
Citation: Wu, Y.; Lu, B.; Tian, L.;

Liang, S. Learning to Co-Embed

Queries and Documents. Electronics

2022, 11, 3694. https://doi.org/

10.3390/electronics11223694

Academic Editor: Stefano Ferilli

Received: 11 August 2022

Accepted: 4 November 2022

Published: 11 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Learning to Co-Embed Queries and Documents
Yuehong Wu 1, Bowen Lu 2, Lin Tian 2 and Shangsong Liang 3,*

1 School of Law, Guangdong University of Technology, Guangzhou 510520, China
2 Sino-French Institute of Nuclear Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
3 Department of Machine Learning, Mohamed bin Zayed University of Artificial Intelligence,

Abu Dhabi 028113333, United Arab Emirates
* Correspondence: liangshangsong@gmail.com

Abstract: Learning to Rank (L2R) methods that utilize machine learning techniques to solve the
ranking problems have been widely studied in the field of information retrieval. Existing methods
usually concatenate query and document features as training input, without explicit understanding
of relevance between queries and documents, especially in pairwise based ranking approach. Thus, it
is an interesting question whether we can devise an algorithm that effectively describes the relation
between queries and documents to learn a better ranking model without incurring huge parameter
costs. In this paper, we present a Gaussian Embedding model for Ranking (GERank), an architecture
for co-embedding queries and documents, such that each query or document is represented by a
Gaussian distribution with mean and variance. Our GERank optimizes an energy-based loss based on
the pairwise ranking framework. Additionally, the KL-divergence is utilized to measure the relevance
between queries and documents. Experimental results on two LETOR datasets and one TREC dataset
demonstrate that our model obtains a remarkable improvement in the ranking performance compared
with the state-of-the-art retrieval models.

Keywords: Gaussian embedding; learning to rank; ad hoc retrieval

1. Introduction

Ranking is one of the most essential techniques in many real-world applications, such
as collaborative filtering [1–5], document retrieval [6–8], online advertising [9–11], and sen-
timent analysis [12,13]. Good ranking results would positively contribute to the success of
all these ranking-based applications. The main objective of ranking is to rank the candidate
entities, such as documents in ad hoc retrieval and items in recommendation systems, by
their relevance scores to a given query, which can be a set of keywords in ad hoc retrieval
and users in recommendation systems. To deal with the ranking problems, most of the
traditional approaches [14,15] are built based on some score functions that combine a series
of rules according to the historical data and the characteristics of the entities to be ranked.
However, such score functions rely strongly on manual design, which is not desirable in
many retrieval applications with large scale and various types of data. Compared to score
functions, machine learning-based ranking models [16–21] have a higher computational
efficiency and perform better ranking results than those produced by the traditional score
function-based approaches in many applications. Learning to rank (L2R) as one of the most
important machine learning techniques to solve the ranking problems have been wildly
applied in information retrieval as its ability to improve performance, e.g., accuracy, of the
ranking results. Therefore, how to design L2R models for specific applications and how
to optimize the models have achieved significant attention in information retrieval these
years. Specifically, in this paper, we study the core problem in information retrieval, i.e.,
designing a L2R model for document retrieval and optimizing the model to produce a final
rank list of documents in response to a given query.

Electronics 2022, 11, 3694. https://doi.org/10.3390/electronics11223694 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics11223694
https://doi.org/10.3390/electronics11223694
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0003-1625-2168
https://doi.org/10.3390/electronics11223694
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics11223694?type=check_update&version=3

Electronics 2022, 11, 3694 2 of 25

Most of the L2R models for document retrieval can be divided into three categories
of approaches according to the way they train the models [22]: pointwise, pairwise, and
listwise L2R models. The basic idea of pointwise L2R models is to take each query–
document pair in the training set as a training data and adopt classification or regression
approaches to train the model to obtain a ranking, where each document is treated as a
separate training data point. The objective of these ranking methods is to solve the ordinary
regression or classification problem. They do not explicitly consider the relationship among
relevant documents. Pairwise L2R approaches are to consider the order of two documents
in each document pair in terms of their relevances to the given query during training. The
learning goal is to make the number of partial errors in the result list as few as possible.
Listwise approaches use the entire document lists as training instances. In these approaches,
each result list of documents in response to a given query is regarded as training data.
The key to the design of these algorithms is to define a loss function based on listwise
and select appropriate tools for learning. Listwise L2R models can be broadly divided
into two categories: (a) List-level sorting algorithms based on the probability model, such
as the ListNet [19] algorithm, one of the well-known representatives that falls into this
category. (b) Ranking algorithms based on direct optimization evaluation metrics, e.g.,
NDCG [23] and MAP [24]. However, it is difficult to select an appropriate optimization
algorithm to solve it. Generally, the pairwise and listwise approaches work better than
the pointwise approaches [25] because the key issue of ranking in search is to determine
the orders of documents but not to judge the relevance of documents, which is exactly the
goal of the pairwise and listwise approaches. Compared to listwise approaches, pairwise
approaches are more widely used due to the consideration of the two documents’ order in
each document pair and the low complexity.

All the aforementioned L2R models for document retrieval suffer from the following
defects: (a) Most of the existing L2R models need to extract features of queries and docu-
ments. These features are usually extracted from different semantic space, which would
result in the mismatch [26,27] between the input query and the documents. (b) Instead
of applying language models for document retrieval, some of these L2R models apply
word/document embedding techniques [28]. These embedding based L2R approaches
represent each word in queries and documents by a single point in a low-dimensional
continuous vector semantic space. However, simply representing words as points in
the semantic space has a critical limitation: uncertainty of the representations is missing.
However, uncertainty is inherent in embeddings and critical for measuring the similarity
between queries and documents for document retrieval. Consider the case that we have
two documents and a query: the similarity between the first document and the query
(the similarity can be measured via, e.g., the cosine similarity between the average of all
words’ embeddings in the documents and the average of all words’ embeddings in the
input query, with higher cosine score indicating more similar.) is the same as that between
the second document and the query, but the certainty (the certainty can be measured via,
e.g., taking the covariances of all words’ embeddings in the documents and the input query
into account.) between the first document, and the query is higher than that between the
second document and the query. Then, the first document should be ranked higher than
the second document.

Accordingly, to tackle the drawbacks of the existing L2R approaches, we propose a
novel embedding based pairwise L2R model, Gaussian Embedding model for Ranking,
abbreviated as GERank, to learn to infer the embeddings and their covariances of queries
and documents such that the similarities between any given queries and documents can be
effectively measured. In our GERank, queries and documents are co-embedded into the
same semantic space, such that the semantic similarities between them can be effectively
measured. To further enhance the retrieval performance, GERank represents each query
and document as a Gaussian distribution with its mean and covariance. Specifically, given
a query and a document pair, GERank enforces embedding of more relevant document
in the document pair to be closer to the embedding of the input query compared to

Electronics 2022, 11, 3694 3 of 25

the embedding of less relevant document in the document pair. Each document pair in
response to a given query in the training dataset naturally leads to our embedding learning
constraints in our GERank. Taking into account the constraints of the embeddings and
their covariances of queries and documents, we learn more powerful embeddings as we
incorporate information about the relevance orders of the documents rather than just the
relevance scores of the documents. Since GERank infers not only the embeddings but also
the covariances of queries and documents, uncertainty of the embeddings can be applied
to measure the similarity between queries and documents and thus contributing to better
document retrieval performance. To evaluate the performance of our GERank algorithm,
we conduct experiments on two LETOR datasets and one TREC dataset. In our experiments,
we aim at answering these research questions: (a) Compared with traditional pairwise
approaches, how does our model perform in the document ranking task? (b) Can we make
the advantages of our GERank L2R model more explainable? (c) How do the embedding
size and the size of hidden layer affect the retrieval performance of our model?

The main contributions of our paper can be summarized as follows:

• We propose Gaussian Embedding model for Ranking, GERank, to co-embed queries
and documents into the same semantic space so as to alleviate the mismatch problem
between queries and documents.

• To the best of our knowledge, our GERank algorithm is the first attempt to incorporate
embedding techniques into L2R algorithms with constraints.

• To further enhance the performance of document retrieval, GERank learns to infer
both the embeddings and their covariances of queries and documents such that their
similarities can be effectively measured.

• We provide the experimental evidence of the effectiveness of our model. Our model
can outperform the state-of-the-art L2R models on two LETOR datasets and one
TREC dataset.

The remainder of the paper is organized as follows: Section 2 discusses related work.
Section 3 formulates the ranking problem. Section 4 defines our embedding task and
GERank algorithm. Section 5 describes experimental setup. Section 6 analyzes experimental
results. Finally, Section 7 concludes the paper.

2. Related Work

There are two lines of previous studies related to our work: L2R algorithms and
representation learning algorithms.

2.1. Learning to Rank

Learning to rank (L2R) [29,30] applies machine learning techniques to solve ranking
problems. There are many classic and efficient L2R algorithms used in information retrieval.
These algorithms can be categorised into pointwise, pairwise, and listwise L2R algorithms.
Given an input query, pointwise L2R algorithms take each labeled document as a training
instance, where the relevance scores of the documents are provided during the training,
pairwise L2R algorithms take each pair of document as a training instance, where the rank-
ing order of the two documents in each pair document are provided, while listwise L2R
algorithms take different ranked lists of documents as training instances, where the infor-
mation of which ranked list of documents performs better than another is provided during
the training. Well-known pointwise L2R algorithms include subset regression [31] and
Mcrank [32], and well-known listwise L2R algorithms include ListNet [19], AdaRank [33]
and SVMmap [34]. Ranking SVM [16,17], RankBoost [18], and Frank [35] are the well-known
algorithms based on the pairwise approach. Point-wise L2R algorithms ignore the order
information of the documents, while generating a number of ranked lists of documents in
response to a given query via different methods is challenging in listwise L2R algorithms.
Of special interest to us are the pairwise L2R algorithms.

In recent years, deep learning is a hot research topic because of its powerful represen-
tation abilities. Combining deep learning to solve problems in computer vision, natural

Electronics 2022, 11, 3694 4 of 25

language processing, and other fields has achieved great success. In information retrieval,
some researchers try to solve ranking problems with deep learning. Severyn et al. [36]
applied convolutional deep neural networks to rank short text pairs. Wang et al. [37]
proposed an attention-based deep net for listwise. ConvRankNet [38] combines a Siamese
Convolutional Neural Network encoder and the RankNet ranking model which could
be trained in an end-to-end fashion. Ai et al. [39] employed a RNN to encode the top
results using their feature vectors, learn a context model and use it to re-rank the top
results. Zhao et al. [40] proposed a novel joint learning-to-rank approach called Deep
Latent Structural SVM (DL-SSVM). DL-SSVM can effectively model the intrinsic interaction
relationships between the feature-level and ranking-level components of a ranking model.
They presented an effective auxiliary variable-based alternating optimization approach
with respect to deep neural network learning and structural latent SVM learning. These
deep learning-based models can outperform the state-of-the-art. However, they are not
parameterless and scalable. In addition, all the previous L2R algorithms do not take uncer-
tainty of the relevances of the documents to the query into account, resulting in the fact
that there is still some room to boost the performance of document retrieval via capturing
and utilizing the uncertainty information of the queries and documents.

2.2. Representation Learning

Learning representations for data allows many data mining and information retrieval
tasks to be solved more effectively and efficiently. For instance, DeepWalk [41] employs
Skip-gram [42] to learn the representations of nodes. The model learns low-dimensional
vectors for the nodes to capture the potential relationships among them. It outperforms
challenging baselines which are allowed a global view of the network, especially in the
presence of missing information. Shen et al. [43] use convolutional neural networks for
Web Search by learning semantic representations. Their model significantly outperforms
other semantic models on a large-scale, real-world dataset.

