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Abstract: In the current IoT era, the key to sports intelligence is the effective collection and analysis of
sports data. Sports data can accurately reflect an athlete’s athletic status and help coaches to develop
competitive tactics and training programs. Wearable electronic devices used to collect sports data
currently have several drawbacks, including their large size, heavy weight, complex wiring, high
cost, and need for frequent power replacement. In this work, transparent polyamide-66 (PA-66) and
transparent polytetrafluoroethylene (PTFE) films were used as friction layers, polydimethylsiloxane
(PDMS) was used as a support layer, and conductive hydrogels were used as electrodes, which
were simply combined to create stable and durable triboelectric nanogenerators (SD-TENG) with
good mechanical and triboelectric properties. In the test, the output power was 1mW under a load
resistance of 10MΩ. In addition, the integrated intelligent speed skating land training assistance
system monitors the changes in the joints and joint chains of skaters during land training in real
time. The successful demonstration of the use of SD-TENG in speed skating land training will help
to promote the development and application of TENG in the fields of intelligent sport monitoring,
smart wearable devices, and big data analysis.

Keywords: intelligent sport; wearable electronic devices; triboelectric nanogenerator; sport monitoring

1. Introduction

Intelligent sport monitoring has emerged as a key area of sport monitoring in the
Internet of Things and big data era [1–8]. One purpose of this technology is to quantify
athletes’ motion behavior and kinematic patterns by utilizing wearable sensors to observe
and recognize the motion features of the human body [9–19]. The main feature of speed
skating is that its training cycle includes ice training and land training. The role of land
training is to develop general and special physical qualities and to lay the physical and
technical foundation for the training of the ice period. Therefore, the quality of land
training directly affects the ice training quality. The monitoring methods currently used for
speed skating land training are mainly based on high-speed cameras [20–23]. However,
camera systems such as high-speed cameras have many limitations in terms of their
practical applications. For example, a prototype computer vision system was designed to
monitor driving status [24], but it is expensive and complex in design and relies on external
power sources. A computer vision system with a parallel camera was designed to track
the trajectory of athletes in short-track speed skating competitions [25], but the system is
affected by its high cost, high power consumption, and high lighting requirements. A depth
camera was proposed for human position detection [26], but this camera cannot achieve the
recognition of human motion states, especially muscle and joint movements. Therefore, it
is crucial to develop a simple, economical, lightweight, and portable self-powered wearable
sensor for speed skating land training monitoring.
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In the research on new energy development, economic and sustainable green energy
has enthusiastically been adopted as a point of focus [27]. In 2012, Zhonglin Wang first
proposed the concept of triboelectric nanogenerators (TENG) [28]. TENGs have shown
many advantages, such as a low cost, easy fabrication, high power density, and a wide
range of material choices, attracting the attention of many researchers [29–32]. They can
collect and convert the low-frequency energy widely distributed in nature into electrical
energy, which is an economic, green, and sustainable source of energy supply [33–37].
For example, scholars have designed and fabricated a solution-tube-based volume-effect
nanogenerator for collecting energy from water waves [38]. Wave energy is known as
a blue energy, and scholars have designed a fully symmetric triboelectric nanogenerator
with an elliptical cylindrical structure to harvest blue energy [39]. To real-time measure
wind speed and direction in environmental monitoring, scholars have designed an all-
round wind-driven triboelectric nanogenerator [40]. In addition, TENG can be widely
used as a self-powered sensor in sport, healthcare, health monitoring, and environmental
monitoring, demonstrating an excellent sensitivity and stability [41–48]. However, there is
a gap in the research on the use of TENG sensors to monitor speed skating land training.
Therefore, in this work, we used TENG as a digital acquisition terminal and combined it
with a host information processing system to achieve real-time motion evaluation. Based
on the energy collection and self-powered sensing capabilities of the TENGs, we argue that
it provides an effective method for monitoring speed skating land training.

