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Abstract: With the rapid increase of data, centralized machine learning can no longer meet the
application requirements of the Internet of Vehicles (IoV). On the one hand, both car owners and
regulators pay more attention to data privacy and are unwilling to share data, which forms the
isolated data island challenge. On the other hand, the incremental data generated in IoV are mas-
sive and diverse. All these issues have brought challenges of data increment and data diversity.
The current common federated learning or incremental learning frameworks cannot effectively inte-
grate incremental data with existing machine learning (ML) models. Therefore, this paper proposes
a Federated Learning Framework Based on Incremental Weighting and Diversity Selection for IoV
(Fed-IW&DS). In Fed-IW&DS, a vehicle diversity selection algorithm was proposed, which uses a
variety of performance indicators to calculate diversity scores, effectively reducing homogeneous
computing. Also, it proposes a vehicle federated incremental algorithm that uses an improved
arctangent curve as the decay function, to realize the rapid fusion of incremental data with existing
ML models. Moreover, we have carried out several sets of experiments to test the validity of the
proposed Fed-IW&DS framework’s performance. The experimental results show that, under the
same global communication round and similar computing time, the Fed-IW&DS framework has
significantly improved performance in all aspects compared to the frameworks FED-AVG, FED-SGD,
FED-prox & the decay functions linear, square curve and arc tangent. Specifically, the Fed-IW&DS
framework improves the Acc (accuracy), loss (loss), and Matthews correlation coefficient (MCC) by
approximately 32%, 83%, and 66%, respectively. This result shows that Fed-IW&DS is a more reliable
solution than the common frameworks of federated learning, and it can effectively deal with the
dynamic incremental data in the IoV scenario. Our findings should make a significant contribution to
the field of federated learning.

Keywords: federated learning; incremental learning; Internet of Vehicles; diversity selection; arctan-
gent curve; FED-AVG; FED-SGD; FED-prox

1. Introduction

As an important application scenario of 5G (5th Generation Mobile Communication
Technology), the Internet of Vehicles (IoV) has attracted wide research attention [1]. Accord-
ing to Intel’s estimate, each intelligent vehicle will generate about 4000 GB of data every
day, which is equivalent to the data generated by nearly 3000 mobile phone users. Due
to this enormous growth, Brian Krzanich, CEO of Intel, said: “Data is the new oil in the
future of automated driving!”. Traditional machine learning is realized by uploading all
data to a central server for processing. However, with growing significant data in loV, there
are many shortcomings in centralized machine learning with car owner privacy leakage,
high communication cost, and high transmission delay. The challenges emerged from these
shortcomings, such as data isolated island, incremental data, and data diversity.
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Several reasons for the isolated data island challenge in IoV include the car owner’s
unwillingness, strict policies, and technical difficulties. (1) Car owner’s unwillingness. The
IoV data contains many sensitive data about personal privacy, such as travel trajectory,
navigation information, in-car recordings, camera images, etc. Most car owners are unwill-
ing to share this sensitive data. (2) Strict policies. Once these sensitive data are stored and
processed in the central server, the risk of data leakage will be greatly increased [2]. In 2018,
the “General Data Protection Regulation” was implemented to protect user data privacy
in Europe. In 2019, China launched the “Guide to Internet Personal Information Security
Protection.” The European Data Protection Committee (EDPB) adopted the “Guidelines
on Processing Personal Data in the Context of Connected Vehicles and Mobility-Related
Applications” in 2021. The guidelines introduced over the years explain the privacy protec-
tion, data risks, and countermeasures in different scenarios of IoV. These laws or guidance
indicate that data owners must be supervised and be obligated to protect data. (3) Technical
difficulties. Last, but not least, there were about 119 million intelligent vehicles in 2018, and
by 2023, this number will nearly triple to 353 million. Meanwhile, as mentioned above,
every smart vehicle will generate about 4000 GB of data every day. Therefore, even though
5G is widely applied on this planet, it is still impossible to realize data sharing and real-time
calculation in IoV.

Federated learning provides a decentralized, distributed, and secure solution for IoV
data sharing. In federated learning, the local data are only stored in the vehicle nodes, and
the local machine learning (ML) parameters are trained [3]. Many local ML parameters
are aggregated to the central server to train a more accurate global ML model. The data
sharing problem was transformed into the problem of local ML parameter sharing, which
solves data privacy and reduces transmission costs. However, the real-time incremental
data generated in IoV is massive. Different road conditions will cause their incremental
data, such as urban and suburban, uphill and downhill, day and night, rainy, snowy, and
sunny days [4]. To better adapt to driving assistance or safety warning functions in IoV,
it is necessary to update the old ML model. The key research has focused on fusing the
incremental data with the old ML model and ensuring that all vehicles can effectively
participate in the global ML model training. That’s the incremental data challenge.

The incremental data challenge can be solved by incremental learning. Incremental
learning means that a learning system can constantly learn new knowledge from new sam-
ples and can save most of the previously known knowledge [5]. However, the traditional
federated learning method, which does not consider the weight of incremental data, largely
depends on the repetition of the training process, and even leads to the severe decline of
global ML model accuracy and ML model deviation. In addition, since both the common
goal of federated learning and incremental learning is to obtain more reliable prediction
results through local ML model parameters of multiple vehicles, theoretically, the greater
difference of each local ML model parameter, the better the result will be. If local ML
models are highly homogeneous and non-complementary, it does not make sense to train
global ML models, but rather to duplicate them, which can increase computational costs.
Our expected framework combines the strengths of different local ML models in loV to
compensate for each other’s deficiencies and better address the data diversity challenge [6].

Therefore, to solve the above challenges, this paper mainly focuses on the isolated data
island, incremental data, and data diversity challenges in IoV. We proposed a federated
learning framework based on incremental weighting and diversity selection (FED-IW&DS)
that aims to achieve efficient computation and higher performance in IoV.

Our Contribution

This paper mainly focuses on the isolated data island, incremental data, and data
diversity challenges faced by IoV. We propose a Federated Learning Framework Based on
Incremental Weighting and Diversity Selection (Fed-IW&DS).

1. We first introduced federated learning in the IoV scenario to deal with the isolated data
island challenge. Second, we combine incremental learning and federated learning to



Electronics 2022, 11, 3668 3 of 25

address the incremental data challenge. More specifically, an algorithm was proposed
based on incremental data weights and incremental parameter depth values. In
this algorithm, the penalty factor is used to improve the arctangent function, and
a weighted aggregation strategy is formed, which optimizes the problems of large
steady-state errors and weak anti-interference ability in IoV.

2. We then propose a dynamic selection algorithm combining cosine distance and diver-
sity score to deal with the data diversity challenges. The algorithm integrates the local
ML model parameters from different vehicles, avoids homogenization computing,
maintains independent complementary data diversity, and optimizes the over-fitting
problem of the global ML model prediction model in IoV.

3. We finally validate the Fed-IW&DS framework on multiple datasets, adopting accu-
racy, loss value, and Matthews correlation coefficient (MCC) to evaluate the global
ML model. The experimental results show that the Fed-IW&DS framework achieves
higher accuracy, lower loss, and better MCC metric within the same computational time.

The remaining sections are organized as follows. Section 1 is a literature review.
Section 2 introduces the system model and problem description. Section 3 introduces the
FED-IW&DS framework in detail and expounds its mathematical principles. Section 4 con-
ducts experiments using two datasets and compares the performance with other federated
learning frameworks and decay functions.

2. Literature Review

The integration of machine learning and IoV is increasing as data grows exponentially.
Traditional machine learning requires that the data is centralized in a server or data center.
Obviously, this leads to high communication costs and low computational efficiency in
IoV and many techniques have been introduced into IoV application scenarios. Therefore,
we will analyze the literature layer by layer from the perspectives of distributed machine
learning, federated learning, and incremental learning.