In natural language processing, word embedding is widely used in a set of language
modeling and feature learning techniques. In embedding techniques [44–46], entities,
e.g., words, phrases, or documents, are mapped to low-dimensional continuous vectors,
which are also called representations or embeddings. Generally, representation learning
techniques involve a mathematical embedding from a high dimensional vector space to a
continuous much lower dimensional vector space. Lai et al. [47] provide several simple
guidelines for training good word embeddings. They systematize existing neural-network-
based word embedding methods and experimentally compare them using the same corpus.
Zamani et al. [48] propose two learning models with different objective functions: one
learns a relevance distribution over the vocabulary set for each query, and another classifies
each term as belonging to the relevant or non-relevant class for each query. Shen et al. [49]
conduct a point-by-point comparative study between Simple Word-Embedding-based
Models, consisting of parameter-free pooling operations, relative to word-embedding-
based RNN/CNN models. Their model exhibits comparable or even superior performance
in the majority of cases considered.

Graph embedding [50–53] uses low-dimensional dense vectors to represent the points
in the graph. In essence, the more adjacent the points are shared between two points, the
more similar the context of two points is. The distance between two corresponding vectors
is closer. The greatest advantage of graph embedding is that the vector representations
can be taken as an input of any machine learning models to solve specific application
problems. At the same time, it outperforms some traditional methods in a number of
ways. For instance, the method based on matrix factorization (MF) requires too much
computation. Constructing artificial features requires domain knowledge and a large
amount of work. Graph embedding can be used in recommendation, node classification,
link prediction, visualization, and other scenario. Vilnis et al. [54] use Gaussian embeddings
to represent words, which have great performance. He et al. [55] represent knowledge
graphs by Gaussian embedding. Zhou et al. [56] propose a novel Gaussian Visual-Semantic

Electronics 2022, 11, 3694 5 of 25

Embedding (GVSE) model to jointly represent images and texts, which leverages the
visual information to model text concepts as Gaussian distributions in semantic space.
Bojchevski et al. [57] learn versatile node embeddings on large scale graphs that show
strong performance on tasks such as link prediction and node classification. However, there
are few studies on L2R by Gaussian embedding.

Recently, few works begin to apply representation learning to the field of L2R. Yi et al. [28]
proposed a long short-term memory (LSTM) network with holographic composition (HD-
LSTM) to model the relationship between question and answer representations. Benefitting
from a rich representational learning approach without incurring huge parameter costs
of holographic composition, HD-LSTM outperforms many other neural architectures on
the benchmark dataset [58]. Inspired by their work and the idea of embedding nodes as
Gaussian distribution, we adopt co-embedding queries and documents methods to capture
the relationship between them.

3. Notations and Problem Formulation

Let C, Q and DQ be a document corpus, a set of queries, and the relevant documents
to a set of queries Q, respectively. Let q, d, and Dq denote a query, a document, and a set of
relevant documents to the query q, respectively. Table 1 summarizes the main notations
used across the whole paper.

Table 1. Main notations used across the whole paper.

Symbol Gloss

C Document corpus
Q Set of queries
DQ Relevant documents to the queries
Dq Set of relevant documents to the query q
M Number of queries
L Dimension of embedding space
Ki Number of relevant document for a given ith query
ri

j Relevance degree of di
j for a given query qi

T Triplet set of query and two relevant documents
qi ith query in Q, i ∈ M
di

j jth document for a given ith query, j ∈ Ki

Nqi , qi Gaussian distribution of ith query
Ndi

j
, di

j Gaussian distribution of document di
j, j ∈ Ki

µqi Mean of query qi in Gaussian distribution
µdi

j
Mean of document di

j in Gaussian distribution

Σqi Covariance of ith query in Gaussian distribution
Σdi

j
Covariance of document di

j in Gaussian distribution

∆(qi, di
j) Dissimilarity measure between query qi and document di

j
DKL(Ndi

j
‖ Nqi) KL divergence between Ndi

j
and Nqi

di
j ≺ di

j′ Document pair in which di
j is ranked lower than di

j′ to query qi

Given a document corpus C, a set of queries Q, and their relevant documents
DQ ∈ C in the corpus, we aim at training a Gaussian embedding model, GERank, such that
it is able to infer a Gaussian distribution q = N (µq, Σq) for any given query q and a Gaus-
sian distribution d = N (µd, Σd) for any given document d via a supervised way, where
µ ∈ RL is the embedding (mean of the Gaussian distribution) of the query/document, and
Σ ∈ RL×L is the corresponding uncertainty of the embedding (covariance of the Gaussian
distribution), such that documents semantically similar to the input queries are also close
to each other in the same embedding space measuring by a dissimilarity metric ∆(q, d).
Here, q = N (µq, Σq) and d = N (µd, Σd) are the inferred Gaussian distributions µq and µd
for the query q and the document d and their covariances Σq and Σd, respectively; and L is

Electronics 2022, 11, 3694 6 of 25

the size of the embedding dimension. Specifically, we aim at seeking a low dimensional
Gaussian distribution co-embedding query and document function h, i.e., the Gaussian
embedding model, GERank that satisfies the following via a supervised way:

C,Q,DQ
h−→ q = N (uq, Σq), d = N (ud, Σd), for any given q and d, (1)

subject to: ∀q ∈ Q, rq
di
> rq

dj
,

∆(q, di) < ∆(q, dj),

where rq
di

and rq
dj

are the relevance scores of documents di and dj in response to the input
training query q, respectively. Once the model is optimized, given an input query q and a
document d, GERank is able to infer their corresponding Gaussian embeddings, and then
rank the documents according the dissimilarity metric ∆(q, d) where uncertainty is taken
into account as q and d not only containing their means but also their corresponding co-
variances.

4. Learning to Co-Embed Queries and Documents

In this section, we detail our proposed model, GERank, that aims at inferring the
embeddings of the queries and the documents, µq and µd, and their corresponding covari-
ances, Σq and Σd. Specifically, in Section 4.1, we detail the way to compute the dissimilarity
for each query document pair, i.e., the way to compute ∆(q, d); Section 4.2 details the
constraints related to the dissimilarity between the inferred low dimensional Gaussian
embeddings and their covariances of the queries q = N (µq, Σq) and those of the documents
d = N (µd, Σd); Section 4.3 details our L2R model that aims at inferring q and d.

4.1. Dissimilarity Metric

In order to effectively infer the embeddings and their covariances of the queries and
documents for document retrieval, we employ the Kullback–Leibler (KL) divergence as a
metric to measure the dissimilarities between queries and documents in our model GERank,
which has been widely applied in many L2R models [55,57,59–61]. Specifically, given the
embeddings and their covariances of a query–document pair, (q, d), i.e., q = N (µq, Σq)
and d = N (µd, Σd), we define the dissimilarity between q and d as follows:

∆(q, d)
de f
= DKL

(
N (µd, Σd)‖(N (µq, Σq)

)
de f
= DKL

(
Mθ(d)‖Mθ(q)

)
=

1
2

[
tr(Σ−1

q Σd) + (µq − µd)
>Σ−1

q (µq − µd)− L− log
det(Σd)

det(Σq)

]
(2)

where tr(·) denotes the trace of a matrix, DKL(·‖·) is the KL divergence between two
distributions, Mθ(q) and Mθ(d) are our learning to co-embedding model, GERank, with
parameters θ that need to be tuned during training, L is the size of the embedding dimen-
sion, and det(·) is the determinant of a matrix. Once the parameters θ of our model Mθ

are tuned, i.e., the optimal parameters θ∗ is obtained, given an input query q (either in the
training set of queries or not) and an input document d (either in the training corpus or not),
we can infer their optimal embeddings and the corresponding covariances (µ∗q , Σ∗q) and
(µ∗d , Σ∗d), such that we have (µ∗q , Σ∗q) = Mθ∗(q) and (µ∗d , Σ∗d) = Mθ∗(d). Detailed derivation
of Equation (2) is shown in Appendix A.

4.2. Constraints

Given an input training query, our GERank model aims at imposing a ranking of all
training documents with regard to their relevance scores to the query in the same semantic
space. Specifically, GERank exploits the relevance scores of each training document to an
input training query. Let qi be the i-th query in the training set of queries, di

j1
, di

j2
, . . . , di

jk

Electronics 2022, 11, 3694 7 of 25

be a set of labeled documents with their relevance scores ri
dj1

, ri
dj2

, . . . , ri
djk

in response to

the query qi having this order ri
dj1

< ri
dj2

<, . . . ,< ri
djk

. GERank aims at obtaining the

model’s optimal parameters θ∗ such that the following constraints would be satisfied as
many as possible:

∆(qi, di
j1) > ∆(qi, di

j2) · · · ,> ∆(qi, di
jk), ∀qi ∈ Q, with ri

dj1
< ri

dj2
<, . . . ,< ri

djk
, (3)

where qi = N (µqi , Σqi) = Mθ(qi) and di
jk
= N (µdi

jk
, Σdi

jk
) = Mθ(di

jk
) are the embeddings

and their corresponding covariances of the query qi and the document di
jk

that need to be in-
ferred by GERank, respectively. The motivation of defining such constraints in Equation (3)
is straightforward: more relevant documents should be closer to the input query in the
same semantic space. As we infer both the embeddings and covariances (uncertainty)
of queries and documents by the same model Mθ, they are co-embedded into the same
semantic space. Of special interest to us is the setting of pairwise L2R, where a set of
training triples, (qi, di

j ≺ di
j′) ∈ T , are provided with the information of di

j should be ranked

lower (less relevant) than di
j′ in response to query qi according to the ground truth, denoted

as di
j ≺ di

j′ (in some cases, the relevance scores of dji and di
j′ may not be provided but only

their ranking order is provided; documents that are likely to be relevant to the query should
be ranked higher in the final ranking). Accordingly, the constraints in Equation (3) can be
transformed as the following:

∆(qi, di
j) > ∆(qi, di

j′), ∀(q
i, di

j ≺ di
j′) ∈ T . (4)

4.3. Co-Embedding Queries and Documents

As it is intractable to obtain the optimal parameters θ in our GERank model, Mθ,
which is able to satisfy all the pairwise constraints defined in Equation (4), we instead turn
to minimizing an energy based learning objective. We follow the previous energy-based
objective function [62] to define our own energy-based objective function that needs to be
minimized during training. The main idea is to define an objective function that satisfies
this: for each document pair in response to an input training query, document in the pair
ranked higher (more relevant documents) should obtain lower energy compared to another
document in the pair ranked lower. Thus, the energy between an input query q and a doc-
ument d can be defined as: E(q, d) = DKL(Mθ(d)‖Mθ(q)) = DKL

(
N (µd, Σd)‖(N (µq, Σq)

)
.

Accordingly, given a set of training triples, (qi, di
j ≺ di

j′) ∈ T , we define the following
energy-based objective function that aims at satisfying as many constraints as possible so
as to co-embed queries and documents in the same semantic space:

L(T) = ∑
(qi ,di

j≺di
j′)∈T

E2(qi, di
j′) + exp

(
− E(qi, di

j)
)
. (5)

Once the energy-based objective function in Equation (5) is minimized, given a new
query q and a new document d, we can infer their embeddings and their covariances accord-
ing to Mθ∗(q) and Mθ∗(d), and then the documents are ranked based on the similarities
between Mθ∗(q) and Mθ∗(d). In practice, Mθ can be defined as a neural network with the
parameters being θ. The parameters θ can be optimized using the Adam algorithm [63].
The proof that the loss score of the objective function in Equation (5) can be converged after
enough number of iterations can be converged is provided in Appendix B. The training
process of our GERank is shown in Algorithm 1. Framework of our GERank is provided in
Figure 1. Details of how we build our neural network Mθ for a query and a document can
be found later in Section 5.5.