In numerous studies on TENG, polytetrafluoroethylene (PTFE) and polyamide (ny-
lon) have often been fabricated as friction layer materials in different ways. For exam-
ple, a TENG with a highly nanostructured rough surface was obtained using porous
PTFE membranes prepared by electrostatic spinning and polyamide-6 (PA-6) prepared
by phase transformation [49]. A superhydrophobic TENG was obtained through fabrics
with a polytetrafluoroethylene nanoparticle (PTFE NP) coating and polyamide (nylon)
fabrics [50]. A washable TENG was obtained using polytetrafluoroethylene (PTFE) fabric
and polyamide (nylon) fabric treated by the etching process [51]. Materials such as PTFE
and nylon were chemically treated, doped, or process-treated, and although the electrical
output performance of the TENG was improved, it increased the complexity and cost of
the fabrication process.

Here, we present a simple and effective design for the fabrication of stable and durable
triboelectric nanogenerators (SD-TENG) with excellent mechanical and frictional electrical
properties. SD-TENG is formed of transparent polyamide-66 (PA-66) and polytetrafluo-
roethylene (PTFE) film as the friction layer, polydimethylsiloxane (PDMS) as the support
layer, and hydrogel as the electrode. On the one hand, this simple method of producing
TENGs simplifies the tedious and complicated production process and reduces the waste
of chemical materials. On the other hand, it compensates for the defects of its high energy
consumption, non-portability, and inaccuracy during the monitoring of the movement
by the camera. The SD-TENG can be used as a biomechanical energy harvester and self-
powered sensor in kinematic analysis. The SD-TENG also has the advantages of a small
size (8 cm in length, 3 cm in width, and 0.3 cm in height), being lightweight (7.5 g), easy
fabrication, and a low cost. In addition, the choice of hydrogel as an electrode improves
the stability of the electrical output and prolongs the life of the device. Due to its excellent
performance, SD-TENG was attached to the athletes’ joints and real-time monitored the
joints and joint chains of the skaters in land training. In addition, an intelligent speed
skating land training assistance system was developed. The system used a computer to
process the real-time data generated during land training and to accurately record and
evaluate the completion of technical motions. The successful demonstration of the utility of
SD-TENG for speed skating land training can not only promote the development of TENGs
in biomechanical energy harvesting and sensing but also provide ideas for intelligent
monitoring in competitive sport, self-powered systems in wearable smart devices, and big
data analysis.
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2. Experiment
2.1. Materials

PTFE film was obtained from Taizhou Huafu Plastic Industry Co., Ltd., Taizhou, China.
The polyamide-66 (PA-66) film was obtained from Dongguan Yixuan Plastics Co., Ltd.,
Dongguan, China. N, N-dimethylformamide (DMF), deionized water, acrylamide (AM),
lithium chloride (LiCl), N0, N0-methylene diacrylamide (MBA), ammonium persulfate
(APS) and N0, N0, N0, N0-tetramethylethylenediamine (TLD) were obtained from Jintong
Loctite, Beijing, China. DOW SYLGARD 184 part A (Base) and DOW SYLGARD 184 part B
(curing agent) were purchased from Industrial Adhesives Superstore, Tianjin, China.

2.2. Fabrication of SD-TENG

The preparation of the PDMS support layer: Firstly, DOW SYLGARD 184 Part A (Base)
and DOW SYIGARD 184 Part B (Curing Agent) were thoroughly mixed in a 10:1 weight
ratio to obtain the PDMS pre-solution. Secondly, the mixed solution was poured into the
mold and heated for 20 min at 85 ◦C using a thermostatic heater. Finally, PDMS support
layers were obtained from the cured PDMS that was removed from the mold.

The preparation of hydrogel electrodes: The monomer was AM, the cross-linking
agent was MBA, the initiator was APS, and the catalyst was TMED. Firstly, deionized water
in a quantity of 40 mL was weighed and stirred at 800 rpm with a magnetic stirrer. A total
of 12 g of acrylamide powder, 14 g of lithium chloride particles, 0.003 g of ammonium
persulfate, and 0.0025 g of N0, N0-methylene diacrylamide, were weighed successively
and added to the stirred deionized water in turn and stirred until the drug particles were
completely dissolved to obtain the hydrogel pre-solution. Finally, the pre-solution was
poured into the mold and TMEDA was added to speed up the integration of the hydrogel
to create PAAM-LiCl hydrogel.