2.1. Distributed Machine Learning in IoV

Distributed machine learning is an effective method to alleviate the problems of low
communication efficiency and limited computing resources in IoV. Distributed machine
learning either divides the training data and distributes them to multiple vehicle nodes, or it
divides the learning model, and different vehicle nodes are responsible for different model
training [7–9]. For example, Al-Sharman et al. used deep learning to realize the prediction
of vehicle braking pressure, and the experimental results show that its accuracy is very
impressive [10]. However, Zhang et al. proposed that it is unrealistic to only consider the
vehicle brake pressure data, because, in the IoV’s practical application, the transmission and
encryption of a large amount of data will bring huge pressure on the storage and calculation
of the vehicle system. Therefore, they proposed that the problem of communication resource
allocation in IoV can be effectively solved by transforming the centralized framework into
a distributed framework [11]. However, Zhao et al. pointed out that it is not enough
to only consider how to allocate resources reasonably in distributed machine learning,
because the lack of mechanisms to protect user data security will have many limitations in
practical applications. Therefore, they proposed a distributed machine learning-oriented
data integrity verification scheme (DML-DIV) based on distributed machine learning,
which realizes data integrity through the idea of provable data possession (PDP) sampling
audit algorithm. Unfortunately, they did not give a specific reference to the effect of using
this encryption method on the accuracy of the model [12]. In addition, Magdum et al.
conducted a detailed study of distributed machine learning algorithms. Experiments on
LightGBM, CatBoost, AdaBoost, and XGBoost show that CatBoost performs the best among
other algorithms, with an accuracy rate of only 81.31% [13]. However, they still require
significant improvements to be applied in IoV.

To sum up, distributed machine learning is indeed a method for multi-party data
sharing in IoV. However, on the one hand, the accuracy of distributed machine learning
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is still far from a practical application of IoV. On the other hand, as mentioned above, in
distributed machine learning, the central server has absolute control, and the data content
and training process of vehicle nodes are deployed uniformly by it, which brings the risk
of privacy leakage.

2.2. Federated Learning in IoV

Federated learning is a special kind of distributed machine learning. (1) Compared
with traditional distributed machine learning, the central server in federated learning
cannot directly or indirectly read the data on the client. The client can not only stop com-
puting and quit learning at any time, but also have absolute control over the data. (2) Most
distributed machine learning assumes that the data on different clients is average and
randomly scrambled, which makes it easier to train efficient global models. However, the
reality of IoV is often not so optimistic. When vehicle data is generated independently, their
amount is always different and irregular, so it is very rare for the data to be independent
and identically distributed (i.i.d.). Federated learning is born with the ability to process
non-i.i.d. data. (3) Distributed machine learning is more based on stable connections. On
the contrary, federated learning is usually applied to poor network connections. Vehicles
are often disconnected from the central server, so there is an obvious requirement for
a method that disconnecting has little impact on global training. Therefore, federated
learning is more robust than traditional distributed machine learning.

These advantages of federated learning make it a research hotspot. Many scholars
have made many achievements in many fields, such as 5G [14], Internet of Things [15]
, UAV (Unmanned Aerial Vehicle) [16], Navigation [17], etc. The clients in these studies
are independent, and the non-i.i.d. data they collect are different, making the traditional
distributed machine applied poorly.

The emergence of federated learning provides a strong technical foundation for data
sharing in the IoV. In federated learning, each vehicle node has data autonomy. The data
is collected autonomously by the vehicle nodes, and the training process is not subject
to mandatory management by the central server. In recent years, many scholars have
proposed a variety of federated learning frameworks for IoV [18–20].

Wang et al. proposed an algorithm for vehicle selection and radio resource alloca-
tion based on data content, which maximizes the loss function decay of the global model.
However, they are only tested on a single dataset, and the model robustness is still ques-
tionable [21]. Liang et al. proposed a semi-synchronous federated learning (Semi-SynFed)
protocol and a dynamic aggregation scheme to aggregate model parameters in an asyn-
chronous manner, making the federated learning process more efficient. However, using
asynchronous aggregation makes it have to use more resources, and there are certain
problems in process control [22]. Yu et al. proposed a Federated Learning Incentive (FLI),
which achieves the purpose of dynamic balance by maximizing the collective joint data
and minimizing the inequality among data owners within the same computing time [23].
However, Lyu et al. proposed that the central server of this scheme still has hidden dangers
in terms of security. So they proposed a decentralized fairness and privacy-preserving deep
learning (FPPDL) framework, designed a local reputation mutual evaluation mechanism to
ensure fairness, and a three-layer onion-style encryption scheme to ensure privacy. They
also claimed that under FPPDL, each participant receives a different version of the FL
model whose performance is commensurate with their contribution [24]. However, for this
FPPDL, Huang et al. proposed that the scenarios in which this framework can be applied
are very limited, and the common progress of all parties cannot be achieved. Therefore,
they proposed a 5G-V2X-oriented Asynchronous Federated Learning Privacy-Preserving
Computation Model (AFLPC), which they claim can effectively guarantee the practicability
and privacy of asynchronous federated learning in 5G-V2X scenarios [25].

Vehicles continuously collect incremental data while driving. Meanwhile, different
road conditions and complexity will generate diverse incremental data. Unfortunately,
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most of the current federated learning frameworks are based on static datasets, and there is
a lack of mechanisms for how to combine incremental data with current models.

2.3. Incremental Data and Data Diversity in IoV

If we only consider the current data, it is difficult for the trained model to adapt to
incremental data. In turn, considering only incremental data makes the model prone to
“catastrophic forgetting”. In response to these problems, many scholars have proposed
different incremental learning frameworks [26–28]. For example, Cui et al. proposed an
adaptive feedback handover (SAFH) algorithm to solve the dynamic handover problem
in IoV, using an incremental feedback mechanism to dynamically capture the splitting
properties of decision trees [29].

The algorithm proved to be less expensive than some existing ones. However, its data
security cannot be guaranteed. In addition, Wang et al. proposed that the concept of a
generalized learning system (BLS) be introduced into IoV, and the incremental learning
algorithm is used to update and improve according to the newly generated data. This
method has strong scalability [30]. Like Cui et al. [29], they didn’t consider data security.
Therefore, Zhu et al. proposed a novel attention-based federated incremental learning algo-
rithm (Fed-SOINN). Their algorithm introduces an attention mechanism that increases the
weight of ML model parameters uploaded by customers. Compared with baseline methods,
Fed-SOINN improves detection accuracy by 3.1% and can reduce communication rounds
by up to 73%. When faced with new traffic classes, the incremental learning mechanism in
Fed-SOINN can also effectively identify unknown traffic classes [31]. However, they lack a
discussion of computational time cost.

In summary, through the literature analysis above, there is much research on IoV at
present. However, as shown in Table 1, how to solve the three major challenges of isolated
data island, incremental data, and data diversity challenges caused by massive data in IoV
at the same time are still missing. A more convincing framework is yet to be proposed.

Table 1. Comparison of different frameworks.

Frameworks Isolated Data
Island Challenge

Incremental Data &
Data Diversity Challenges

Computational
Time Cost

Al-Sharman et al. [10] # # #

Zhang et al. [11] # # !

Wang et al. [21] # # !

Liang et al. [22] ! # !

Hang et al. [25] ! # #

Cui et al. [29] # ! !

In addition, the visual analysis of literature with the VOSviewer tool also confirms
our view. As shown in Figure 1a, in the Web of Science Core Collection, we use “federated
learning”, “internet of vehicles” and “incremental learning” to search for the last five years,
that is, from January 2017 to September 2022. Then we screened out the keywords that
appeared more than 100 times and used the VOSviewer tool to generate the relationship
diagram and number analysis. These 3 keywords are the hot research directions at present
because their publication (record count in Figure 1b–d) and citation have been increasing
in recent years. However, we can clearly see that these 3 keywords have become three
relatively independent fields. Too little work has been devoted to their combinations, so
this is a largely underexplored domain.
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Figure 1. The citation relationship between “Federated Learning”, “Incremental Learning” and
“Internet of Vehicles”, as well as the number of publications and citations in the last five years.