Electronics 2022, 11, 3694 8 of 25

Dataset
Construct

Triples
Training

Model M✓
<latexit sha1_base64="i/iJdwbxOjILzHp3lWrfe9wOzc0=">AAAB83icbVA9SwNBEJ2LXzF+RS1tFhPBKtylMWXAxkaIYD4gd4S9zSZZsrd37M4J4cjfsLFQxNY/Y+e/cZNcoYkPBh7vzTAzL0ykMOi6305ha3tnd6+4Xzo4PDo+KZ+edUycasbbLJax7oXUcCkUb6NAyXuJ5jQKJe+G09uF333i2ohYPeIs4UFEx0qMBKNoJb96P8h8nHCk8+qgXHFr7hJkk3g5qUCO1qD85Q9jlkZcIZPUmL7nJhhkVKNgks9Lfmp4QtmUjnnfUkUjboJsefOcXFllSEaxtqWQLNXfExmNjJlFoe2MKE7MurcQ//P6KY4aQSZUkiJXbLVolEqCMVkEQIZCc4ZyZgllWthbCZtQTRnamEo2BG/95U3Sqdc8t+Y91CvNRh5HES7gEq7Bgxtowh20oA0MEniGV3hzUufFeXc+Vq0FJ585hz9wPn8AeRGRRA==</latexit><latexit sha1_base64="i/iJdwbxOjILzHp3lWrfe9wOzc0=">AAAB83icbVA9SwNBEJ2LXzF+RS1tFhPBKtylMWXAxkaIYD4gd4S9zSZZsrd37M4J4cjfsLFQxNY/Y+e/cZNcoYkPBh7vzTAzL0ykMOi6305ha3tnd6+4Xzo4PDo+KZ+edUycasbbLJax7oXUcCkUb6NAyXuJ5jQKJe+G09uF333i2ohYPeIs4UFEx0qMBKNoJb96P8h8nHCk8+qgXHFr7hJkk3g5qUCO1qD85Q9jlkZcIZPUmL7nJhhkVKNgks9Lfmp4QtmUjnnfUkUjboJsefOcXFllSEaxtqWQLNXfExmNjJlFoe2MKE7MurcQ//P6KY4aQSZUkiJXbLVolEqCMVkEQIZCc4ZyZgllWthbCZtQTRnamEo2BG/95U3Sqdc8t+Y91CvNRh5HES7gEq7Bgxtowh20oA0MEniGV3hzUufFeXc+Vq0FJ585hz9wPn8AeRGRRA==</latexit>

M✓
<latexit sha1_base64="i/iJdwbxOjILzHp3lWrfe9wOzc0=">AAAB83icbVA9SwNBEJ2LXzF+RS1tFhPBKtylMWXAxkaIYD4gd4S9zSZZsrd37M4J4cjfsLFQxNY/Y+e/cZNcoYkPBh7vzTAzL0ykMOi6305ha3tnd6+4Xzo4PDo+KZ+edUycasbbLJax7oXUcCkUb6NAyXuJ5jQKJe+G09uF333i2ohYPeIs4UFEx0qMBKNoJb96P8h8nHCk8+qgXHFr7hJkk3g5qUCO1qD85Q9jlkZcIZPUmL7nJhhkVKNgks9Lfmp4QtmUjnnfUkUjboJsefOcXFllSEaxtqWQLNXfExmNjJlFoe2MKE7MurcQ//P6KY4aQSZUkiJXbLVolEqCMVkEQIZCc4ZyZgllWthbCZtQTRnamEo2BG/95U3Sqdc8t+Y91CvNRh5HES7gEq7Bgxtowh20oA0MEniGV3hzUufFeXc+Vq0FJ585hz9wPn8AeRGRRA==</latexit><latexit sha1_base64="i/iJdwbxOjILzHp3lWrfe9wOzc0=">AAAB83icbVA9SwNBEJ2LXzF+RS1tFhPBKtylMWXAxkaIYD4gd4S9zSZZsrd37M4J4cjfsLFQxNY/Y+e/cZNcoYkPBh7vzTAzL0ykMOi6305ha3tnd6+4Xzo4PDo+KZ+edUycasbbLJax7oXUcCkUb6NAyXuJ5jQKJe+G09uF333i2ohYPeIs4UFEx0qMBKNoJb96P8h8nHCk8+qgXHFr7hJkk3g5qUCO1qD85Q9jlkZcIZPUmL7nJhhkVKNgks9Lfmp4QtmUjnnfUkUjboJsefOcXFllSEaxtqWQLNXfExmNjJlFoe2MKE7MurcQ//P6KY4aQSZUkiJXbLVolEqCMVkEQIZCc4ZyZgllWthbCZtQTRnamEo2BG/95U3Sqdc8t+Y91CvNRh5HES7gEq7Bgxtowh20oA0MEniGV3hzUufFeXc+Vq0FJ585hz9wPn8AeRGRRA==</latexit>

Retrieve
Documents

using
Model M✓

<latexit sha1_base64="i/iJdwbxOjILzHp3lWrfe9wOzc0=">AAAB83icbVA9SwNBEJ2LXzF+RS1tFhPBKtylMWXAxkaIYD4gd4S9zSZZsrd37M4J4cjfsLFQxNY/Y+e/cZNcoYkPBh7vzTAzL0ykMOi6305ha3tnd6+4Xzo4PDo+KZ+edUycasbbLJax7oXUcCkUb6NAyXuJ5jQKJe+G09uF333i2ohYPeIs4UFEx0qMBKNoJb96P8h8nHCk8+qgXHFr7hJkk3g5qUCO1qD85Q9jlkZcIZPUmL7nJhhkVKNgks9Lfmp4QtmUjnnfUkUjboJsefOcXFllSEaxtqWQLNXfExmNjJlFoe2MKE7MurcQ//P6KY4aQSZUkiJXbLVolEqCMVkEQIZCc4ZyZgllWthbCZtQTRnamEo2BG/95U3Sqdc8t+Y91CvNRh5HES7gEq7Bgxtowh20oA0MEniGV3hzUufFeXc+Vq0FJ585hz9wPn8AeRGRRA==</latexit><latexit sha1_base64="i/iJdwbxOjILzHp3lWrfe9wOzc0=">AAAB83icbVA9SwNBEJ2LXzF+RS1tFhPBKtylMWXAxkaIYD4gd4S9zSZZsrd37M4J4cjfsLFQxNY/Y+e/cZNcoYkPBh7vzTAzL0ykMOi6305ha3tnd6+4Xzo4PDo+KZ+edUycasbbLJax7oXUcCkUb6NAyXuJ5jQKJe+G09uF333i2ohYPeIs4UFEx0qMBKNoJb96P8h8nHCk8+qgXHFr7hJkk3g5qUCO1qD85Q9jlkZcIZPUmL7nJhhkVKNgks9Lfmp4QtmUjnnfUkUjboJsefOcXFllSEaxtqWQLNXfExmNjJlFoe2MKE7MurcQ//P6KY4aQSZUkiJXbLVolEqCMVkEQIZCc4ZyZgllWthbCZtQTRnamEo2BG/95U3Sqdc8t+Y91CvNRh5HES7gEq7Bgxtowh20oA0MEniGV3hzUufFeXc+Vq0FJ585hz9wPn8AeRGRRA==</latexit>

M✓
<latexit sha1_base64="i/iJdwbxOjILzHp3lWrfe9wOzc0=">AAAB83icbVA9SwNBEJ2LXzF+RS1tFhPBKtylMWXAxkaIYD4gd4S9zSZZsrd37M4J4cjfsLFQxNY/Y+e/cZNcoYkPBh7vzTAzL0ykMOi6305ha3tnd6+4Xzo4PDo+KZ+edUycasbbLJax7oXUcCkUb6NAyXuJ5jQKJe+G09uF333i2ohYPeIs4UFEx0qMBKNoJb96P8h8nHCk8+qgXHFr7hJkk3g5qUCO1qD85Q9jlkZcIZPUmL7nJhhkVKNgks9Lfmp4QtmUjnnfUkUjboJsefOcXFllSEaxtqWQLNXfExmNjJlFoe2MKE7MurcQ//P6KY4aQSZUkiJXbLVolEqCMVkEQIZCc4ZyZgllWthbCZtQTRnamEo2BG/95U3Sqdc8t+Y91CvNRh5HES7gEq7Bgxtowh20oA0MEniGV3hzUufFeXc+Vq0FJ585hz9wPn8AeRGRRA==</latexit><latexit sha1_base64="i/iJdwbxOjILzHp3lWrfe9wOzc0=">AAAB83icbVA9SwNBEJ2LXzF+RS1tFhPBKtylMWXAxkaIYD4gd4S9zSZZsrd37M4J4cjfsLFQxNY/Y+e/cZNcoYkPBh7vzTAzL0ykMOi6305ha3tnd6+4Xzo4PDo+KZ+edUycasbbLJax7oXUcCkUb6NAyXuJ5jQKJe+G09uF333i2ohYPeIs4UFEx0qMBKNoJb96P8h8nHCk8+qgXHFr7hJkk3g5qUCO1qD85Q9jlkZcIZPUmL7nJhhkVKNgks9Lfmp4QtmUjnnfUkUjboJsefOcXFllSEaxtqWQLNXfExmNjJlFoe2MKE7MurcQ//P6KY4aQSZUkiJXbLVolEqCMVkEQIZCc4ZyZgllWthbCZtQTRnamEo2BG/95U3Sqdc8t+Y91CvNRh5HES7gEq7Bgxtowh20oA0MEniGV3hzUufFeXc+Vq0FJ585hz9wPn8AeRGRRA==</latexit>

Figure 1. Framework of our proposed model, GERank, consists of four main components. GERank
trains itself by using a dataset. It constructs triples of documents in response to a query, trains
its parameters with the constructed triples, and then is able to retrieve documents by its final
trained model.

Algorithm 1: Training in GERank.

Input: Training dataset S = (C,Q,DQ).
Output: Optimal neural network Mθ∗ .

1 Construct a set of triples for training, T , from S
2 Initialize the neural network Mθ.
3 t = 0.
4 repeat
5 for all (qi, di

j ≺ di
j′) ∈ T do

6 optimize the objective in Equation (5) to update the current parameters θ by the Adam
algorithm.

7 t = t + 1.
8 until The parameters θ in Mθ is converged;

5. Experimental Setup

In what follows, we first list our research questions in Section 5.1. Next, we describe
our datasets as well as the data preprocessing procedure in Section 5.2. Section 5.3 and
Section 5.4 detail the baselines and metrics for evaluation, respectively. Finally, we describe
our experimental settings in Section 5.5.

5.1. Research Questions

The research questions guiding the remainder of the paper are as follows:
In terms of the performance of GERank:

RQ1 How does our GERank perform in the task of document retrieval?

RQ2 Can our GERank outperform traditional pairwise-based L2R methods?

RQ3 Can we make the advantages of our GERank L2R model explainable?

In terms of the parameters, θ, of our GERank model:

RQ4 How does the embedding size affect the retrieval performance of our GERank model?

RQ5 How does the size of the hidden layer affect the retrieval performance of our GERank
model?

To answer the research questions RQ1, RQ2 and RQ3, we conduct a series of experi-
ments on the document retrieval task compared with the state-of-the-art baseline methods
(Section 6.1). To answer RQ4, we fix other variables and tune the embedding dimension
to analyze the impact on the document retrieval performance of our model (Section 6.2).
Similarly, to understand the impact of hidden layer size in our model (RQ5), we conduct
experiments based on different sizes of hidden layers of our model and analyze the result
(Section 6.3).