Fabrication of SD-TENG sensors: First, we cut out a PA-66 film and PTFE film of the
same size according to the size of the support layer. Secondly, the cut PA-66 film and PTFE
film were applied to the top and bottom surfaces of the PDMS support layer, respectively.
Finally, we cut two pieces of hydrogel electrode sheets of a suitable size to fit the PA-66 film
and PTFE film, respectively, and fixed them with tape at both ends of the device.

2.3. Characterization and Measurement

To simulate joint motion, the SD-TENG was mounted on a stepper motor. Different
stepping distances and frequencies of the stepper motor were established to test the perfor-
mance of the SD-TENG. The SD-TENG generated waveform signals that were recorded by
an oscilloscope (Shenzhen sto1102c, Shenzhen, China). The data transmission and recep-
tion were realized using the AD wireless transmission module (the photo and single-line
diagram of the AD wireless transmission module are shown in Figures S1 and S2). The
data processing was performed by the computer.

3. Results and Discussion

The speed skating training period differs from that of track and field sports in that
it has unique ice and non-ice training periods. In the non-ice training cycle, land-based
simulated ice training is the main focus. The efficiency of the training is determined by
whether the land training matches the ice sport technique or not. Therefore, an accurate
and reliable assessment of the stability, frequency of change, and extension of the athlete’s
joints during land-based training are required. Here, we fabricated a stable and durable
triboelectric nanogenerator (SD-TENG) through an easy method. The SD-TENG can record
the athletes’ motion data in real time and present it as an electrical signal. Based on the
output signal of the SD-TENG, the coach can adjust the technical movements of the athletes
and develop a training plan suitable for the athletes, thus scientifically and systematically
improving the efficiency of the athletes’ land training. Figure 1a demonstrates the imitation
exercise of a belt traction bend in land training, and the SD-TENG can be attached to
the ankle, knee, and hip joints of athletes. The joint movement causes the SD-TENG to
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deform, and the two friction layers generate an electrical output based on the frictional and
electrostatic induction effects. Based on this, the SD-TENG achieves biomechanical energy
harvesting and self-powered sensing. Figure 1b shows the application of SD-TENG as
an energy source and data source in smart sports training. The mechanical energy generated
by the athlete when performing the training movements is collected and converted into
electrical energy by SD-TENG, and the changes in joint status are recorded by SD-TENG.
The motion information collected and recorded by SD-TENG continuously injects new
data for the sports big data analysis, gradually realizing the intelligent development of
the information collection, transmission, and processing analysis. Figure 1c shows the
manufacturing process of SD-TENG. First, in a certain ratio, acrylamide, lithium chloride,
ammonium persulfate, and NN methylenebisacrylamide were mixed, and the drugs were
fully dissolved and poured into the mold, and rapid molding was initiated by adding
a drop of TMEDA catalyst. A hydrogel electrode with stretching capabilities was created,
and Figure S3 depicts the stretching test. Following the mixture of the PDMS solution
with a curing agent at a 10:1 weight ratio, the mixture was poured into the mold and dried
at 85 ◦C for 20 min. Finally, the polyamide-66 (PA-66) film, PDMS support layer, and
polytetrafluoroethylene (PTFE) film were stacked sequentially in the order of top, middle,
and bottom, respectively, and the top and bottom surfaces were covered with the hydrogel
electrodes to obtain the complete SD-TENG. To assess the performance of the simply
fabricated SD-TENG, a brief comparison was performed using TENGs from similar works
by other researchers (Table 1). Although the friction layer materials in these two works
were obtained in different ways, the TENGs are close in their electrical output performance.
Figure 1d shows the optical image of the complete device with good transparency. Figure 1e
demonstrates the soft bendability of the device, showing that the device is comfortable
when attached to the joint and avoids interference with normal training.
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Figure 1. Application scenarios and production process of SD-TENG. (a) Application of SD-TENG
in speed skating land training. (b) Application of SD-TENG in smart sports monitoring. (c) The
fabrication process of SD-TENG. (d) The optical photograph of SD-TENG. (e) The photograph of
SD-TENG’s flexible display.
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Table 1. Comparison of friction layer materials.