3. System Model and Problem Description
3.1. System Model

As shown in Figure 2, in the proposed Fed-IW&DS framework, we only upload local
ML model parameters, and all data are kept in local vehicle nodes. There are three entities,
which are the central server, the AP (Access Point), and the vehicle node. Communication
between the three entities only transfers local ML model parameters, and valuable local
data is only stored at the vehicle node. The functions of the three entities are as follows.
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Figure 2. System Model.

1. Central server. It is the only core processing node. It does not receive local data col-
lected by the vehicle, only local ML model parameters. In the Fed-IW&DS framework,
it is responsible for the highest difficulty calculations, such as Incremental Weighted
Calculation and Incremental Parameter Depth-Value Calculation, etc. We assume that
the central server has unlimited computing power and storage space, in other words,
it is capable of any computation.

2. AP (Access Point). There are multiple APs, all connected to the server. They can com-
municate with each other at any time. Likewise, it does not receive local data collected
by the vehicle, only local ML model parameters. In the Fed-IW&DS framework, it is
responsible for moderately difficult calculations such as Vehicle Diversity Selection
and Diversity Score Calculation. We assume it has enough computing power and
storage space to support these moderate calculations.

3. Vehicle node. There are many vehicles, and one vehicle will only be connected to
one AP at a time. The vehicle node is responsible for collecting a large amount of
incremental data (most of which are images from the camera) during the driving
process, and only saves them in the local storage to form a local data set Dlocal . Then
Dlocal is trained to form local ML model parameters Wlocal . While Dlocal will be saved
locally, the vehicle node will only upload Wlocal. We define the collection of vehicles
as V, and a vehicle as Vp, p = {1, 2, 3...n}. The sample data of vehicle Vp is represented

as Dp = {X(p)
1 , X(p)

2 , . . . , X(p)
i }, the label set of these sample data is expressed as

Cp = {Y(p)
1 , Y(p)

2 , . . . , Y(p)
i }. The amount of sample data of the vehicle Vp is S, and the

sum of the number of training samples is Ssum = ∑n
i=1 S. The sample size of vehicle

Vp is S, and the total sample size of all vehicles is Ssum = ∑n
i=1 S.During the first

training process, the server will obtain a local ML model parameter in the existing
local training set Dlocal = {(Xi, Yi)}

|Dlocal |
n=1 . At this stage, the existing local training sets

(assuming they are class a) contain many training samples. When the global model is
updated at round t + 1, the vehicle nodes will gradually collect a set of incremental
data (assuming they are class b). Incremental learning is required to continuously
update the global model. Incremental learning keeps learning new classes without
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forgetting the learned old classes. That is, the global model can correctly identify
images of class a + b.

The symbols and their meanings that we use subsequently are shown in Table 2.

Table 2. Symbols and Explanation.

Symbols Explanation Symbols Explanation

Dlocal vehicle local dataset Wp local ML model parameters for the p-th vehicle

Wlocal local ML model parameters W i
t+1

local model parameters of the i-th vehicle
in the (t+1)th round

p total number of vehicles fθ(·) extractor
pi i-th vehicle node θ extractor parameters
Vp The p-th vehicle participating in the calculation Cω(·) classifier
Dp local dataset of the p-th vehicle ω classifier parameters
Xp

i the i-th data in the p-th vehicle L number of neural network layers
Cp local raw label dataset W (l) ∈ RK bias from layer l-1 to layer l
S vehicle sample data volume Q(l) ∈ RK the input of the first layer neuron
N number of sample categories F(l−1) ∈ RM×N×D l-1 layer parameter mapping result
Xi sample data o(l) ∈ R learning bias
Yi sample label A number of convolution kernels
DInDt incremental dataset of vehicle nodes at round t + 1 Ĉi image predicted category
W all vehicle parameters Ci image real category

3.2. Problem Description

We assume that there are p vehicles participating in the global model, and each
vehicle has its own local dataset at the beginning, denoted as a

{
X(1)

i

}
∈ D1,

{
X(2)

i

}
∈

D2, . . . ,
{

X(p)
i

}
∈ Dp, i = {1, 2, 3 . . .} To protect user privacy in federated learning, vehicle

nodes do not directly send local data to the central server. Therefore, the central server
can only update the global model by collecting the local ML parameters corresponding
to each vehicle, which are W1, W2, . . . , Wp. The set of all local ML model parameters is
W = W1 ∪W2 ∪ . . . ∪Wp Then in the (t + 1) round of global model, each vehicle has pi
training data and local ML model parameters Wi

t+1. The global model’s weight update
formula in the traditional FedAVG framework is as follows.

wt+1 ←
I

∑
i=1

pi
p

wi
t+1 (1)

where wt+1 represents the global model parameter update, pi represents a certain vehicle
node, p represents the total number of vehicles, and w represents the local ML model
parameters participating in the global model. In addition, there is obviously ∑I

i=1 nk = n.
However, the model weights are averaged in the traditional FedAVG framework.

The FedAVG framework does not perform well with diverse incremental data (as our
experiments will demonstrate). Diverse incremental data comes from the fact that vehicles
will generate different incremental data in different road conditions. To efficiently fuse
incremental data with existing models, we define a base model for incremental learning.

M = Cω( fθ(x)) (2)

It consists of an extractor fθ(·) and a classifier Cω(·), where θ and ω represent the
parameters of the extractor and classifier, respectively. The image to be classified is denoted
as x, the extracted ML model parameters from x are denoted as fθ(x), and the classification
result of the ML model parameters fθ(x) is denoted as Cω( fθ(x)).

In the federated learning + incremental learning scenario, the first training dataset
of all vehicles involved in the computation is

{
D1, D2, . . . , Dp

}
. Then, each vehicle will

generate an incremental dataset after the first round of global training. After the (t + 1)
round global training, the incremental data is represented as DInDt. Therefore, when
the global model updates the parameters in the t + 1 round, the dataset in the vehicle
becomes

{
D1, DInD 1

1 , DInD 2
1 , . . . , DInD t

1
}

. The vehicle first completes the training of all{
D1, DInD 1

1 , DInD 2
1 , . . . , DInD t

1
}

, and then sends the local ML model parameters to the AP.
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After being processed by the AP (such as Vehicle Diversity Selection and Diversity Score
Calculation), the parameters collection Wt+1 = W1 ∪W2 ∪ . . . ∪Wp are sent to the central
server to calculate the new global parameter value Ws for the next t+2 round.

To better complete the above work, we decided to use an industry-proven & state-
of-the-art model—Convolutional Neural Network (CNN). The convolutional structure of
CNN can reduce the amount of memory occupied by the deep network, effectively alleviate
the problem of model overfitting, and better extract image ML model parameters. CNN
generally consists of convolutional layers, pooling layers, and fully connected layers.

In CNN, convolution is used instead of fully connected layers, and the net input Q((l))

of the l layer is the activity value a((l−1)) of the L − 1 layer and the convolution kernel
W (l) ∈ RK convolution, i.e.,

Q(l) = W (l) ⊗ a(l−1) + o(l) (3)

where W (l) ∈ RK is the learning weight vector, and o(l) ∈ R is the learning bias. In the
(t + 1) round of our federated learning + incremental learning framework, the (l − 1) layer
of the CNN is a convolutional layer, and its input parameters are mapped as F(l−1) ∈
RM×N×D. The parameters of layer l calculated using convolution are mapped to Q(l) ∈
RM′×N′×I . Therefore, the vehicle calculation process is as follows.

Q(l,i) =
N

∑
d=1

W(l,i,d) ⊗
[

D(l−1,d) ∪ DInD(l−1,d) ∪ . . . ∪ DInDt(l−1,d)
]
+ o(l,i) (4)

Among them, W(l,i,d) and o(l,i) are convolution kernels and learning bias. There are
SNconvolution kernels and I bias in the l layer, and the gradient can be calculated by using
the chain rule.