Electronics 2022, 11, 3694 9 of 25

5.2. Datasets

For our experiments, we use the LETOR package (version 3.0) (Available from https://
www.microsoft.com/en-us/research/project/letor-learning-rank-information-retrieval, ac-
cessed on 10 August 2022) provided by Microsoft Asia [22]. The LETOR package consists
of several benchmark datasets and baseline results including those generated by some L2R
algorithms. In these datasets, information is represented as query–document pairs by means
of “meta-level” features that try to capture the relevant relationships between queries and
documents in an information retrieval system. We conduct experiments on all the two
datasets in the LETOR 3.0 package, i.e., NP2004 and OHSUMED datasets, to examine the
effectiveness of our GERank model. These two datasets have different properties which help
to demonstrate the properties of our GERank model in different scenarios. We also use a
widely used TREC (https://trec.nist.gov/, accessed on 10 August 2022) dataset, Robust04,
which is a TREC collection with documents from the news domain that many previous
and most recent works used for retrieval evaluation purposes [64–67]. In the following, we
describe each of these datasets in more details:

• NP2004: The NP2004 dataset is originally collected for the task of named-page finding
in TREC2004 [68]. It contains a query set with 75 queries and 73,834 query–document
pairs with ratings of 0 and 1 corresponding to “non-relevant” and “relevant” relation-
ships between the queries and the documents, respectively. In the NP2004 dataset,
each query–document pair is represented by 64 features, including the BM25 scores,
Inverse Document Frequency (IDF) scores, PageRank scores, etc. These features are
categorized into three classes, i.e., those depending only on the query, only on the
document and on both of the query and the document, respectively. Specifically,
five features in each query–document pair are only depended on query, which are
constructed by the IDF of query term in body, anchor, title, URL and whole document.

• OHSUMED: The OHSUMED dataset is obtained by Qin et al. [22] from the OHSUMED
corpus [69]. It contains a query set with 106 queries and 16,140 query–document
pairs with three types of ratings, i.e., 0, 1, and 2, corresponding to “non-relevant”,
“partially relevant” and “definitely relevant” relationships between the queries and
the documents, respectively. As for OHSUMED, each query–document pair can be
represented by 45 features, including the language model features, BM25 scores, and
the others. These features are categorized into two classes, i.e., those depending only
on the query, and on both the query and the document. There are 9 query-depend
features in each query–document pair, and the details of these features can be found
in [22].

• Robust04: This TREC dataset consists of documents from the Financial Times Limited,
the Congressional Record of the 103rd Congress, the Federal Register, the Foreign
Broadcast Information Service, and the Los Angeles Times, and has been widely
used in a variety of TREC tasks, including TREC ad hoc collections 6–8, TRECs 8–9
question answering track, and the TREC Robust track. We apply the BERT model
to extract 100-dimensional features for each document and also 100-dimensional
query-depend features.

The statistics information of the two datasets is summarized in Table 2.

Table 2. Statistics information of the NP2004 and OHSUMED datasets.

Datasets #Queries #Documents #Features #Query-Depend Features #Relevances

NP2004 75 73,834 64 5 2
OHSUMED 106 16,140 45 9 3

Robust04 249 556,077 100 100 2

In order to transfer the original dataset into the desired format for our model, we
apply two procedures to process the data. Figure 2 provides an example of transferring the
data in NP2004 dataset into the input format of our model. The data in the OHSUMED and

https://www.microsoft.com/en-us/research/project/letor-learning-rank-information-retrieval
https://www.microsoft.com/en-us/research/project/letor-learning-rank-information-retrieval
https://trec.nist.gov/

Electronics 2022, 11, 3694 10 of 25

Robust04 datasets are processed in the same way. On top of Figure 2, each row represents a
document. The first column denotes the relevant score of the document being relevant to
the query. A larger score indicates a higher relevance level of the document to the input
query. For instance, the relevant scores “1” and “0” in the first row denote the document is
“non-relevant” and “relevant” to the query, respectively, and the second column denotes
the query ID. In the figure, “qid:1” indicates that this document is retrieved for the query
with its query ID being 1. The last column of the first row, i.e., “#docid=G29-66-2836593”,
gives the document ID. The columns in the middle are features extracted from this query–
document pair.

Figure 2. Data processing for the datasets consists of two steps: Step 1: Extract documents under the
same query to construct a document pair; Step 2: Extract the query-depend feature and construct the
triple (Query, Doc1 ≺ Doc2).

For data preprocessing, we adopt the Minmax normalization to normalize the scores
of all the features. We apply a uniform sampling strategy to obtain the triple set T from
the training set. Specifically, we randomly choose a query qi and a relevant document di

j

with rating score being 0 from the dataset, then sample another document di
j′

whose score

is larger than 0. We then obtain each triple sample (qi, di
j ≺ di

j′
) for training the model. As

for the construction of the query qi, we use the same features of the query–document pair
to represent it. The query-depend features of the query qi are extracted from one of the
related query–document pairs and the scores of other features are 0.

5.3. Baselines

We compare our model with three types of L2R baselines, i.e., the pointwise, pair-
wise, and listwise L2R approaches. Specifically, one pointwise approach, i.e., the Linear
regression based algorithm (LR), three pairwise approaches, i.e., Ranking SVM [16,17],
RankBoost [18] and FRank [35], and four listwise approaches, i.e., ListNet [19], AdaRank-
MAP [33], AdaRank-NDCG [33], and SVMmap [34] are taken as our L2R baselines. Details
of the baselines are provided as follows:

• LR maps a feature vector to a retrieval score by a linear function. Given a training
query, relevance score of each document is used to train the model. The model aims at
enforcing the relevance score of more relevant documents to be greater than that of a
less relevant document.

• Ranking SVM [16,17] transforms L2R to a binary classification problem. It considers
the partial ordering of the documents and solves the binary classification problem
using a Support Vector Machine. SVM-light, a public tool (The SVM-light program is
available from the web site http://www.cs.cornell.edu/people/tj/svm_light/svm_

http://www.cs.cornell.edu/people/tj/svm_light/svm_rank.html
http://www.cs.cornell.edu/people/tj/svm_light/svm_rank.html

Electronics 2022, 11, 3694 11 of 25

rank.html, accessed on 10 August 2022), is used in the experiment. The ranking
function is linear.

• RankBoost [18] adopts the Adaboost algorithm for the classification over document
pairs given the queries. The distribution in RankBoost is defined over document pairs.
For each iteration, RankBoost trains a weak document ranking model. These weak
models are combined to obtain the final retrieval model. The weights of document
pairs are changed by decreasing the weights of correctly ranked pairs. We follow
Qin et al. [22] to define each weak ranker on the basis of a single feature.

• FRank [35] is a pairwise ranking algorithm with a fidelity loss function. The fidelity
was originally used in quantum physics to measure the difference between two
probabilistic states of a quantum. In our experiments, as a baseline, it is used to
measure the difference between the target probability and the modeled probability.

• SciBERT [70] is a representation learning mechanism that integrates structural rela-
tions with semantic information to enrich the document embeddings for document
retrieval. It involves training a document representation model that encodes the corpus
structure along with the content semantics into the learned document embeddings in
a metric learning setting. It makes similar documents close in the representation space
while dissimilar documents separated. It accepts similar and dissimilar document
pairs as input, one each for content semantics and corpus structure.

• ListNet [19] is based on probability distribution on permutations. The main work
of ListNet is to map the relevance of query–document pairs to a real-value score.
For a document list, the Luce model used by definition a permutation probability
distribution based on score and another based on the ground truth labels. The loss
function of the model is the cross enthalpy between two distributions.

• AdaRank-MAP and AdaRank-NDCG [33] are built based on the Adaboost algorithm.
They aim to repeatedly construct weak rankers on the basis of re-weighted training
queries and finally linearly combine the weak rankers to make ranking predictions.
The difference is that AdaRank-MAP uses MAP to measure the effectiveness of a weak
ranker, while AdaRank-NDCG utilizes NDCG to optimize the model.

• SVMmap [34] utilizes the framework of structured SVM to optimize the evaluation
measure, i.e., MAP. The main idea of SVMmap is to use Support Vector Machines to
solve the ranking problem.

5.4. Evaluation Metrics

For model evaluation, we adopt three categories of evaluation metrics that are com-
monly used in existing document retrieval algorithms [24]: mean average precision (MAP),
precision at position k (P@k), and normalized discounted cumulative gain at position k
(NDCG@k). Note that all evaluation scores in our experiments were computed under
the trec_eval public code (The trec_eval program is available from the TREC web site
http://trec.nist.gov, accessed on 10 August 2022).

• NDCG: NDCG is a measure of ranking quality that is computed based on the dis-
counted cumulative gain. The discounted cumulative gain (DCG) [23] at a particular
rank threshold k is defined as

DCG(S , k) =
k

∑
j=1

2r(j) − 1
log(1 + j)

,

where r(j) is the judgment (0 = Bad, 1 = Fair, 2 = Good, 3 = Excellent, etc.) at rank j
in set S . The ideally ordered setR contains all documents rated for the given query
sorted descending by the judgment value. Then, the normalized discounted cumulative
gain (NDCG) [23] at a particular rank threshold k is defined as

NDCG(S , k) =
DCG(S , k)
DCG(R, k)

.

http://www.cs.cornell.edu/people/tj/svm_light/svm_rank.html
http://www.cs.cornell.edu/people/tj/svm_light/svm_rank.html
http://trec.nist.gov

Electronics 2022, 11, 3694 12 of 25

NDCG discounts the contribution of a document to the overall score as its rank
increases. NDCG value at rank threshold k when the set S is clear from the context is
often written as NDCG@k.

• MAP: The mean average precision (MAP) [24] of a test query set is the mean of the
average precision (AP) values of all queries in the query set. The average precision of a
ranked result set in response to a given query is defined as:

AP =
∑k

j=1 P(j) ∗ Relevance(j)

∑k
j=1 Relevance(j)

,

where j is the position of the document (in our case, group), Relevance(j) denotes the rele-
vance of the document (in our case, group) in position j, and P(j) = ∑

j
i=1 Relevance(i)/j.

Typically, a binary value for Relevance(j) is used by setting it to 1 if the document (group)
in position j has a human judgment of Fair or better and 0 otherwise.

• Precision: Precision at k [24] only considers the total number of relevant documents
ranked within the top k positions and can be simply computed as

P@k =
#relevant documents among the top k

k
,

where “relevant documents” are those that have human judgments of Fair or better.

5.5. Experimental Settings

We use 5-fold cross validation for reporting all the experimental results in terms of the
evaluation metrics, NDCG, MAP, and Precision. We use the evaluation script provided by
the LETOR package to generate the evaluation scores. In our experiments, we use a 3/1/1
split for our training, validation, and test sets, respectively. We train our L2E model and
the baseline models using different values of the parameters in the models. The best values
of the parameters in each model are then chosen on the validation set, and evaluated on
the test queries. The training/validation/testing splits are permuted until all the queries in
each of the datasets were chosen once for the test set. We repeat the experiments 10 times
and report the average evaluation results.

We conduct experiments for all the baselines using the codes released by the authors,
and the parameters of them are tuned to be optimal. Specifically for RankBoost, the best
weak ranker was selected from (255 thresholds) × (number of features) candidates in each
iteration. The number of iterations is determined by the evaluation metric MAP on the
validation set. To the baseline FRank, it combines several weak learners to minimize the
fidelity loss function. The number of weak learners for it was determined by verifying on
the validation set. As for ListNet, it is trained by minimizing the cross entropy between
output score and ground truth label. ListNet maps the relevance label of query–document
pair to a real-value score. The mapping is determined by utilizing the validation set.
AdaRank-MAP and AdaRank-NDCG manage to optimize MAP and NDCG to measure the
effectiveness of weak rankers. These two algorithms work based on AdaBoost. The number
of weak rankers which are combined to the final model is determined by the validation set.
SVMmap is a structured SVM approach by optimizing a loss function concerned about MAP.
The value of hyper parameter in SVMmap is determined by using the validation set.

