Diamantini, C.; Zannone, N. Discovering anomalous frequent patterns from partially ordered
event logs. J. Intell. Inf. Syst. 2018, 51, 257–300. [CrossRef]

11. Van Zelst, S.J.; Bolt, A.; Hassani, M.; van Dongen, B.F.; van der Aalst, W.M.P. Online conformance checking: Relating event
streams to process models using prefix-alignments. Int. J. Data Sci. Anal. 2019, 8, 269–284. [CrossRef]

https://data.4tu.nl
http://doi.org/10.1016/j.is.2019.101458
http://doi.org/10.1007/978-3-319-74030-0_12
http://doi.org/10.1145/342009.335388
http://doi.org/10.1016/j.procs.2015.04.058
http://doi.org/10.1145/2063576.2063948
http://doi.org/10.1007/s00607-015-0441-1
http://doi.org/10.18417/EMISA.14.5
http://doi.org/10.1007/s10994-018-5702-8
http://doi.org/10.1016/j.is.2012.04.004
http://doi.org/10.1007/s10844-018-0501-z
http://doi.org/10.1007/s41060-017-0078-6

Electronics 2022, 11, 3640 24 of 24

12. Ghionna, L.; Greco, G.; Guzzo, A.; Pontieri, L. Outlier detection techniques for process mining applications. In Foundations of
Intelligent Systems; Springer: Berlin/Heidelberg, Germany, 2008; Volume 4994, pp. 150–159. [CrossRef]

13. Neto, R.V.; Tavares, G.; Ceravolo, P.; Barbon, S. On the use of online clustering for anomaly detection in trace streams. In
Proceedings of the XVII Brazilian Symposium on Information Systems, Uberlândia, Brazil, 7–10 June 2021; ACM: Uberlândia,
Brazil, 2021; pp. 1–8. [CrossRef]

14. Mozaffari, M.; Yilmaz, Y. Online Anomaly Detection in Multivariate Settings. In Proceedings of the 2019 IEEE 29th International
Workshop on Machine Learning for Signal Processing (MLSP), Pittsburgh, PA, USA, 13–16 October 2019; IEEE: Pittsburgh, PA,
USA, 2019; pp. 1–6. [CrossRef]

15. Laxhammar, R.; Falkman, G. Online Learning and Sequential Anomaly Detection in Trajectories. IEEE Trans. Pattern Anal. Mach.
Intell. 2014, 36, 6. [CrossRef] [PubMed]

16. Böhmer, K.; Rinderle-Ma, S. Multi Instance Anomaly Detection in Business Process Executions. In Business Process Management;
Carmona, J., Engels, G., Kumar, A., Eds.; Springer International Publishing: Cham, Switzerland, 2017; Volume 10445, pp. 77–93.
[CrossRef]

17. De Leoni, M.; Felli, P.; Montali, M. Integrating BPMN and DMN: Modeling and Analysis. J. Data Semant. 2021, 10, 165–188.
[CrossRef]

18. Tavares, G.M.; da Costa, V.G.T.; Martins, V.E.; Ceravolo, P.; Barbon, S. Anomaly Detection in Business Process based on Data
Stream Mining. In Proceedings of the XIV Brazilian Symposium on Information Systems—SBSI’18, Caxias do Sul, Brazil,
4–8 June 2018; Association for Computing Machinery: Caxias do Sul, Brazil, 2018; pp. 1–8. [CrossRef]

19. Ebrahim, M.; Golpayegani, S.A.H. Anomaly detection in business processes logs using social network analysis. J. Comput. Virol.
Hack. Tech. 2022, 18, 127–139. [CrossRef]

20. Van der Aalst, W.M.P. Process Mining: Data Science in Action, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2016.
21. Chan, N.N.; Yongsiriwit, K.; Gaaloul, W.; Mendling, J. Mining Event Logs to Assist the Development of Executable Process

Variants. In Advanced Information Systems Engineering; Springer: Thessaloniki, Greece, 2014; Volume 8484, pp. 548–563. [CrossRef]
22. Polyvyanyy, A.; Smirnov, S.; Weske, M. Business process model abstraction. In Handbook on Business Process Management 1;

Springer: Berlin/Heidelberg, Germany, 2014; pp. 147–165. [CrossRef]
23. Fang, X.; Wu, J.; Liu, X. An Optimized Method of Business Process Mining Based on the Behavior Profile of Petri Nets. Inf. Technol.

J. 2013, 13, 86–93. [CrossRef]
24. Liu, F.T.; Ting, K.M.; Zhou, Z.-H. Isolation Forest. In Proceedings of the 2008 Eighth IEEE International Conference on Data

Mining, Pisa, Italy, 15–19 December 2008; pp. 413–422. [CrossRef]
25. Liu, F.T.; Ting, K.M.; Zhou, Z.-H. Isolation-Based Anomaly Detection. ACM Trans. Knowl. Discov. Data 2012, 6, 1–39. [CrossRef]
26. Bloemen, V.; Van Zelst, S.; Van der Aalst, W.; Van Dongen, B.; Van de Pol, J. Aligning observed and modelled behaviour by

maximizing synchronous moves and using milestones. Inf. Syst. 2022, 103, 101456. [CrossRef]
27. Raschka, S. Python Machine Learning; Packt Publishing Ltd.: Birmingham, UK, 2015.
28. Mannhardt, F.; Blinde, D. Analyzing the Trajectories of Patients with Sepsis using Process Mining. RADAR 2017, 1859, 72–80.
29. Wressnegger, C.; Schwenk, G.; Arp, D.; Rieck, K. A close look on n-grams in intrusion detection. In Proceedings of the 2013 ACM

Workshop on Artificial Intelligence and Security, Berlin, Germany, 4 November 2013; Association for Computing Machinery:
New York, NY, USA, 2013; pp. 67–76. [CrossRef]

http://doi.org/10.1007/978-3-540-68123-6_17
http://doi.org/10.1145/3466933.3466979
http://doi.org/10.1109/MLSP.2019.8918893
http://doi.org/10.1109/TPAMI.2013.172
http://www.ncbi.nlm.nih.gov/pubmed/26353278
http://doi.org/10.1007/978-3-319-65000-5_5
http://doi.org/10.1007/s13740-021-00132-z
http://doi.org/10.1145/3229345.3229362
http://doi.org/10.1007/s11416-021-00398-8
http://doi.org/10.1007/978-3-319-07881-6_37
http://doi.org/10.1007/978-3-642-45100-3_7
http://doi.org/10.3923/itj.2014.86.93
http://doi.org/10.1109/ICDM.2008.17
http://doi.org/10.1145/2133360.2133363
http://doi.org/10.1016/j.is.2019.101456
http://doi.org/10.1145/2517312.2517316

	Introduction
	Problem Statement
	Related Works
	Preliminary
	Behavioral Relationships in Event Logs
	Anomaly Detection Based on the Isolation Forest Model

	Multi-View Process Similarity Metric
	Behavioral Similarity Analysis Based on K-Order Neighborhoods
	Alignment-Based Attribute Distance Metric

	Anomalous Behavior Detection Using Isolation Forests
	Evaluation
	Experimental Setup
	Experimental Results

	Conclusions
	References