Furthermore, to avoid overfitting, the CNN model adds a pooling layer after the
convolutional layer. In this paper, we use two common pooling functions, Max Pooling
and Mean Pooling.

Maximum Pooling or Max Pooling:

yd
m,n = max

i∈Rd
m,n

xi (5)

Mean Pooling:

yd
m,n =

1∣∣Rd
m,n
∣∣ ∑

i∈Rd
m,n

Xi (6)

Each output parameter in CNN requires a convolution kernel and a bias, and we
derive the prediction result in Ĉn,i from Formula (7).

Ĉi = Qn,iAT
n + on,i (7)

Therefore, it can be deduced that the prediction accuracy of the federated learning +
incremental learning framework is as follows.

Accuracy =
1
N

N

∑
i=1

(
Qn,iAT

n + on,i

)
/Ci (8)

Among them, Ĉi is the predicted category, and Ci is the real category of the image.
On these, we can calculate the local ML model loss of the federated learning + incre-

mental learning framework, and the calculation formula is as follows.

fn(w) = log2

(
1 + exp

(
− 1

N

N

∑
i=1

Qn,iAT
n + on,iWT

n

[
D(l−1,d) ∪ DInD1(l−1,d) ∪ . . . ∪ DInDt(l−1,d)

]))
(9)
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To evaluate the performance of our framework more comprehensively, we decided to
add MCC to evaluate the model in addition to the Acc and Loss indicators.

In the IoV scenario, MCC is defined as follows.

Ck,k = |{s ∈ S | Xsk = Ysk = 1}| =
S

∑
s=1

Xsk ·Ysk (10)

where S represents the total number of samples of all vehicle data, N represents the number
of categories, and X, Y represent two S*N-dimensional matrices.

Therefore, the MCC calculation formula is as follows.

MCC =
∑N

k,l,m . . . Ckk · Cml − clk · Ckm√
∑N

k=1

[(
∑N

k=1 Clk

)(
∑N

f ,g=1& f 6=g Cg f

)]√
∑N

k=1

[(
∑N

k=1 Clk

)(
∑N

f ,g=1& f 6=g Cg f

)] (11)

3.3. Problem Summary

Through the above introduction of three indicators—Acc, Loss, and MCC, we can get
the training target of our Fed-IW&DS framework, which is formulated as follows.

max Accuracy = max

[
1
N

N

∑
i=1

Qn,iAT
n + on,i

]
(12)

min f (W) , min

[
1
N

N

∑
n=1

. . . (W)

]
(13)

MCC = max
∑N

k,l,m . . . Ckk · Cml − clk · Ckm√
∑N

k=1

[(
∑N

k=1 Clk

)(
∑N

f ,g=1& f 6=g Cg f

)]√
∑N

k=1

[(
∑N

k=1 Clk

)(
∑N

f ,g=1& f 6=g Cg f

)] (14)

The isolated data island, incremental data, and data diversity challenges in the IoV are
specifically quantified into the Formulas (12)–(14). With constantly diversifying data and
updating incremental datasets, the framework we pursue should be able to achieve higher
accuracy, lower loss, and better MCC values, to achieve a better solution between the local
ML model and the global ML model, to significantly optimize the efficiency of federated
learning + incremental learning in IoV.

4. The Proposed Fed-IW&DS Framework
4.1. Overall Introduction to the Framework

Our Fed-IW&DS framework is divided into 3 modules (shown in Figure 3), namely
Vehicle Node-vehicle data collection (as the name suggests, the task of vehicle node is:
collecting incremental data, training the local ML model & uploading it, waiting for the
next round of global ML model sent by the server.), AP Node-vehicle diversity selection
algorithm and Central Server-vehicle federated incremental learning algorithm.

• Vehicle diversity selection algorithm consists of diversity score calculation and diver-
sity score sorting. Diversity score calculation first uses ACC, Loss, and MCC three
vehicle performance indicators, and then calculates the difference of these three indi-
cators through an improved cosine distance. Diversity score sorting is responsible for
statistical calculation results and filtering vehicle nodes with high diversity scores.

• The vehicle federated incremental learning algorithm is executed by the central server.
It is well known that vehicles in IoV drive freely (as long as they obey the traffic rules).
Therefore, the incremental data are different from each other during driving. However,
in the traditional federated learning framework, the central server collects the local
ML model parameters of all vehicle nodes and then updates the global model with
the same weights. This is obviously unreasonable. In response to the above problems,
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our proposed vehicle federated incremental learning algorithm is divided into three
sub-modules: incremental weighted calculation, incremental parameter depth-value
calculation, and incremental parameter update.

• We introduce these three sub-modules: incremental weighted calculation, incremental
parameter depth-value calculation, and incremental parameter update. (1) Incremental
weighted calculation. The server constantly monitors the incremental learning status
of vehicle nodes. The server explores the impact of incremental data on the current
local ML model according to the ratio of the incremental sample number to the
current total number of samples. Its purpose is to make the local ML model decay
relatively stable and gentle. (2) Incremental parameter depth-value calculation. It
refers to the incremental parameter correction of the global ML model based on
the previous incremental weighted calculation results. More specifically, the impact
of incremental data on the current local ML model will be reflected by a specific
value—the incremental parameter depth value. The incremental parameter depth
value enables reasonable, rapid, and stable incremental parameter correction for the
global ML model. (3) Finally, only the global ML model updated with incremental
parameters could be sent to every vehicle node for the next round of calculation. The
above process will continue to repeat until the vehicle node leaves the AP coverage or
parks or disconnects.

AP AP AP

Vehicle	data	collection

Collecting	incremental	data.
Training	the	local	ML	model	and	uploading	it.
Waiting	for	the	next	round	of	global	ML	model	sent	by	the	server.

AP-Vehicle	
diversity	selection

Diversity	score
calculation

Diversity	score
ranking

Server
Federated	Incremental	Learning	

Incremental	Weighted	Calculation

Incremental	Parameter	
Depth-Value	Calculation

Incremental	Parameter	Update

i-round

i-round

i+1
round

Figure 3. The proposed Fed-IW&DS Framework.

AP Node-vehicle diversity selection algorithm and Central Server-vehicle federated
incremental learning algorithm are not independent of each other. The AP Node-vehicle
diversity selection algorithm needs to obtain the aggregated global ML model parameters
from the Central Server and collect the local ML model parameters to calculate the diversity
score. The vehicle nodes selected by vehicle diversity affect the learning direction of the
Central Server’s global ML model, which in turn affects the results of the vehicle federated
incremental learning algorithm.
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4.2. AP Node-Vehicle Diversity Selection Algorithm

The vehicle diversity selection algorithm means that the AP node calculates the
diversity score of the vehicle nodes participating in this communication round before
uploading the local ML model parameters to the server, then sorts them according to
the diversity score, and filters the vehicles that are eligible to participate in the server’s
global ML model. In traditional federated learning, most of the discriminant conditions for
participating in the global ML model are based on the accuracy from accurate to inaccurate
or setting the proportion of participating in the global ML model or setting a fixed threshold.
These methods have the following shortcomings in IoV.

1. The vehicle’s existing data and incremental data are unbalanced, resulting in different
requirements for parameter change in the process of ML learning. Simply grading the
accuracy of the local ML model from good to bad, or selecting participating vehicles
proportionally, it is easy to ignore the useful ML parameters. This will lead to the
deviation of the global ML model in the central server’s training process, which
cannot cope with the diversity of incremental data, thus affecting the accuracy of the
global ML model.

2. In traditional federated learning, the selection of nodes is only based on a fixed
threshold, which is artificially set and the value of this threshold is too subjective.
However, the situation in IoV changes rapidly, and unreasonable fixed thresholds will
make the central server to be time-consuming. This will cause the global ML model
to fluctuate greatly and not easily converge, and it is also unable to cope with the
diversity of incremental data.