We define our GERank, Mθ, as a two-layer feed-forward network to embed queries
and documents. The first layer uses Relu as the activation function. Then, we treat queries
and documents in the same way. It means that they share the same neural network. Then,
queries and documents are passed through deep feed-forward nonlinear neural networks.
We obtain their means µ and diagonal covariance matrices Σ (To guarantee their positive
definite, we design σ̃ = elu(σ′) + 1, where σ′ is the output in the final layer) from the
output in the final layer. We learn the neural network parameters to satisfy the pairwise
constraints by minimizing the loss function L and using the Adam Optimizer to optimize
the loss function for our GERank model. In order to shorten the training time, avoid the

Electronics 2022, 11, 3694 13 of 25

risk of over-fitting, and guarantee good performance of the model, we control the training
steps based on the performance of GERank on the validation set. It should be emphasized
that µ and Σ share the parameters of the neural network.

The statistical significance on differences of the performance between two models is
tested using a two-tailed paired t-test. Here, we use N to denote a significance difference
for p < 0.01, and M for p < 0.05.

6. Results

In this section, we report and analyze our experimental results. To answer RQ1,
we start by reporting the overall document retrieval performance of our model and the
baseline models in Section 6.1. Then, to answer RQ2, we compare the performance of
GERank with several pairwise baselines over nine evaluation metrics in Section 6.1. After
that, to answer RQ3, we analyze the experimental results and try to give a reasonable
explanation in Section 6.2. To further investigate the properties of the model, we also vary
the embedding dimension (to answer RQ4) and the size of the hidden layer (to answer
RQ5) and report the results in Section 6.3.

6.1. Overall Retrieval Performance

In order to answer research questions RQ1 and RQ2, we first compare our GERank
with the baseline methods over NDCG, MAP, and Precision metrics on the NP2004 dataset.
Table 3 shows the performance of all the methods on precision and MAP, while Table 4
shows the performance on NDCG@k with k being set to be 1, 3, 5, and 10. In general, we
can observe that GERank always yields very high competitive performances over all the
evaluation metrics. From Table 3, we can observe that LR is the worst baseline among
all the other baseline models, while our GERank achieves the best performance on P@1,
MAP, and NDCG@1 metrics, and the improvement is significant comparing with other
baselines. As for listwise L2R approaches, ListNet performs the best on this dataset. In
terms of the MAP metric, GERank still works very well, and it is the second best model
among the nine baseline algorithms. In terms of the P@1 metric, GERank has a significant
improvement compared to all the baseline algorithms. In terms of P@3, P@5, and P@10,
it does not perform as well as the listwise approach, but it is still comparable to pairwise
L2R approaches. Table 4 shows the performance in terms of NDCG@k evaluation metrics
with k being set to be 1, 3, 5, and 10. It can be seen that ListNet and Ranking SVM yield
the best performance on this dataset. Although ListNet and Ranking SVM outperform our
GERank, they will suffer from a mismatch problem when the feature dimension used to
represent the document is low. In addition, GERank still yields the best performance in
terms of the NDCG@1 evaluation metric. Overall, the performance of our model, GERank,
is comparable with or even better than the state-of-the-art pairwise L2R models especially
in terms of NDCG@1 and P@1 that evaluate documents ranked higher in the final ranked
list of documents in response to a query.

We now examine our GERank model and the baseline models on the OHSUMED
dataset. Table 5 shows the performance of the algorithms on precision and MAP metrics.
LR, again, has the worse performance on the OHSUMED dataset. Among the pairwise
approaches, FRank has a significant improvement in terms of these two metrics. Similar
to those reported on the NP2004 dataset, the listwise methods perform very well. In
particular, AdaRank-NDCG performs the best. As for our GERank, it behaves as well as
the other algorithms in terms of the MAP metric. In particular, GERank achieves the best
performance in terms of the metrics P@1 and P@3, which indicates that GERank has an
obvious advantage compared to other traditional L2R algorithms when predicting the top
documents, especially those ranked within the top three positions. As for the other metrics,
the performance of GERank is still comparable with that of other algorithms. Table 5
shows the performance of our GERank and the baseline algorithms on NDCG@k metrics.
According to the table, AdaRank-NDCG and FRank yield the best performance among
the baselines. In total, listwise approaches perform better than pairwise approaches. For

Electronics 2022, 11, 3694 14 of 25

our model, GERank, there is a significant improvement over the best baseline algorithm in
terms of all the NDCG metrics on the OHSUMED dataset. Compared with the algorithms
based on pairwise approach, the performance of GERank in terms of NDCG metrics has
a significant improvement. Similar findings can be found in Tables 6–8 according to the
performance evaluation of both our proposed model GERank and the baseline models on
the Robust04 dataset.

Table 3. Performance of our GERank and the baseline models in terms of Precision and MAP on the
NP2004 dataset. The best performance per metric among the pairwise L2R algorithms is in boldface.
Statistically significant improvement of the performance of our GERank model per metric compared
to the best pairwise L2R baseline algorithm is marked in the upper right-hand corner of GERank
performance score.

Approach Model P@1 P@3 P@5 P@10 MAP

Pointwise LR 0.3733 0.2000 0.1440 0.0820 0.5142

Listwise

ListNet 0.5333 0.2667 0.1787 0.0940 0.6720
AdaRank-MAP 0.4800 0.2444 0.1627 0.0880 0.6220

AdaRank-NDCG 0.5067 0.2489 0.1653 0.0900 0.6269
SVMmap 0.5200 0.2667 0.1787 0.0960 0.6620

Pairwise

Ranking SVM 0.5067 0.2622 0.1787 0.0930 0.6588
RankBoost 0.4267 0.2311 0.1520 0.0880 0.5640

SciBERT 0.4326 0.2324 0.1554 0.0892 0.5721
FRank 0.4800 0.2356 0.1600 0.0930 0.6008

GERank 0.5734N 0.2489 0.1653 0.0893 0.6657N

Table 4. NDCG on NP2004 dataset. The best performance per metric among the pairwise L2R
algorithms is in boldface. Statistically significant improvement of the performance of our GERank
model per metric compared to the best pairwise L2R baseline algorithm is marked in the upper right
hand corner of GERank performance score.

Approach Model NDCG@1 NDCG@3 NDCG@5 NDCG@10

Pointwise LR 0.3733 0.5554 0.6135 0.6530

Listwise

ListNet 0.5333 0.7587 0.7965 0.8120
AdaRank-MAP 0.4800 0.6979 0.7310 0.7490

AdaRank-NDCG 0.5067 0.6722 0.7122 0.7380
SVMmap 0.5200 0.7489 0.7869 0.8079

Pairwise

Ranking SVM 0.5067 0.7503 0.7957 0.8060
RankBoost 0.4267 0.6274 0.6512 0.6914

SciBERT 0.4374 0.6352 0.6678 0.7021
FRank 0.4800 0.6431 0.6870 0.7290

GERank 0.5734N 0.6620 0.6914 0.7095

According to the analysis based on Tables 3–8, it can be concluded that listwise
approaches perform well on these datasets. LR is the worse baseline among them. GERank
outperforms the baseline algorithms on OHSUMED and has a marked improvement. On
the NP2004 dataset, the performance of our GERank model is still comparable with that of
other pairwise approaches. Specifically, GERank has a clear advantage in predicting the top
documents as indicated by the retrieval performance on the Precision and NDCG metrics.
For instance, the best result of the others pairwise approaches on P@1 on NP2004 dataset is
0.5067 for Ranking SVM, whereas our model GERank achieves 0.5734 and obtains about
13.2% improvement over Ranking SVM. On NDCG@1, the best result of the other pairwise
approaches on the OHSUMED dataset is 0.5300 for FRank, whereas our method achieves
0.6008 and obtains about 13.4% improvement over the FRank model. As a pairwise L2R

Electronics 2022, 11, 3694 15 of 25

algorithm, GERank is able to significantly improve over the traditional pairwise approaches
on all the dataset, the NP2004, the OHSUMED, and the Robust04 datasets.

Table 5. Precision and MAP on the OHSUMED dataset. The best performance per metric among the
pairwise L2R algorithms is in boldface. Statistically significant improvement of the performance of
our GERank model per metric compared to the best pairwise L2R baseline algorithm is marked in the
upper right-hand corner of GERank performance score.

Approach Model P@1 P@3 P@5 P@10 MAP

Pointwise LR 0.5965 0.5768 0.5337 0.4660 0.4220

Listwise

ListNet 0.6524 0.6016 0.5502 0.4970 0.4457
AdaRank-MAP 0.6338 0.5895 0.5674 0.4970 0.4487

AdaRank-NDCG 0.6719 0.5984 0.5767 0.5080 0.4498
SVMmap 0.6433 0.5802 0.5523 0.4910 0.4453

Pairwise

Ranking SVM 0.5974 0.5427 0.5319 0.4860 0.4334
RankBoost 0.5576 0.5609 0.5447 0.4966 0.4411

SciBERT 0.5682 0.5478 0.5305 0.4872 0.4331
FRank 0.6429 0.5925 0.5638 0.5010 0.4439

GERank 0.6909N 0.6085N 0.5412 0.4929 0.4373

In conclusion, the answers to research questions RQ1 and RQ2 are now clear: GER-
ank outperforms state-of-the-art of traditional pairwise L2R algorithms and also has an
improvement on several metrics compared with listwise L2R approaches.

Table 6. NDCG on the OHSUMED dataset. The best performance per metric among the pairwise
L2R algorithms is in boldface. Statistically significant improvement of the performance of our model
per metric compared to the best pairwise L2R baseline algorithm is marked in the upper right-hand
corner of performance score.

Approach Model NDCG@1 NDCG@3 NDCG@5 NDCG@10
Pointwise LR 0.4456 0.4426 0.4278 0.4110

Listwise

ListNet 0.5326 0.4732 0.4432 0.4410
AdaRank-MAP 0.5388 0.4682 0.4613 0.4420

AdaRank-NDCG 0.5330 0.4790 0.4673 0.4490
SVMmap 0.5229 0.4663 0.4516 0.4319

Pairwise

Ranking SVM 0.4958 0.4207 0.4164 0.4140
RankBoost 0.4632 0.4555 0.4494 0.4302

SciBERT 0.4589 0.4472 0.4210 0.4243
FRank 0.5300 0.4812 0.4588 0.4430

GERank 0.6008N 0.5326N 0.4920N 0.4650N

In order to research question RQ3, we analyze the performance and the structure
of our model. As shown in Tables 3–6, we find that GERank can achieve a considerable
performance on the datasets. In terms of NDCG and precision metrics, our model has
significantly improved the performance compared to the best baseline. Such improvement
can be clearly explained as follows: Firstly, our Gaussian Embedding model for Rank-
ing, GERank, co-embed queries and documents into the same semantic space so as to
alleviate the mismatch problem between queries and documents. With the constraint in
Equation (4), the semantic similarities between query and documents can be effectively
measured. Secondly, we employ the square-exponential loss which has an infinite margin
and pushes the energy of the negative terms to infinity with exponentially decreasing
force [62]. Thus, it is able to retrieve the most relevant documents and rank them within the
top positions. It can be explained that the performance on dataset OHSUMED is better than
that on dataset NP2004. On the NP2004 dataset, 5 of the 64 features are only dependent

Electronics 2022, 11, 3694 16 of 25

on query. However, there are 9 of the 45 features which are only dependent on queries
on the OHSUMED dataset. In other words, query has more features on the OHSUMED
dataset. For the traditional linear method, they does not use these query information, so
the accuracy of prediction is not high on the OHSUMED dataset.