Mode Materials Frictional Contact
Area (cm2)

Open Circuit Voltage
at 2.4 Hz (V) V/cm2

This work Contact separation
mode

PA-66(Nylon)
film/PTFE film 6 × 1.5 64 7.1

Other work [51] Contact separation
mode

Nylon fabric/
PTFE fabric 5 × 5 190 7.6

A diagram of SD-TENG’s working mechanism can be found in Figure 2a. When
SD-TENG is fully squeezed by an external force, PA-66 is in complete contact with PTFE,
and charge transfer occurs at the interface between PA-66 and PTFE due to their different
electronegativities (Figure 2(aI)). Since the surface electron affinity of PTFE is higher than
that of PA-66, electrons are transferred from the PA-66 surface to the PTFE surface, present-
ing PA-66 with a positive charge and PTFE with an equal amount of negative charge. When
the external pressure disappears, PA-66 and PTFE gradually separate, and electrons are
transferred from the bottom electrode to the top electrode through an external circuit under
the action of electrostatic force (Figure 2(aII)). When the pressure disappears completely, as
shown in Figure 2(aIII), SD-TENG reaches the equilibrium state, and no further transfer of
electrons occurs. When the external pressure is reapplied, electrons are transferred from
the top electrode to the bottom electrode through the external circuit due to the electrostatic
force (Figure 2(aIV)). When full contact is made again, the two friction layer charges are
balanced again, and one cycle is completed. Thus, an alternating current is generated when
the PA-66 film is periodically separated from the PTFE film. As shown in Figure 2b, the
potential distributions of the four operating states of SD-TENG are simulated accordingly
using COMSOL. In Figure 2c, the voltage signal for the SD-TENG switch polarity test
is demonstrated. Different voltage waveforms are generated by pressing and releasing
the SD-TENG in the forward and reverse states, which indicates that the voltage signal
originates from the sensor rather than the measurement system. Based on this unique
periodic operating mechanism of SD-TENG and the periodic characteristics exhibited by
the motion match, it can effectively be applied to the monitoring of various motions.

The human body has a complex motion system, but the most basic form of motion is
the rotation of the skeleton around a joint through the power provided by the muscles. The
cooperation of bones and muscles produces a variety of motion forms, and the SD-TENG,
as a sensor for monitoring motion, needs to ensure that the sensor can meet the needs
of various movements. A preliminary test of the SD-TENG’s electrical performance was
conducted before it was put to practical use. As shown in Figure 3, we fixed the SD-TENG,
with a size of 8 × 3 cm and a friction contact area of 6 × 1.5 cm2, to a stepper motor and
simulated the joint motion process using the stepper motor. Figure 3a shows the output
voltage of the SD-TENG for the same bending angle, the same force, and different frequency
conditions. The output voltage of the SD-TENG remained consistent at 64 V under low-
frequency (1 Hz, 2 Hz, 3 Hz, and 4 Hz) conditions. The reason for the consistent output
voltage is that the low frequency does not lead to the accumulation of triboelectric charges.
It also indicates that the SD-TENG has the stability required to monitor low-frequency
motions. The SD-TENG output current is shown in Figure S4. The output current was
maintained at 5 µA at low frequencies (1 Hz, 2 Hz, 3 Hz, and 4 Hz) and a 2 MΩ load,
which indicates that the SD-TENG also has current output stability. For speed skating
land training, the fast and variable joint angles require a device with stable output for
monitoring, and the SD-TENG can well meet the needs of land training monitoring. SD-
TENG’s responses at different frequencies are shown in Figure 3b, and they were derived
using the following equation:

R% =

∣∣∣∣V0 − Vi
Vi

∣∣∣∣× 100% (1)
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Figure 2. The SD-TENG mechanism. (a) Schematics of the operating principle of the SD-TENG.
(b) COMSOL simulations were performed to clarify SD-TENG’s working principle. (c) Switching
polarity test of SD-TENG.