In Fed-IW&DS, the central server considers the accuracy and diversity scores equally
when selecting vehicle nodes to participate in the global ML model. We first calculate the di-
versity score of vehicle nodes and sort them, and then select the vehicle nodes participating
in the global ML model training according to the set proportional coefficient Diversity-Ratio
(D-R). Only the selected vehicle nodes can obtain the qualification to participate in the
global ML model, otherwise, the ML parameter information is accumulated locally, and the
final parameters will accumulate sufficient information to be uploaded to the central server.
No matter whether the vehicle node is qualified for the global ML model of this round or
not, the AP node must calculate the diversity score in each round, so the diversity score
calculation will run through the whole learning process.

4.2.1. Diversity Score Calculation–Initial Process

In the Fed-IW&DS framework, the core method of diversity score calculation is cosine
distance. Also known as cosine similarity, the cosine of the angle between two vectors
is used as a measure of size between two individuals. Therefore, we apply it to the
performance indicators of vehicle nodes in IoV, which can reflect the diversity of vehicle
nodes in each round. However, the data in IoV are rich in diversity, and the traditional
calculation of cosine distance in a single dimension will lead to inaccurate data similarity
calculation results. To obtain a more comprehensive diversity score, we use more indicators,
namely the Acc, Loss, and MCC of the vehicle nodes. From these three indicators, the
sum of the cosine distances between a certain vehicle node and all other vehicle nodes is
calculated, which is taken as the vehicle node’s Diversity Score (DSi).

We form these three indicators into a matrix [uacc, uloss , uMCC], that is, obtain the
overall performance matrix Vi,j, as follows. a11 a12 a13

a21 a22 a23
. . . . . . . . .

 = Vij[uacc, uloss , uMCC] (15)
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The subscript n is the number of vehicle nodes. From n vehicle clients, we take any
two vehicle clients pi[ai1, ai2, ai3] and pj

[
aj1, aj2, aj3

]
(0 < i ≤ n, 0 < j ≤ n, i 6= j), and their

cosine distances are as follows.

cos
(

pi, pj
)
=

∑n
k=1 pi,k pj,k√

∑n
k=1 p2

i,k

√
∑n

k=1 p2
j,k

(16)

Simplify it to get the following formula, which represents the cosine distance between
any two vehicle nodes.

cos
(

pi, pj
)
=

∑n
k=1 pi,k pj,k

‖pi‖ ·
∥∥pj
∥∥ (17)

4.2.2. Diversity Score Calculation–Improvement Based on Penalty Factor

• Motivation of Penalty Factor

The Fed-IW&DS framework faces the following problems. In IoV, with the increase of
data diversity, the training dataset’s error of the global ML model will gradually decrease,
while the test dataset’s error will generally decrease first and then increase. This is the
overfitting problem of the global ML model.

Therefore, for the above-mentioned time difference between diversity and error rate,
we need to select an appropriate complexity for the local ML model by introducing a
penalty factor. Penalty factors can balance empirical risk and structural risk in ML mod-
els [32]. After many experiments, we found that when more vehicles are qualified to
participate in the global ML model, it means that the complexity of the model is lower, the
structural risk is lower, and the required penalty factor is smaller. On the contrary, the fewer
vehicles participating in the global ML model, the greater the structural risk, the smaller
the empirical risk, the easier it is to over-fit, and the greater the penalty factor required.

• Improved Diversity Score Based on Penalty Factor

We introduce a penalty factor to give proper complexity to the local ML model. All
vehicles are expressed as V-Sum, the total number of vehicles eligible for global ML model
training is expressed as V-Glb, and the penalty factor is Pen-Fac. The Pen-Fac formula is
as follows.

Pen− Fac = 1− V−Glb
V− Sum

(18)

After improvement on Pen-Fac, the similarity between vehicles X and Y is expressed
as simcos(X, Y).

simcos(X, Y) =
∑t∈RXY

Pen− Fac · (RX,t − R̄X)(RY,t − R̄Y)√
∑t∈RX

(RX,t − R̄X)
2
√

∑t∈RY
(RY,t − R̄Y)

2
(19)

Hence, we get the vehicle client diversity score DSi.

DSi =
n

∑
j=0

Simcos(X, Y); (i 6= j) (20)

where n represents the number of all vehicle nodes. Obviously, the larger the diversity
score DSi, the smaller the similarity of performance indicators, and vice-versa. Finally, we
select the vehicle nodes participating in the global ML model according to the factor D-R.
Vehicle nodes that are not selected accumulate ML parameters locally and proceed to the
next round’s local ML model learning. Regardless of whether the vehicle node is eligible
for the global ML model or not, the diversity score calculation is carried out throughout the
whole learning process.
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4.3. Central Server-Vehicle Federated Incremental Learning Algorithm

After the Fed-IW&DS framework has found a way to deal with data diversity, the
next step is to incorporate it into a federated learning global ML model. However, what
we must deal with next is the incremental data challenge. We are dealing with highly
free vehicle nodes, and each vehicle node will have exponential incremental data. Most
of the current federated learning frameworks are based on static datasets and lack the
mechanism to combine incremental data with existing models. How to effectively fuse
incremental data with existing models quickly and at the same time ensure that each vehicle
effectively participates in global ML model training becomes the next research goal of the
Fed-IW&DS framework.

4.3.1. Incremental Weighted Calculation

Vehicle incremental data has the characteristics of uneven learning samples and
dynamic data increase. In the same training round of the global ML model, the sample size
of incremental data is different. As an example, vehicle A doubles the existing data: if the
amount of existing data is 200, the incremental data amount is 400. Another example is
that vehicle B has only increased by 0.5 times the existing data: if the existing data amount
is 200, the incremental data amount is 100.

The process of model training can be understood as the process of model “learning”.
As time goes by, the model approaches the optimal solution to the problem. However, in
IoV, more incremental data will increase the distance between the global ML model and
the optimal solution to the learning problem. Therefore, it is unreasonable to update the
local ML models with equal weight. Our Fed-IW&DS framework introduces the strategy
of incremental weighted aggregation, which solves the problem of unbalanced incremental
data in federated incremental learning.

The FedAVG algorithm is given above, and its aggregation strategy is shown in
formula x, which only considers the influence of local data’s sample size on the global ML
model, that is, a larger n will have a greater impact on the global ML model. However, it
does not perform special treatment for incremental data. By calculating the incremental
parameter depth-value of vehicle nodes, the incremental weight is introduced to influence
the global ML model of the Fed-IW&DS framework.

The incremental weight indicates the proportion of the incremental samples in the
total number of existing samples. In the (t + 1) round, the incremental weight φi of the
vehicle node i can be obtained by the number of incremental samples and the total number
of samples. The formula is as follows.

φi =

∣∣DInDt
i

∣∣
|Di|+

∣∣DInDt
i

∣∣ (21)

∣∣DInDt
i

∣∣ is the number of incremental data, and |Di| is the number of existing data.

4.3.2. Motivation of Adjustment Variable α for Parameter Depth-Value

The above calculated incremental weights fully reflect the proportion of the incre-
mental data sample. However, the Fed-IW&DS framework is based on federated learning,
which only uploads local ML model parameters. Therefore, we need to transform the pro-
portion of the incremental data into an appropriate update of the incremental parameter’s
depth value. Based on these thoughts, we have formed the following motivations: the
relationship between incremental data and parameter depth-value, massive incremental
data, small incremental data, and incremental data trends.

• Relationship between incremental data & parameter depth-value. Obviously, the
amount of incremental data is proportional to the depth value of the incremental
parameters. That is to say, the more incremental data of a vehicle, the more we need to
consider updating its parameters. Therefore, we first need to consider a “proportional
decay function”.
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• Massive incremental data. In the early stage of global ML model training, the amount
of existing data is small, and the proportion of incremental data is large. If blindly
selecting vehicles with massive incremental data will lead to excessive consumption
of resources and increase the calculation cost of the global ML model. Therefore, we
next need to consider a proportional decay function with “reducing the large signal”.