Table 7. Precision and MAP on the Robust04 dataset. The best performance per metric among the
pairwise L2R algorithms is in boldface. Statistically significant improvement of the performance of
our GERank model per metric compared to the best pairwise L2R baseline algorithm is marked in the
upper right-hand corner of GERank performance score.

Approach Model P@1 P@3 P@5 P@10 MAP

Pointwise LR 0.5212 0.4814 0.4242 0.4317 0.3415

Listwise

ListNet 0.5356 0.5238 0.4913 0.4320 0.3421
AdaRank-MAP 0.5440 0.5215 0.4871 0.4313 0.3433

AdaRank-NDCG 0.5455 0.5232 0.4751 0.4237 0.3413
SVMmap 0.5345 0.5173 0.4828 0.4332 0.3421

Pairwise

Ranking SVM 0.5870 0.5721 0.5235 0.4856 0.3761
RankBoost 0.5742 0.5627 0.5043 0.4722 0.3755

SciBERT 0.5548 0.5474 0.4925 0.4656 0.3722
FRank 0.5932 0.5871 0.5525 0.4926 0.3814

GERank 0.6123N 0.6052N 0.5725N 0.4901 0.4018N

Table 8. NDCG on the Robust04 dataset. The best performance per metric among the pairwise L2R
algorithms is in boldface. Statistically significant improvement of the performance of our GERank
model per metric compared to the best pairwise L2R baseline algorithm is marked in the upper
right-hand corner of GERank performance score.

Approach Model NDCG@1 NDCG@3 NDCG@5 NDCG@10

Pointwise LR 0.5212 0.5521 0.6220 0.7322

Listwise

ListNet 0.5356 0.5544 0.6213 0.7251
AdaRank-MAP 0.5440 0.5647 0.6321 0.7421

AdaRank-NDCG 0.5455 0.5678 0.6402 0.7452
SVMmap 0.5345 0.5427 0.6398 0.7423

Pairwise

Ranking SVM 0.5870 0.6327 0.6872 0.7824
RankBoost 0.5742 0.6247 0.6745 0.7743

SciBERT 0.5548 0.6122 0.6554 0.7532
FRank 0.5932 0.6472 0.6923 0.7951

GERank 0.6133N 0.6645N 0.7142N 0.7887

Therefore, the answer to research question RQ3 is now clear: we have clearly explained
the mechanism of GERank for document retrieval; see the above.

6.2. Impact of Embedding Dimension

We examine the impact of embedding dimension on the retrieval performance (RQ4).
We fix the number of hidden layers I to be 512, and run our model with different embedding
dimensions L. In Figures 3 and 4, the horizontal axis is for evaluation metrics, and the
vertical axis is for the value of evaluation metrics in detail. From these two figures, we can
observe that, when L = 15, the performance of our model shows the worst performance in
terms of all the evaluation metrics. It is due to the information loss of documents caused by
low dimension embedding. In terms of low dimension embedding, the number of features
of the document is too small to cause mismatching.

Electronics 2022, 11, 3694 17 of 25

L=15 L=30 L=45 L=60 L=75 L=90
0.40

0.45

0.50

0.55

0.60

0.65
MAP
NDCG@1
NDCG@3
NDCG@5
NDCG@10

Figure 3. GERank’s MAP and NDCG performance on the OHSUMED dataset with different embed-
ding dimensions, L = 15, 30, . . . , 90.

L=15 L=30 L=45 L=60 L=75 L=90
0.45

0.50

0.55

0.60

0.65

0.70

0.75
P@1
P@3
P@5
P@10

Figure 4. GERank’s precision performance on the OHSUMED dataset with different embedding
dimensions, L = 15, 30, . . . , 90.

All metrics as a whole increase with the increase of embedding dimension, as it is
shown in Figures 3 and 4. However, the training time will be longer when the embedding
dimension is higher. Therefore, increasing the embedding dimension appropriately is
beneficial to improve the accuracy of our model GERank. In particular, we can achieve the
best performance on OHSUMED dataset when the embedding dimension L is set to be
45. It means that equal dimensional embedding to our model is the most effective on the
OHSUMED dataset.

6.3. Effect of Hidden Layer

Finally, we study the influence of hidden layer (RQ5). Specifically, we fix the embed-
ding dimension L to be 45, and run our model with different numbers of hidden layers
denoted as I. The retrieval performance with different numbers of hidden layers is shown in
Figures 5 and 6. From these two figures, we can observe that, when I = 32, the performance
of our model shows the worst performance on all the evaluation metrics. This is due to
the fact that fewer numbers of neurons results in the poor representation ability of the
overall model.

Electronics 2022, 11, 3694 18 of 25

l=32 l=64 l=128 l=256 l=512 l=1024
0.40

0.45

0.50

0.55

0.60 MAP
NDCG@1
NDCG@3
NDCG@5
NDCG@10

Figure 5. GERank’s MAP and NDCG performance on the OHSUMED dataset with different numbers
of hidden layers, I = 32, 64, . . . , 1024.

l=32 l=64 l=128 l=256 l=512 l=1024

0.45

0.50

0.55

0.60

0.65

P@1
P@3
P@5
P@10

Figure 6. GERank’s precision performance on the OHSUMED dataset with different numbers of
hidden layers, I = 32, 64, . . . , 1024.

According to Figures 5 and 6, we can also see that the performance of our model
improves as the hidden layers increase. However, increasing the number of neurons may
lead to the risk of over-fitting. For instance, the performance of our model with the number
of neurons being 1024 is worse than 512. We show that 512 is the best choice of the number
of neurons in our model on the OHSUMED dataset.

In conclusion, the dimension embedding and the number of hidden layer neurons do
effect the performance of our model. In the case of embedding dimension being 45 and
hidden layer being 512, our model achieves the best performance on all the evaluation
metrics on the OHSUMED dataset.

7. Conclusions

In this paper, we have studied the core problem in information retrieval, i.e., designing
a L2R model for document retrieval and optimizing the model to produce a final rank list of
documents in response to a given query. To obtain better document retrieval performance,
we have proposed a novel Gaussian embedding based pairwise L2R model, GERank,
to learn to infer the embeddings and their covariances of queries and documents such
that the similarities between a query and a document can be effectively measured for
ranking documents in response to a given query. Specifically, our GERank model is able to
co-embed queries and documents into the same semantic space such that the mismatch

Electronics 2022, 11, 3694 19 of 25

between queries and documents can be alleviated. GERank is the first model to incorporate
embedding techniques into pairwise L2R algorithms with constraints. For example, in
Gaussian embedding space, we transform the ranking problem into pairwise constraints.
To yield better performance, GERank not only infers the embeddings of queries and
documents, but also their covariances (uncertainty is captured by GERank) such that the
similarities between queries and documents can be effectively measured, via an energy-
based loss function being defined for learning the embeddings and covariances of queries
and documents.

We have conducted experiments on two LETOR datasets. Experimental results show
our model has a significant improvement over the datasets. Our evaluation results have
also shown that GERank outperforms state-of-the-art traditional pairwise algorithms and
even some state-of-the-art listwise algorithms on the OHSUMED dataset. Specifically, our
model is able to yield better retrieval performance within the top-k document. We also
systematically study the influence of embedding dimension and size of hidden layers in
the model and provide a reasonable explanation.

As for future work, we aim to improve the proposed model, GERank, in the follow-
ing ways:

(a) We plan to infer embeddings and the covariances of queries and documents via
other embedding techniques such as variational auto-encoders [71].

(b) We plan to apply GERank to other information retrieval applications such as: given
a question, rank answers that are relevant to the question in question-answering
communities, where users’ interaction historical information in the communities
can be utilized to boost the retrieval performance.

(c) We intend to integrate our GERank into listwise L2R approaches, as listwise ap-
proaches have shown their better performance compared to that produced by the
pairwise L2R approaches on the testing datasets.

(d) We also intend to improve big data law for a number of information retrieval
applications such as document retrieval.

Author Contributions: Experiments, B.L., L.T., and Y.W.; supervision, S.L.; writing—original draft,
Y.W., B.L., L.T., and S.L. All authors have read and agreed to the published version of the manuscript.

Funding: This paper is a phased result of the general project of Humanities and Social Sciences
Research of Ministry of Education “Research on the Evaluation Mechanism of Judicial Reform
Effectiveness in the Era of Big Data” (Grant No. 19YJC820058). This work is partly supported by the
National Natural Science Foundation of China (Grant No. 61906219) and the start-up project and the
MBZUAI-WIS project at the Mohamed bin Zayed University of Artificial Intelligence. All content
represents the opinion of the authors, which is not necessarily shared or endorsed by their respective
employers and/or sponsors.

Data Availability Statement: The codes and data used in the experiments are provided by URLs in
the main body of the paper.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. KL Divergence between Two Multivariate Gaussian Distributions

Definition A1. For discrete probability distributions P and Q defined in the same probability space
X, the KL divergence between P and Q is defined to be:

DKL(P ‖ Q) = ∑
x∈X

P(x) ∗ [logP(x)− logQ(x)].

For distributions P and Q of a continuous random variable, the KL divergence is defined via the
following integral:

DKL(P ‖ Q) =
∫ ∞

−∞
P(x) ∗ [logP(x)− logQ(x)]

Electronics 2022, 11, 3694 20 of 25

Given P(x) ∼ N (µ1, Σ1) and Q(x) ∼ N (µ2, Σ2), the PDF (Probability Distribution Func-
tion) of multivariate Gaussian distribution is that

P(x) = (2π)−
k
2 |Σ1|−

1
2 exp[−1

2
(x− µ1)

TΣ−1
1 (x− µ1)]

Q(x) = (2π)−
k
2 |Σ2|−

1
2 exp[−1

2
(x− µ2)

TΣ−1
2 (x− µ2)]

log P(x) = − k
2

log 2π − 1
2

log |Σ1| −
1
2
(x− µ1)

TΣ−1
1 (x− µ1)

log Q(x) = − k
2

log 2π − 1
2

log |Σ2| −
1
2
(x− µ2)

TΣ−1
2 (x− µ2)

According to the KL definition, we have

DKL(P ‖ Q) =
∫ [1

2
log
|Σ2|
|Σ1|

− 1
2
(x− µ1)

TΣ−1
1 (x− µ1) +

1
2
(x− µ2)

TΣ−1
2 (x− µ2)

]
∗ P(x)dx

=
1
2

log
|Σ2|
|Σ1|

− 1
2

tr{E[(x− µ1)(x− µ1)
T]Σ−1

1 }+
1
2
E[(x− µ2)

TΣ−1
2 (x− µ2)]

=
1
2

log
|Σ2|
|Σ1|

− 1
2

tr{IL}+
1
2
(µ1 − µ2)

TΣ−1
2 (µ1 − µ2) +

1
2

tr{Σ−1
2 Σ1}

=
1
2
[
tr(Σ−1

2 Σ1) + (µ2 − µ1)
TΣ−1

2 (µ2 − µ1)− L− log
|Σ1|
|Σ2|

]
We derive

∫ 1
2 (x − µ1)

TΣ−1
1 (x − µ1)P(x)dx and

∫ 1
2 (x − µ2)

TΣ−1
2 (x − µ2)P(x)dx in the

following details.