Here, V0 and Vi are the output voltages at a frequency of 1 Hz and at another frequency
of Hz, respectively. When the frequency is 1, 2, 3, and 4 Hz, the response of SD-TENG is
0, 0, 0, and 0%, respectively. Similarly, the current responses of the SD-TENG were tested
at low frequencies (1 Hz, 2 Hz, 3 Hz, and 4 Hz) and at 2 MΩ loads, with a response of 0%
(Supplementary Information Figure S5). These data indicate that the SD-TENG has superb
stability for human joint motion monitoring. The SD-TENG can sensitively and accurately
monitor the changes in human joint motion during a fast-paced speed skating event with
frequent changes in the joint angles. Figure 3c shows the output voltage at different bending
angles with the same frequency (4Hz). When the bending angle is 4.05◦, 6.08◦, 8.12◦, and
10.17◦, the frictional electric output voltage is 21, 26, 36, and 43 volts, respectively. The
output current of the SD-TENG was measured immediately after adding a 2 MΩ load
under the same conditions, as shown in Figure S6. SD-TENG can accurately calculate the
change in the angle by the change in the output voltage, through which coaches can finely
grasp the change in the angle of each joint of the athlete’s body. The linear relationship
between the bending angle and output voltage of SD-TENG is shown in Figure 3d. The
formula is:

V ≈ 5.02 + 3.72 × degree (2)
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Figure 3. The electrical output performance of SD-TENG. (a) Relationship between the frequency
and output voltage of SD-TENG for the same bending angle. (b) The voltage responses of SD-TENG
at different frequencies. (c) Relationship between the angle and output voltage of SD-TENG at the
same frequency. (d) Linear fit between the output voltage and bending angle of SD-TENG at the same
frequency. (e) The voltage and power of SD-TENG under different load resistances. (f) The SD-TENG
charging the 2.2 µF, 4.7 µF, 10 µF and 22 µF capacitors. (g) The test of the SD-TENG response to force.
(h) The stability test of SD-TENG. (i) Details of the stability test.

In this study, the angle and voltage are significantly correlated with each other, as
indicated by their Pearson correlation coefficient of 0.99293. A comparison of SD-TENG’s
output voltage and output power with different load resistances is shown in Figure 3e. It
can be seen from Figure 3e that the output voltage increases as the load resistance increases,
and the power of SD-TENG has a maximum value of 1.004 mW at the load resistance of
10 MΩ; thus, it is known that the resistance of SD-TENG is 10 MΩ. SD-TENG’s power
density can be calculated as 0.112 mW/cm2 due to the 9 cm2 contact area of the frictional
electrical parts. Figure 3f shows the SD-TENG charging its different capacitors. When the
frequency is 4 Hz, the SD-TENG charges the 2.2 µF, 4.7 µF, 10 µF, and 22 µF capacitors for
140 s to 2.31 V, 2.18 V, 1.45 V, and 1.02 V, respectively. By converting the mechanical energy
of human movement into electrical energy, SD-TENG can be used both as a sensor and as
an energy collector. To explore the effect of temperature on the SD-TENG, we conducted
a thermal stability test, as shown in Figure S7. The average output voltages were 64.4 V,
66.4 V, 66.4 V, and 68.8 V. The human skin temperature is always maintained at 36–37 ◦C,
and the SD-TENG, as a sensor attached to the human skin, shows an excellent thermal
stability. Figure 3g shows the response of the SD-TENG to the force. When the force was
15 N, 20.1 N, 26.8 N, and 35.35 N, the output voltage of SD-TENG was 16.8 V, 24.4 V, 30.8 V,
and 39.6 V, respectively. The relationship between the output voltage and force is shown
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in Figure S8. When the bending angle was certain, the output voltage increased with the
increase in the force. This characteristic can accurately reflect the change om the athlete’s
force in speed skating land training. Figure 3h shows the stability test of the SD-TENG.
After 700 s of the stability test, the SD-TENG still maintained a stable output, which can
ensure the continuous and uninterrupted monitoring of athletes in long-distance speed
skating programs. Figure 3i is a detailed schematic of the stability test, showing that the
sensor is stable in long-term operation and guarantees the accuracy of the data transmission.
In addition to stability, the durability of the device over a long period of time determines
the service life, and for this reason, we tested the durability of the device. In Figure S9,
the durability test of SD-TENG is demonstrated. At the same frequency and angle, the
output voltage of SD-TENG was reduced from 90 V to 77 V after 30 days. The reason for
the reduction in the output voltage may be due to the water loss of the hydrogel electrode.
Although there is a reduction in the voltage output, the reduced output voltage still meets
the needs of our work.