• Small incremental data. In addition, if we ignore vehicles with small incremental
data, it will easily lead to the extreme competition phenomenon of “the strong are
stronger, the weak are weaker”. Therefore, we also need to consider a proportional
decay function that can “amplifying the small signal + reducing the large signal”.

• Incremental data trends. In the middle and late stages of global ML model training,
the amount of existing data will increase, and the proportion of incremental data will
decrease. Therefore, the more common situation is a small amount of incremental
data. In other words, the key to our incremental parameter depth-value calculation is
“amplifying the small signal”.

We have considered many decay functions. However, neither theoretical calculations
nor experimental attempts have achieved satisfactory results. (1) First, we try linear
function. It cannot cope with the massive incremental data in the early stage of global ML
model training, nor can it cope with the incremental data in the middle and late stages.
(2) Second, we try the square curve function. When the variable takes very large positive
or negative values, it will be supersaturated, which means that the function becomes
steep and sensitive to small changes in input. (3) Then we try the arc tangent function,
which performs well in massive incremental data. It can reasonably deal with vehicles
with massive incremental data, calculate their corresponding parameter depth-value in a
balanced way, and efficiently realize “reducing the large signal”. However, when faced
with a small amount of incremental data, it does not perform well in terms of “amplifying
the small signal”.

Therefore, in the next subsection we propose an adjustment variable α, which can
significantly compensate for the inadequacy of the arctangent function in “ amplifying the
small signal ”.

4.3.3. Incremental Parameter Depth-Value Calculation

It is necessary to convert the sample size ratio of incremental data into an update
of the depth-value corresponding to the incremental parameters. The depth value of the
incremental parameter indicates the influence of the local incremental data on the global
ML model when the vehicle node finishes learning the local ML model and reflects the
updated size of the local ML model parameters. In the process of parameter optimization,
there are certain depth values, as follows.

εi
t+1 = εi

t −
(

φk ∗ εi
t

)
(22)

Among them,εi
t is the incremental parameter depth-value, and φk is the incremen-

tal weight.
The greater the proportion of incremental data sample size, the greater the depth-value

of the incremental parameters. We need to achieve the goal of “ reducing the large signal ”,
so that the parameter depth-value of the vehicle node with huge incremental data is not so
that huge, and the decay process is relatively gentle. As shown in Equation (23) below, we
choose the arc tangent as the decay function for incremental weighting.

µi
t+1 =

2
π

arctan εi
t+1 (23)

However, the traditional arctangent function has a large steady-state error and weak
anti-interference ability [33]. Most importantly, it ignores the amplification of small signals.
To solve this problem, we consider introducing an adjusting variable α. Reasonable selection
of α value can make the algorithm not only ensure high accuracy, but also obtain faster



Electronics 2022, 11, 3668 16 of 25

convergence speed in practical application. We propose a calculation method for the
adjustment variable α, to expect better calculation results for the global ML model.

We set Oij to represent the ratio of incremental data DInDt
i to existing data |Di|, and εi

t
to be the parameter depth-value before optimization. Our adjustment variable α is defined
as follows.

α = 1 + εi
t

(
1− φij/

c

∑
i=1

Oij

)2

, 1 < α < 2 (24)

To avoid the extreme competition phenomenon of “the strong are stronger, the weak
are weaker”, we apply the adjustment variable α to the arctangent function interval where
the incremental data is smaller than the existing data. As shown in Figure 4, the x-coordinate
is the ratio of the incremental data to the existing data. The further to the right, the larger
the incremental data ratio of the vehicle node; the y-coordinate refers to the calculation of
the decay function—increment parameter depth-value. There are 3 vehicles from left to
right in Figure 4, and the red color on the far left represents vehicles with incremental data
smaller than the existing data. Originally its incremental parameter depth value should be
the arc tangent curve of the black line. By the adjustment variable α to make its incremental
parameter depth-value turn into a red curve, we achieve the effect of “amplifying the
small signal”.

Incremental 
Parameter Depth-Value

Incremental Data Sample Size
Current Data Sample Size

=|Di
InDt|/|Di|

lmproved arctangent function

0<|Di
InDt|<|Di|

|Di
InDt|>= |Di|

Note: The red vehicle's 
incremental data is less 
than the current data, and 
the other two vehicles' are 
greater than or equal to the 
current data.

Figure 4. Incremental parameters based on improved arctangent functions Depth-value calculation.

In the Fed-IW&DS framework, only the vehicle nodes participating in the global
ML model are updated in each round, and the contribution of the local ML models is
determined according to the incremental parameter depth-value, which can effectively
utilize historical information, distinguish the utilization value of local ML models, and
significantly improve global ML model performance. Therefore, our proposed weighting
strategy is as follows.
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if 0 <

∣∣DInDt
i

∣∣ < |Di| wt+1 ← ∑P
i=1 ·

ni
n · α · µi

t+1 ·wi
t+

if
∣∣DInDt

i

∣∣� |Di| wt+1 ← ∑P
i=1

ni
n · µi

t+1 ·wi
t+1

if | DInDt
i

I = 0 This round: This vehicle isn’t participating global ML model
(25)

In the federated incremental learning process, the local ML model parameters sub-
mitted by the vehicle nodes must be modified by incremental weighting before they can
participate in the global ML model. The local ML model parameters are updated on the cen-
tral server according to the optimization algorithm described above. The vehicle node will
regain the latest global ML model parameters for the next round of local ML model training.

4.4. Pseudocode of the Fed-IW&DS Framework

This section presents the pseudocode of the Fed-IW&DS framework, including the
Central Server-Vehicle Federated Incremental Learning Algorithm (see Algorithm 1) and
the AP Node-vehicle diversity selection algorithm (see Algorithm 2). Algorithm 1 Central
Server mainly includes initialization parameters and global ML model training. The 2nd
line represents the initialization of the server global ML model parameters; the 3rd to 5th
lines represents the initialization of the depth value of the incremental parameter of the
vehicle node, and each sub-loop in the whole training; the 8th to 10th lines represent the
calling of the sub-function Vehicle Update, In addition, the local ML model parameters and
incremental parameter depth values of vehicle nodes are updated to obtain.

Algorithm 1: Central Server-Vehicle Federated Incremental Learning Algorithm
1 FUNCTION SERVER UNION EXECUTES;
2 Initialize w0;
3 for vehicle i ∈ 1, 2, ..., P do
4 εi ← 0;
5 end
6 for each round t = 1, 2, ... do
7 m← max(D− R · P, 1);
8 for each vehicle i ∈ 1, 2, ..., PinParallel do
9 wi

t+1, µi
t+1 ← VehicleUpdate(wt, t, εi

t);
10 end
11 Mt ← order(DS1, DS2, ..., DS1);
12 St ← (topmseto f Mtvehicles);
13 for each vehicle i ∈ St do
14 if |DIndt

t | � |Di| then
15 wt+1 ← ∑P

i=1
ni
n · µi

t+1 ·wi
t+1;

16 else if 0 < |DIndt
t | then

17 wt+1 ← ∑P
i=1 . . . ni

n · α · µi
t+1 ·wi

t+1;
18 else if |DIndt

t | = 0 then
19 This round: This vehicle isn’t participating global ML model ;
20 end
21 end
22 end
23 END FUNCTION;
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Algorithm 2: AP Node-Vehicle Diversity Selection Algorithm
Input: parameters w, t, St
Output: ACC, Loss, MCC, w, µt+1

1 FUNCTION Vehicles Update:;
2 if |DIndt

i | then

3 φ =
|DIndt

i |
|Di |

;

4 εt+1 ← εt − (φi ∗ εt);
5 else
6 εt+1 ← t + 1;
7 end
8 µ← 2

π arctanεi
t+1;