Given a scalar value, we have E
(

xT Ax
)
= E

(
tr(xT Ax)

)
= E

(
tr(AxxT)

)
= tr

(
E(AxxT)

)
such that we have: ∫ 1

2
(x− µ1)

TΣ−1
1 (x− µ1)P(x)dx

= Ep
(1

2
(x− µ1)

TΣ−1
1 (x− µ1)

)
= Ep

(
tr(

1
2
(x− µ1)

TΣ−1
1 (x− µ1))

)
= Ep

(
tr(

1
2
(x− µ1)(x− µ1)

TΣ−1
1)
)

= tr
(
Ep(

1
2
(x− µ1)(x− µ1)

TΣ−1
1)
)

= tr
(
Ep[(x− µ1)(x− µ1)

T]
1
2

Σ−1
1
)

= tr(Σ1
1
2

Σ−1
1)

= tr(IL)

= L

As for the second integral, we have:∫ 1
2
(x− µ2)

TΣ−1
2 (x− µ2)P(x)dx

=
∫ 1

2
[
(x− µ1) + (µ1 − µ2)

]TΣ−1
2
[
(x− µ1) + (µ1 − µ2)

]
P(x)dx

=
∫ 1

2
{(x− µ1)

TΣ−1
2 (x− µ1) + 2(x− µ1)

TΣ−1
2 (µ1 − µ2) + (µ1 − µ2)

TΣ−1
2 (µ1 − µ2)}P(x)dx

= tr(Σ−1
2 Σ1) + 0 + (µ1 − µ2)

TΣ−1
2 (µ1 − µ2)

Electronics 2022, 11, 3694 21 of 25

Appendix B. Proof of Algorithm Convergence

Property A1. KL divergence is always non-negative.

Proof. Discrete probability distributions P and Q defined on the same probability space

DKL(P ‖ Q) = ∑
x∈X

P(x) ∗ [log
P(x)
Q(x)

]

= − ∑
x∈X

P(x) ∗ [log
Q(x)
P(x)

]

(1)
≥ −log ∑

x∈X
P(x) ∗ Q(x)

P(x)
= −log ∑

x∈X
Q(x) = 0

Step (1) can be deduced by Jensen Inequality.
Let w be a parameter vector to learn and w′ be the parameter updated by an iteration.
The loss function L is minimized by the Adam Optimizer based on the gradient descent
algorithm. The parameter updated for each iteration is as follows:

δw = w′ − w = −ηA
∂L
∂w

(A1)

where A is a symmetric positive semi-definite matrix, and η is the learning rate that is
positive and small. For the convenience of expression, the energy function is equivalent to
the following form:

E(dj ≺ dj′ | w) = DKL(Nj ‖ Ndj′
)

and the loss function can be expressed as:

Lw = ∑
(qi ,di

j≺di
j′)∈T

E(qi, di
j′ | w)2 + exp(−E(qi, di

j | w)) (A2)

For the square term E(qi, di
j′ | w)2,

δw = w′ − w

= −ηA
∂E(qi, di

j′ | w)2

∂w

= −ηAE(qi, di
j′ | w)

∂E(qi, di
j′ | w)

∂w

and then

∂E(qi, di
j′ | w)

∂w

T

δw = −ηE(qi, di
j′ | w)

∂E(qi, di
j′ | w)

∂w

T

A
∂E(qi, di

j′ | w)

∂w
< 0

because E(qi, di
j′ | w) = DKL(Ndi

j′
‖ Ndi

j
) > 0. Therefore,

E(qi, di
j′ | w′) < E(qi, di

j′ | w) (A3)

The same derivation for the natural exponential term exp(−E(qi, di
j | w)), is

δw = w′ − w

= −ηA
∂ exp(−E(qi, di

j | w))

∂w

Electronics 2022, 11, 3694 22 of 25

= ηA exp(−E(qi, di
j | w))

∂E(qi, di
j | w)

∂w

Then,

∂E(qi, di
j | w)

∂w

T

δw = η exp(−E(qi, di
j | w))

∂E(qi, di
j | w)

∂w

T

A
∂E(qi, di

j | w)

∂w
< 0

Therefore,
E(qi, di

j | w′) > E(qi, di
j | w) (A4)

By Equations (A3) and (A4), we have

0 < exp(−E(qi, di
j | w′)) + E(qi, di

j′ | w′)2 < exp(−E(qi, di
j | w)) + E(qi, di

j′ | w)2

=⇒ 0 < Lw′ < Lw (A5)

Therefore, L converges.

Appendix C. Supplement to the Measure and Loss Function

In addition to KL divergence can be used as a measure, there are other measures to
choose in our model. The symmetric dissimilarity measure such as the Jensen–Shannon
divergence or the expected likelihood can be also integrated in our model.

We follow the energy-based framework. In addition, we employ the square-exponential
which has an infinite margin and pushes the energy of the negative terms to infinity with
exponentially decreasing force. There are also other loss functions that can be chosen. Le-
Cun et al. [62] proposed several loss functions, and we can take them into our case. Again,
let di

j′ be the document that should be ranked higher than the document di
j in response to a

query qi.

Hinge Loss:
Lhinge = max(0, m + E(di

j′ , qi)− E(di
j, qi))

where m is the positive margin.
Log Loss:

Llog = log(1 + exp(E(di
j′ , qi)− E(di

j, qi))

MCE Loss:
Lmce = σ(E(di

j′ , qi)− E(di
j, qi))

where σ is the logistic function.
Square–Square Loss:

Lsq−sq = E(di
j′ , qi)2 + (max(0, m− E(di

j, qi)))2

where m is the positive margin.

References
1. Yue, S.; Larson, M.; Hanjalic, A. Listwise learning to rank with matrix factorization for collaborative filtering. In Proceedings of

the ACM Conference on Recommender Systems, Barcelona, Spain, 26–30 September 2010.
2. Yue, S.; Karatzoglou, A.; Baltrunas, L.; Larson, M.; Oliver, N.; Hanjalic, A. CLiMF: Learning to maximize reciprocal rank with

collaborative less-is-more filtering. In Proceedings of the ACM Recommender Systems, Dublin, Ireland, 9–13 September 2012.
3. Koren, Y.; Rendle, S.; Bell, R. Advances in collaborative filtering. Recommender Systems Handbook; Springer: Berlin/Heidelberg,

Germany, 2022; pp. 91–142.
4. Rendle, S.; Krichene, W.; Zhang, L.; Anderson, J. Neural collaborative filtering vs. matrix factorization revisited. In Proceedings

of the Fourteenth ACM Conference on Recommender Systems, Virtual, 22–26 September 2020; pp. 240–248.

Electronics 2022, 11, 3694 23 of 25

5. Xu, D.; Ruan, C.; Korpeoglu, E.; Kumar, S.; Achan, K. Rethinking neural vs. matrix-factorization collaborative filtering: The
theoretical perspectives. In Proceedings of the International Conference on Machine Learning (PMLR), Virtual, 18–24 July 2021;
pp. 11514–11524.

6. Cao, Y.; Xu, J.; Liu, T.Y.; Li, H.; Huang, Y.; Hon, H.W. Adapting Ranking SVM to Document Retrieval. In Proceedings of the 29th
Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, Seattle, WA, USA, 6–11
August 2006; pp. 186–193.

7. Hofstätter, S.; Zamani, H.; Mitra, B.; Craswell, N.; Hanbury, A. Local self-attention over long text for efficient document retrieval.
In Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval, Virtual,
30–25 July 2020; pp. 2021–2024.

8. Abolghasemi, A.; Verberne, S.; Azzopardi, L. Improving BERT-based query-by-document retrieval with multi-task optimiza-
tion. In Proceedings of the European Conference on Information Retrieval, Stavanger, Norway, 10–14 April 2022; Springer:
Berlin/Heidelberg, Germany, 2022; pp. 3–12.

9. Tagami, Y.; Ono, S.; Yamamoto, K.; Tsukamoto, K.; Tajima, A. CTR Prediction for Contextual Advertising: Learning-to-rank
Approach. In Proceedings of the Seventh International Workshop on Data Mining for Online Advertising, Chicago, IL, USA, 11
August 2013; pp. 4:1–4:8.

10. Ciaramita, M.; Murdock, V.; Plachouras, V. Online Learning from Click Data for Sponsored Search. In Proceedings of the 17th
International Conference on World Wide Web, Beijing, China, 21–25 April 2008; pp. 227–236.

11. Gharibshah, Z.; Zhu, X. User response prediction in online advertising. ACM Comput. Surv. CSUR 2021, 54, 1–43. [CrossRef]
12. Pang, B.; Lee, L. Seeing Stars: Exploiting Class Relationships for Sentiment Categorization with Respect to Rating Scales. In

Proceedings of the 43rd Annual Meeting on Association for Computational Linguistics (ACL ’05), Ann Arbor, MI, USA, 25–30
June 2005; pp. 115–124.

13. Birjali, M.; Kasri, M.; Beni-Hssane, A. A comprehensive survey on sentiment analysis: Approaches, challenges and trends.
Knowl.-Based Syst. 2021, 226, 107134. [CrossRef]

14. Page, L.; Brin, S.; Motwani, R.; Winograd, T. The PageRank Citation Ranking: Bringing Order to the Web; Technical Report; Stanford
InfoLab: Stanford, CA, USA, 1999.

15. Robertson, S.; Zaragoza, H.; Taylor, M. Simple BM25 extension to multiple weighted fields. In Proceedings of the Thirteenth ACM
International Conference on Information and Knowledge Management, Washington, DC, USA, 8–13 November 2004; pp. 42–49.

16. Herbrich, R.; Graepel, T.; Obermayer, K. Support Vector Learning for Ordinal Regression; IET: London, UK, 1999.
17. Joachims, T. Optimizing search engines using clickthrough data. In Proceedings of the Eighth ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, Edmonton, AB, Canada, 23–26 July 2002; pp. 133–142.
18. Freund, Y.; Iyer, R.; Schapire, R.E.; Singer, Y. An efficient boosting algorithm for combining preferences. J. Mach. Learn. Res. 2003,

4, 933–969.
19. Cao, Z.; Qin, T.; Liu, T.Y.; Tsai, M.F.; Li, H. Learning to rank: From pairwise approach to listwise approach. In Proceedings of the

24th International Conference on Machine Learning, Corvalis, OR, USA, 20–24 June 2007; pp. 129–136.
20. Trabelsi, M.; Chen, Z.; Davison, B.D.; Heflin, J. Neural ranking models for document retrieval. Inf. Retr. J. 2021, 24, 400–444.

[CrossRef]
21. Datta, S.; Ganguly, D.; Greene, D.; Mitra, M. Deep-qpp: A pairwise interaction-based deep learning model for supervised query

performance prediction. In Proceedings of the Fifteenth ACM International Conference on Web Search and Data Mining, Virtual,
21–25 February 2022; pp. 201–209.

22. Qin, T.; Liu, T.Y.; Xu, J.; Li, H. LETOR: A benchmark collection for research on learning to rank for information retrieval. Inf. Retr.
2010, 13, 346–374. [CrossRef]

23. Clarke, C.L.; Kolla, M.; Cormack, G.V.; Vechtomova, O.; Ashkan, A.; Büttcher, S.; MacKinnon, I. Novelty and diversity in
information retrieval evaluation. In Proceedings of the 31st Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval, Singapore, 20–24 July 2008; pp. 659–666.

24. Manning, C.; Raghavan, P.; Schütze, H. Introduction to information retrieval. Nat. Lang. Eng. 2010, 16, 100–103.
25. Li, H. Learning to rank for information retrieval and natural language processing. In Synthesis Lectures on Human Language

Technologies; Morgan & Claypool Publishers: San Rafael, CA, USA, 2014; Volume 7, pp. 1–121.
26. Liang, S. Unsupervised Semantic Generative Adversarial Networks for Expert Retrieval. In Proceedings of the The World Wide

Web Conference, San Francisco, CA, USA, 13–14 May 2019; pp. 1039–1050.
27. Van Gysel, C.; de Rijke, M.; Worring, M. Unsupervised, efficient and semantic expertise retrieval. In Proceedings of the

25th International Conference on World Wide Web, Montreal, QC, Canada, 11–15 April 2016; International World Wide Web
Conferences Steering Committee: Geneva, Switzerland, 2016; pp. 1069–1079.