SD-TENG can be used both as a sensor for monitoring changes in human joints and
as an energy harvesting device. The conversion and storage of mechanical energy into
electrical energy can be used for selective utilization, thus further improving the efficiency
of the SD-TENG. The SD-TENG equivalent circuit diagram is shown in Figure 4a and
includes a capacitor, a bridge, and a load. The SD-TENG can switch between the charging
and discharging modes. As shown in Figure 4b, the electrical energy generated by a simple
tap of the SD-TENG can easily light up 124 LEDs (Supplementary Video S1), which further
demonstrates that the SD-TENG can convert mechanical energy into electrical energy
to continuously power the device. Furthermore, we investigated the energy conversion
efficiency of the SD-TENG. Energy conversion efficiency is defined as the ratio of the
available energy output from an energy conversion device relative to its input energy. The
energy conversion efficiency equation is as follows:

η =
Eele

Wtotal
× 100% =

∫
I2Rdt
Ek

× 100% (3)

where Eele and Wtotal are the electrical energy transferred to the load and the total energy
acting on the sensor, respectively, and Ek is the kinetic energy of the mechanical rod arm.
Eele at a load of 10 MΩ is demonstrated in Figure S10. The energy conversion efficiency
is calculated to be 0.078% using the equation. Figure 4c,d shows the actual charging and
discharging of a calculator and an electronic watch, respectively (Supplementary Video S2).
First, one taps the SD-TENG to charge the capacitor for a period of time and then turns on
the switch to power the calculator and the electronic watch. As shown in Figure 4c,d, the
electronic calculator and the watch successfully lit up in the tests. These demonstrations all
show that SD-TENG has great potential for sustainable clean energy applications.