9 α = εi
t(1−

1−φij

∑C
j=1

)2;

10 Di ← (DIndt
i & Di);

11 for each local epoch k from 1 to E do
12 batches← (dataDisplitintobatcheso f sizeB);
13 for batch b in batches do
14 max Accuracy = max

[
1
N ∑N

i=1 Zn,iAT
n + bn,i

]
;

15 min f (w) , min
{

1
N ∑N

n=1 . . . (w)
}

;

16 MCC =
∑N

k,l,m ...Ckk ·Cml−clk ·Ckm√
∑N

k=1

[
(∑N

k=1 Clk)
(

∑N
f ,g=1& f 6=g Cg f

)]√
∑N

k=1

[
(∑N

k=1 Clk)
(

∑N
f ,g=1& f 6=g Cg f

)] ;

17 wt+1 ← wt − η∂[(Dp, Cp); w];
18 end
19 end
20 return ACC, Loss, MCC, w to AP;
21 END FUNCTION;

Algorithm 2 AP Node-vehicle diversity selection algorithm. It takes ω, t and εt as
input, where: w represents the server global ML model parameters, t represents the
communication round, and εt represents the incremental parameter depth value in the t
round. Let B represent the batch size of the vehicle node data, E represents the number
of training iterations, and η represent the learning rate. Specifically, lines 2 to 7 represent
the acquisition of the latest incremental parameter depth value. If there is incremental
data, we use the above method to obtain the incremental parameter depth value, otherwise,
the label is used as the latest value; The incremental weighting ut+1is calculated by the
depth value; the 9th line represents the acquisition of the latest data set; the 10th to 15th
lines represent the use of the local gradient training method to train the local ML model
parameters; the 19th line represents returning the vehicle local ML model parameter w,
parameter increment weight u(t + 1), and performance indicators Acc, Loss, MCC to AP.

5. Experimental Result
5.1. Dataset Description

We use the CIFAR-10 and vehicle image datasets for experiments, both of which are
publicly available. CIFAR-10 is a popular dataset for experiments in the field of federated
learning [34–36]. It contains 10 kinds of color pictures, such as planes, cars, ship, and truck.
CIFAR-10 has a total of 50,000 training images and 10,000 test images. CIFAR-10 contains
complex and diverse pictures in the real world. Not only are the pictures noisy, but also
their proportions and characteristics of them are different, which brings great difficulty
to the identification. These characteristics make this dataset more realistic than other
datasets, so CIFAR-10 has been widely used in the field of federated learning. For example,
Xiao et al. used the CIFAR-10 dataset to conduct experiments to verify the feasibility and
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performance gap between the proposed Accuracy Based Averaging(ABAVG) algorithm and
the traditional federated algorithm in the Internet of Things [37]. To verify the performance
of their proposed federated algorithm for intelligent machine collaboration, Sun et al.
conducted experiments using the CIFAR-10 dataset [38]. Through experiments on the
CIFAR-10 dataset, Wang et al. verified that their proposed method outperformed the basic
method in terms of model accuracy and convergence rate in the vehicle selection and
resource allocation algorithm for IoV [21].

We consider that although the CIFAR-10 dataset comes from real objects in the real
world, it is not a dataset specific to the IoV scene. To further discuss the performance of the
Fed-IW&DS framework in the IoV scene, we added a public IoV-specific dataset to conduct
experiments to test the performance of the Fed-IW&DS framework. All the pictures in this
vehicle image dataset are real IoV images collected from the real world, and the image
format is 256 * 256. A total of 10 kinds of vehicle pictures were collected, including common
vehicles such as buses, taxis, trucks, family sedans, minibuses, jeeps, SUVs, heavy trucks,
racing cars, fire engines, and so on. Originally, there were 2 k pictures in the dataset, so the
number allocated to each vehicle node would be relatively small. Therefore, we rotated
this 911.3 m size dataset at different angles, and finally got 26,150 images, of which 18,305
were training images and 7845 were testing images.

Therefore, we adopt two datasets, CIFAR-10 and vehicle image, for the experimental
validation of the Fed-IW&DS framework.

5.2. Experimental Parameter Settings and Experimental Platform

In this experiment, a convolutional neural network is used to validate the two datasets
CIFAR-10 and vehicle image. The architecture of CNN is the input layer, convolution layer,
fully connected layer, 64-node, arctangent activation function fully connected layer, and an
output layer. The specific experimental parameters are shown in Table 3.

Table 3. Each specific parameter of the experiment.

Parameter Category Parameter Name CIFAR-10 Vehicle Image

CNN parameters

Number of input channels 3 3
Number of output channels 5 1
Convolution kernel size 5 * 5 2 * 2
Fully connected layer 1 64 * 4 * 4 61* 61 * 64
Fully connected layer 2 4 * 4 *16 4 * 4 * 16
Convolutional Layer 1 3, 64, 5 3, 32, 5, 1
Convolutional Layer 2 64, 64, 5 32, 64, 5, 1
Stride 2 2
Padding 0 0
Dilation 1 1

Federated Learning Parameters

Global training rounds 10
Local training rounds 5
Initial vehicles 10
Data Distribution Non-iid
Learning rate 0.01
Decay rate 0.1
Processor Cpu

Incremental data parameters

The number of images
in the training set 50,000 18,305

The number of images
in the testing set 10,000 7845

Initial allocation quantity
for each vehicle (round 1) 2000 750

Allocation quantity for each vehicle
(2nd to 10th rounds)

Initial * (1/R) * Rnd_Int

Initial is the initial allocation
quantity for each vehicle (round 1).

R is the global training round (1∼10).

Rnd_Int is a random real number between 1∼2.

The specific configuration of the experimental platform is: Intel(R) Core(TM) i7-10300H
CPU@ 2.50 GHz 2.50 GHz, DDR4 2933 MHz 16 GB memory, Windows 10 Professional
Edition 64-bit operating system. The experimental software uses python 3.6, PyTorch
1.4.0+CPU, and Keras 2.4.3.
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5.3. Experimental Results
5.3.1. Diversity-Ratio Values

To verify the optimization effect of the Fed-IW&DS framework on vehicle node selec-
tion, the above dataset is randomly scrambled and divided 30% for testing, and the rest are
randomly divided into 10 parts, indicating that 10 vehicle nodes are used for local training.
We first calculate the diversity score D-R of the vehicle nodes participating in the global ML
model training in the Fed-IW&DS framework and determine a better D-R value to better
coordinate performance and efficiency. The performance indicators used in the experiments
are as follows. (1) Fixed communication rounds. The different D-R numerical settings are
all trained under the same 10-round global ML model training. (2) Accuracy. The highest
accuracy that the Fed-IW&DS framework can achieve, including both training and testing
sets. (3) Time per round. We repeated all experiments 10 times and then compared the
average values of these indicators. The experimental results are shown in Table 4.

Table 4. Impact of different Diversity-Ratio values.

Dataset D-R Value Local ML Model Training Time
Per Round (Unit: Seconds)

Training Set
Accuracy

Testing Set
Accuracy

Testing Set
Loss

Testing Set
MCC

CIFAR-10

0.2 4.1257 0.9265 0.8623 0.0002573 0.7738
0.4 4.6481 0.9375 0.8845 0.0002467 0.6644
0.6 4.8962 0.9414 0.9143 0.0002397 0.8014
0.8 7.8413 0.9283 0.8926 0.0002372 0.8479
1.0 10.9625 0.9224 0.8741 0.0002431 0.7738

Vehicle Image

0.2 6.2590 0.9073 0.8687 0.0002545 0.8638
0.4 6.7105 0.9377 0.8520 0.0000284 0.8592
0.6 6.2426 0.9631 0.9528 0.0000262 0.9172
0.8 9.6470 0.9680 0.9461 0.0000478 0.9117
1.0 13.0640 0.9279 0.9113 0.0004791 0.8633

Table 4 shows the performance impact of different Diversity-Ratio D-R values (i.e.,
the number of vehicle nodes participating in the global ML model per round) on various
aspects of the global ML model. According to Table 4, when the D-R value is 0.2, 0.4, and
0.6, the accuracy of the global ML model increases with the increase of the D-R value, and
the training time of the Local ML model does not increase significantly. However, when
the D-R value is 0.8 and 1.0, we found that the Local ML model training time increases
significantly, while the accuracy decrease. In other words, there are many meaningless
global ML model training. To balance the problem of accuracy and computational time
cost, we choose 0.6 as the D-R value of the following experiments.