28. Tay, Y.; Phan, M.C.; Tuan, L.A.; Hui, S.C. Learning to rank question answer pairs with holographic dual LSTM architecture. In
Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval, Tokyo,
Japan, 7–11 August 2017; pp. 695–704.

29. Zehlike, M.; Yang, K.; Stoyanovich, J. Fairness in Ranking, Part II: Learning-to-Rank and Recommender Systems. ACM Comput.
Surv. CSUR 2022. [CrossRef]

30. Kveton, B.; Meshi, O.; Zoghi, M.; Qin, Z. On the Value of Prior in Online Learning to Rank. In Proceedings of the International
Conference on Artificial Intelligence and Statistics (PMLR), Virtual, 28–30 March 2022; pp. 6880–6892.

http://doi.org/10.1145/3446662
http://dx.doi.org/10.1016/j.knosys.2021.107134
http://dx.doi.org/10.1007/s10791-021-09398-0
http://dx.doi.org/10.1007/s10791-009-9123-y
http://dx.doi.org/10.1145/3533380

Electronics 2022, 11, 3694 24 of 25

31. Cossock, D.; Zhang, T. Statistical analysis of Bayes optimal subset ranking. IEEE Trans. Inf. Theory 2008, 54, 5140–5154. [CrossRef]
32. Li, P.; Wu, Q.; Burges, C.J. Mcrank: Learning to rank using multiple classification and gradient boosting. In Proceedings of the

Advances in Neural Information Processing Systems, Whistler, BC, Canada, 12 December 2008; pp. 897–904.
33. Xu, J.; Li, H. Adarank: A boosting algorithm for information retrieval. In Proceedings of the 30th Annual International ACM

SIGIR Conference on Research and Development in Information Retrieval, Amsterdam, The Netherlands, 23–27 July 2007;
pp. 391–398.

34. Yue, Y.; Finley, T.; Radlinski, F.; Joachims, T. A support vector method for optimizing average precision. In Proceedings of the
30th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, Amsterdam, The
Netherlands, 23–27 July 2007; pp. 271–278.

35. Tsai, M.F.; Liu, T.Y.; Qin, T.; Chen, H.H.; Ma, W.Y. FRank: A ranking method with fidelity loss. In Proceedings of the 30th Annual
International ACM SIGIR Conference on Research and Development in Information Retrieval, Amsterdam, The Netherlands,
23–27 July 2007; pp. 383–390.

36. Severyn, A.; Moschitti, A. Learning to rank short text pairs with convolutional deep neural networks. In Proceedings of the 38th
International ACM SIGIR Conference on Research and Development in Information Retrieval, Santiago, Chile, 9–13 August 2015;
pp. 373–382.

37. Wang, B.; Klabjan, D. An attention-based deep net for learning to rank. arXiv 2017, arXiv:1702.06106.
38. Song, B. Deep Neural Network for Learning to Rank Query-Text Pairs. arXiv 2018, arXiv:1802.08988.
39. Ai, Q.; Bi, K.; Guo, J.; Croft, W.B. Learning a deep listwise context model for ranking refinement. In Proceedings of the 41st

International ACM SIGIR Conference on Research & Development in Information Retrieval, Ann Arbor, MI, USA, 8–12 July 2018;
pp. 135–144.

40. Zhao, X.; Li, X.; Zhang, Z. Multimedia retrieval via deep learning to rank. IEEE Signal Process. Lett. 2015, 22, 1487–1491. [CrossRef]
41. Perozzi, B.; Al-Rfou, R.; Skiena, S. Deepwalk: Online learning of social representations. In Proceedings of the 20th ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining, New York, NY, USA, 24–27 August 2014; pp. 701–710.
42. Mikolov, T.; Chen, K.; Corrado, G.; Dean, J. Efficient estimation of word representations in vector space. arXiv 2013,

arXiv:1301.3781.
43. Shen, Y.; He, X.; Gao, J.; Deng, L.; Mesnil, G. Learning semantic representations using convolutional neural networks for web

search. In Proceedings of the 23rd International Conference on World Wide Web, Seoul, Korea, 7–11 April 2014; pp. 373–374.
44. Tang, S.; Meng, Z.; Liang, S. Dynamic Co-Embedding Model for Temporal Attributed Networks. IEEE Trans. Neural Netw. Learn.

Syst. 2022, 1–15. [CrossRef]
45. Fang, J.; Liang, S.; Meng, Z.; Zhang, Q. Gaussian process with graph convolutional kernel for relational learning. In Proceedings

of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, Virtual, 14–18 August 2021; pp. 353–363.
46. Liang, S.; Zhang, X.; Ren, Z.; Kanoulas, E. Dynamic embeddings for user profiling in twitter. In Proceedings of the 24th ACM

SIGKDD International Conference on Knowledge Discovery & Data Mining, London, UK, 19–23 August 2018; pp. 1764–1773.
47. Lai, S.; Liu, K.; He, S.; Zhao, J. How to generate a good word embedding. IEEE Intell. Syst. 2016, 31, 5–14. [CrossRef]
48. Zamani, H.; Croft, W.B. Relevance-based word embedding. In Proceedings of the 40th International ACM SIGIR Conference on

Research and Development in Information Retrieval, Tokyo, Japan, 7–11 August 2017; pp. 505–514.
49. Shen, D.; Wang, G.; Wang, W.; Min, M.R.; Su, Q.; Zhang, Y.; Li, C.; Henao, R.; Carin, L. Baseline needs more love: On simple

word-embedding-based models and associated pooling mechanisms. arXiv 2018, arXiv:1805.09843.
50. Chen, G.; Fang, J.; Meng, Z.; Zhang, Q.; Liang, S. Multi-Relational Graph Representation Learning with Bayesian Gaussian

Process Network. In Proceedings of the AAAI Conference on Artificial Intelligence, Virtual, 22 February–1 March 2022; Volume 36,
pp. 5530–5538.

51. Fang, J.; Liang, S.; Meng, Z.; De Rijke, M. Hyperspherical Variational Co-embedding for Attributed Networks. ACM Trans. Inf.
Syst. TOIS 2021, 40, 1–36. [CrossRef]

52. Fang, J.; Zhang, Q.; Meng, Z.; Liang, S. Structure-Aware Random Fourier Kernel for Graphs. Adv. Neural Inf. Process. Syst. 2021,
34, 17681–17694.

53. Liao, S.; Liang, S.; Meng, Z.; Zhang, Q. Learning dynamic embeddings for temporal knowledge graphs. In Proceedings of the
14th ACM International Conference on Web Search and Data Mining, Virtual, 8–12 March 2021; pp. 535–543.

54. Vilnis, L.; McCallum, A. Word representations via gaussian embedding. arXiv 2014, arXiv:1412.6623.
55. He, S.; Liu, K.; Ji, G.; Zhao, J. Learning to represent knowledge graphs with gaussian embedding. In Proceedings of the 24th

ACM International on Conference on Information and Knowledge Management, Melbourne, Australia, 18–23 October 2015;
pp. 623–632.

56. Ren, Z.; Jin, H.; Lin, Z.; Fang, C.; Yuille, A. Joint image-text representation by gaussian visual-semantic embedding. In Proceedings
of the 24th ACM International Conference on Multimedia, Amsterdam, The Netherlands, 15–19 October 2016; pp. 207–211.

57. Bojchevski, A.; Günnemann, S. Deep gaussian embedding of graphs: Unsupervised inductive learning via ranking. arXiv 2017,
arXiv:1707.03815.

58. Wang, M.; Smith, N.A.; Mitamura, T. What is the Jeopardy model? A quasi-synchronous grammar for QA. In Proceedings of the
2007 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning
(EMNLP-CoNLL), Prague, Czech Republic, 23–30 June 2007; pp. 22–32.

http://dx.doi.org/10.1109/TIT.2008.929939
http://dx.doi.org/10.1109/LSP.2015.2410134
http://dx.doi.org/10.1109/TNNLS.2022.3193564
http://dx.doi.org/10.1109/MIS.2016.45
http://dx.doi.org/10.1145/3478284

Electronics 2022, 11, 3694 25 of 25

59. Dos Santos, L.; Piwowarski, B.; Gallinari, P. Multilabel classification on heterogeneous graphs with gaussian embeddings. In
Proceedings of the Joint European Conference on Machine Learning and Knowledge Discovery in Databases, Riva del Garda, Italy, 19–23
September 2016; Springer: Berlin/Heidelberg, Germany, 2016; pp. 606–622.

60. Pan, Y.; Liang, S.; Ren, J.; Meng, Z.; Zhang, Q. Personalized, sequential, attentive, metric-aware product search. ACM Trans. Inf.
Syst. TOIS 2021, 40, 1–29. [CrossRef]

61. Liang, S.; Luo, Y.; Meng, Z. Profiling users for question answering communities via flow-based constrained co-embedding model.
ACM Trans. Inf. Syst. TOIS 2021, 40, 1–38. [CrossRef]

62. LeCun, Y.; Chopra, S.; Hadsell, R.; Ranzato, M.; Huang, F. A tutorial on energy-based learning. In Predicting Structured Data; MIT
Press: Cambridge, MA, USA, 2006; Volume 1.

63. Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980.
64. Chen, X.; He, B.; Sun, L. Groupwise query performance prediction with bert. In Proceedings of the European Conference on

Information Retrieval, Stavanger, Norway, 10–14 April 2022; Springer: Berlin/Heidelberg, Germany, 2022; pp. 64–74.
65. Fröbe, M.; Akiki, C.; Potthast, M.; Hagen, M. How Train-Test Leakage Affects Zero-shot Retrieval. arXiv 2022, arXiv:2206.14759.
66. Jung, E.; Choi, J.; Rhee, W. Semi-Siamese Bi-encoder Neural Ranking Model Using Lightweight Fine-Tuning. In Proceedings of

the ACM Web Conference 2022, Lyon, France, 25–29 April 2022; pp. 502–511.
67. Dai, Z.; Callan, J. Deeper text understanding for IR with contextual neural language modeling. In Proceedings of the 42nd

International ACM SIGIR Conference on Research and Development in Information Retrieval, Paris, France, 21–25 July 2019;
pp. 985–988.

68. Craswell, N.; Hawking, D. Overview of the TREC 2004 Web Track; NIST Special Publications (SP): Gaithersburg, MD, USA, 2004.
69. Hersh, W.; Buckley, C.; Leone, T.; Hickam, D. OHSUMED: An interactive retrieval evaluation and new large test collection for

research. In Proceedings of the SIGIR’94, Dublin, Ireland, 3–6 July 1994; Springer: London, UK, 1994; pp. 192–201.
70. Raman, N.; Shah, S.; Veloso, M. Structure and Semantics Preserving Document Representations. In Proceedings of the 45th

International ACM SIGIR Conference on Research and Development in Information Retrieval, Madrid, Spain, 11–15 July 2022;
pp. 780–790.

71. Kingma, D.P.; Welling, M. Auto-encoding variational bayes. arXiv 2013, arXiv:1312.6114.

http://dx.doi.org/10.1145/3473337
http://dx.doi.org/10.1145/3470565

	Introduction
	Related Work
	Learning to Rank
	Representation Learning

	Notations and Problem Formulation
	Learning to Co-Embed Queries and Documents
	Dissimilarity Metric
	Constraints
	Co-Embedding Queries and Documents

	Experimental Setup
	Research Questions
	Datasets
	Baselines
	Evaluation Metrics
	Experimental Settings

	Results
	Overall Retrieval Performance
	Impact of Embedding Dimension
	Effect of Hidden Layer

	Conclusions
	KL Divergence between Two Multivariate Gaussian Distributions
	Proof of Algorithm Convergence
	Supplement to the Measure and Loss Function
	References