Speed skating land exercise, also known as land imitation exercise, is an indispensable
basic exercise method. Reasonable and effective land exercises can not only lay a good
foundation for athletes but also improve the physical qualities related to speed skating.
In the training process, according to the technical characteristics of the ice and target
muscle groups to be trained, land training movements are designed. Examples include
the performance side stirrups and bent knee walk exercises in straight road land training
and belt traction bend imitation exercises in road bend training. In this work, our main
focus was the monitoring of side stirrup training and belt traction training in land training.
Figure 5a shows the output voltage of the knee flexion during the side stirrup exercise
performed by two athletes. By comparing the output voltage plots of the two athletes, it can
be seen that the output voltage curve of Athlete 1 is smoother than the output voltage curve
of Athlete 2. The smoother the curve is, the better the stability of the athlete’s knee joint is.
In the high-speed gliding state, the knee joint stabilization ensures a low center of gravity
of the body, which contributes to the reduction in wind resistance. Figure 5b shows the
output voltage of the ankle joint angle change during the side stirrup exercise performed
by the two athletes. By comparing the output voltage graphs of the two athletes, it can be
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seen that the low peak of the output voltage curve of Athlete 1 is in front of the high peak.
This is caused by a different movement of the ankle joint. In speed skating ice training,
when an athlete wearing a skate completes a side stirrup movement, the side stirrup foot is
stretched out in parallel until the knee is fully extended. Afterward, due to the fact that
the blade of the clap ice skate can be separated from the heel of the skate, the athlete’s side
stirrup foot undergoes a plantarflexion process, in which the athlete can obtain a continuous
propulsive force. The output voltage graph for Athlete 2 has a low peak in front of the high
peak, indicating that Athlete 2 has plantarflexion of the skating foot before the knee joint is
fully extended. The intuitive impact of this occurrence on the ice is poor skating and a slow
speed improvement. Assistance simulation training occupies an important place in sports
training, as it can help athletes to master the technical movements by reducing the difficulty
of the sport, and help them the motor skills to develop from the generalization stage to
the automation stage. Figure 5c shows the voltage output of the knee joint bending angle
change during the belt traction imitation exercise for the two athletes. Athletes require
great leg strength to overcome the centrifugal forces during cornering on ice. Thus, the
more explosive the athlete’s legs are, the faster the rate of the knee stirrups and extensions
will be, demonstrating fast and stable cornering during the sport. Therefore, it is necessary
to monitor the changes in the size and frequency of the knee joint angle during belt traction
training. From Figure 5c, it can be seen that Athlete 1 completed the movement more times
and with a greater amplitude than Athlete 2 in the same timeframe, indicating that Athlete
1 completed the bending simulation training with a fast frequency and full extension
of the knee joint. Athlete 2 was slightly worse than Athlete 1. Therefore, the strength
training of the leg muscles and ankle spreader muscles should be strengthened during the
training. Figure 5d shows the operation mode of the SD-TENG-based wireless intelligent
land-assisted training system. In land training, the SD-TENG is attached to the ankle and
knee joints of the athlete, and the device detects and collects motion data when the angles
of the ankle and knee joints change. The acquired motion data are transmitted wirelessly
through the system’s transmitter to the data receiver and processed by the computer in
real time, and finally, the athletes’ movement performance quality is rated in real time in
the form of a visual interface (Supplementary Video S3). The combination of SD-TENG as
a data source and the wireless intelligent land-assisted training system provides a reliable
guarantee of the quality of speed skating land training.
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4. Conclusions

In summary, the SD-TENG self-powered sensor designed in this study provides
a simple and easy method for the land-assisted training monitoring of speed skaters. It
uses transparent polyamide-66 (PA-66) and polytetrafluoroethylene (PTFE) films as the
friction layer, flexible polydimethylsiloxane (PDMS) as the support layer, and conductive
hydrogel as the electrode. Due to its excellent performance, SD-TENG can be applied to
the ankle, knee, and hip joints of athletes. The joint movement causes the SD-TENG to
deform, and the two friction layers generate electrical outputs based on the frictional and
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electrostatic induction effects, which finally realizes the real-time monitoring of the joints
and joint chains of the skaters in land training. SD-TENG can be used as a data source
to collect real-time data generated during land training, which is then inputted into the
intelligent speed skating land training assistance system for data processing to accurately
record and evaluate the completion of technical movements and, finally, to display the
evaluation results on the terminal device. The evaluation results help coaches and athletes
to understand the quality of movement techniques in real time so that they can improve the
movements over time. This research opens up greater possibilities for sustainable energy
collection and storage devices and the development of intelligent wearable devices. At the
same time, the digitization of sports training is of great importance for the development
of sports.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/electronics11223717/s1, Figure S1. AD wireless transmission
module. Figure S2. The single-line diagram of the AD wireless transmission module. Figure S3.
Hydrogel electrode stretchability test. Figure S4. SD-TENG output current at the same angle with
different frequencies when the external load is 2 MΩ. Figure S5. The current and response of SD-
TENG at different frequencies. Figure S6. SD-TENG output current at the same frequency with
different angles when the external load is 2MΩ. Figure S7. Thermal stability test of SD-TENG.
Figure S8. The relationship diagram between the output voltage and force of SD-TENG. Figure S9.
The durability test of the SD-TENG. Figure S10. The output current of SD-TENG with a load resistance
of 10 MΩ. Video S1: The SD-TENG spotlight test; Video S2: The SD-TENG charges the electronic
calculator and electronic watch; Video S3: Display of the speed skating land training real-time training
assistance system.
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