5.3.2. The Acc, Loss, MCC Results and Computational Time Cost

• Accuracy Results

Next, we compare the Acc, Loss, and MCC values of FED-AVG [39], FED-SGD [40],
Fed-prox [41], and Fed-IW&DS. More importantly, to verify the effect of our improved
arctangent decay function in the global ML model, we also compared the performance
when using the linear function, square curve function, and pure tangent function.

As can be seen from Figure 5, with the increase of global ML model rounds in all
frameworks, only the accuracy of Fed-prox and Fed-IW&DS are continuously improving,
but the improvement of fed-prox is very tiny. In CIFAR-10, the accuracy of the Fed-IW&DS
model is about 30% higher than that of the Fed-prox model. This gap increases to 35%
when the vehicle Image dataset is used. Moreover, the performance of FED-AVG and
FED-SGD frameworks during the experiment is very unstable. The accuracy continues to
decline. We believe that this is mainly due to the large amounts of increasing incremental
data with the global ML model training rounds. The two frameworks, FED-AVG and
FED-SGD, are incapable of handling large amounts of incremental data, resulting in poor
model performance.

We continue to examine the accuracy performance of different decay functions. Linear
functions are completely unable to handle incremental data challenges in the CIFAR–10
datasets as the accuracy rate are always maintained at a very low level, and even in the
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vehicle image dataset, there is a phenomenon of gradient explosion. The squared curve
function showed a drop in accuracy after the fourth round, and the accuracy has not been
stabilized since then. The arctangent function has better performance than them, but it is
about 10–12% lower than the Fed-IW&DS framework. The results demonstrate that the
unimproved tangent function has limited capability for incremental data in the later stage.
The decay function of “ amplifying the small signal ” in the Fed-IW&DS framework is more
in line with the reality of the IoV.
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• Loss Results

Loss and accuracy in machine learning are relatively authoritative performance in-
dicators. Therefore, we also compare the loss values of FED-AVG, FED-SGD, FED-prox,
and the FED-IW&DS framework. As shown in Figure 6, we can see that the loss values
of FED-AVG and FED-SGD are in a relatively unstable state with the increase of global
ML model training rounds in both datasets, with no obvious improvement trend. Among
the four frameworks, only FED-IW&DS and Fed-prox are successful, but it is obvious that
there is still a big gap between Fed-prox and the Fed-IW& DS framework.
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Figure 6. Comparison of Loss.

We continue to examine the loss performance of different decay functions. Linear
functions perform poorly in CIFAR-10 and even exploding gradients again in the vehicle
image dataset. Although the square curve function has a certain convergence trend, its
convergence speed is extremely slow, and it cannot reach our goal for a long time. The arct-
angent function shows a relatively good and stable convergence trend, but its performance
is not comparable to the Fed-IW&DS framework.
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• MCC Results

MCC is generally accepted as a comprehensive evaluation indicator. MCC aggregates
the confusion matrix into a single value and considers false positive and false negative
error cases. Therefore, the MCC evaluation indicator is an excellent measurement even in
unbalanced datasets.

We compare the MCCs of the above seven frameworks, as shown in Figure 7. The
FED-AVG and FED-SGD are maintained between 0.5 and 0.6 in both datasets, proving
that their performance is only marginally better than random prediction and cannot be
further improved by local ML learning. Based on the frameworks’ comparisons, only FED-
prox and arctangent functions perform well, but their performance is still much weaker
than the Fed-IW&DS framework. The MCC values of the linear function and the square
curve function are even lower than 0.5, which shows that their performance is similar
to the random prediction, and the learning efficiency is very low. While the traditional
arctangent function is the closest to our results, its performance is still worse than the Fed-
IW&DS framework. To further clarify, there was a drop in the 8th round of the Fed-IW&DS
framework, which was caused by a large amount of unfamiliar incremental data. And
in the 9th round, the Fed-IW&DS framework can automatically recover to a high MCC
through diversity selection and incremental parameters. This shows that the Fed-IW&DS
framework has strong robustness.
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Figure 7. Comparison of MCC.

The Fed-IW&DS framework can maintain a high level of image recognition whether
using the CIFAR-10 or vehicle image datasets, and its performance is far superior to several
common federated learning frameworks such as FED-AVG, FED-SGD, and FED-prox. In
terms of the decay function, the linear function has a gradient explosion phenomenon, so
the constructed model cannot be used. The performance of the square curve function is
unstable, so the model cannot be effectively learned. Fed-IW&DS framework performs
better than the traditional inverse tangent function. Increasing the depth value of the
incremental parameters effectively improves the performance of the Fed-IW&DS frame-
work, successfully amplifying the small signal, which greatly widens the gap between the
framework and other frameworks.

• Computational Time Cost

In addition to the above three indicators, the computing time cost is also an important
indicator to measure performance. An excellent framework is needed to balance time cost
and performance reasonably, to achieve better accuracy in a shorter time. We compare the
average time for the Fed-IW&DS framework with the three federated learning frameworks,
and the results are shown in Table 5.
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Table 5. Time Cost.

Training Time for Local ML Models CIARF-10 (Unit: Second) Vehicle Image (Unit: Second)

Fed-AVG 3.4311 4.8437
Fed-SGD 4.9523 6.8524
Fed-prox 4.9354 6.1489
Fed-IW&DS 4.8962 6.2426

According to the results in Table 5, FED-AVG takes the shortest time among the
four frameworks involved in the comparison, but the previous experiments show that its
performance is very poor. The computation time required by FED-sgd and FED-prox is
not much different from that of the Fed-IW&DS framework, but we have proved that our
framework’s performance is obviously better than the other two frameworks.

Moreover, vehicle manufacturers represented by Tesla, Audi, Mercedes Benz, etc. have
increased their intelligent driving computing power to 500–1000 tops in the new generation
of models (Tops is the abbreviation of tera operations per second. 1 tops means that the
processor can perform one trillion operations (1012) per second.). In September 2022,
NVIDIA released a blockbuster autonomous driving chip, DRIVE Thor, whose computing
power reached an astonishing 2000 TOPS, 8 times that of the previous Orin chip and
14 times that of Tesla’s FSD chip. This experimental environment configuration is far
below 200 tops computing power. Therefore, we believe that as the computing power of
intelligent driving continues to grow, Fed -IW&DS framework has both theoretical and
practical significance.

6. Conclusions

Faced with the challenges of incremental data and data diversity in IoV, the common
baseline frameworks of federated learning are not performing well. In response to this,
this paper proposes a Federated Learning Framework Based on Incremental Weighting
and Diversity Selection, Fed-IW&DS. In this framework, we propose a scheme based on
diversity selection and incremental parameter depth-value, which achieves “amplifying the
small signal + reducing the large signal” for incremental data. To verify the performance of
the Fed-IW&DS framework, we use the well-recognized CIFAR-10 and the vehicle image
dataset for experiments. We compare the performance of this framework with common
baseline frameworks and several decay functions. According to multi-indicators Acc, Loss,
and MCC, the Fed-IW&DS framework outperforms other frameworks participating in the
comparison within almost the same computational time cost. Therefore, our framework
can solve the challenges of isolated data islands, data diversity, and incremental data in IoV,
and the findings should make a significant contribution to the field of federated learning.
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