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Abstract: This paper reviews a series of fast direct solution methods for electromagnetic scattering
analysis, aiming to significantly alleviate the problems of slow or even non-convergence of iterative
solvers and to provide a fast and robust numerical solution for integral equations. Then the advan-
tages and applications of fast direct solution methods and the research trends are introduced in detail.
Three different main methods are discussed, namely hierarchically off-diagonal low-rank matrices
(HODLR) and skeletonization direct methods based on weak and strong admissibility condition.
Numerical examples of computational complexity and electromagnetic scattering analysis of jet
models are presented to demonstrate the efficiency and accuracy of each approach. Finally, a brief
discussion is given on the main challenges and possible strategies of fast direct solution methods
which still exist.

Keywords: integral equation; direct solver; skeletonization

1. Introduction

In the community of computational electromagnetic methods (CEM), surface integral
equations (SIEs) have proven to be one of the powerful methods to analyze electromagnetic
scattering and radiation problems, which is derived from surface equivalence principle.
To numerically solve SIEs, the state-of-the-art Method of Moment (MoM) is typically
used. Since the unknowns used to approximate the surface equivalence current are only
distributed on the surface of the object, this can bring a lot of conveniences to discretization.
To the solution of the dense matrix system of MoM, iterative methods based on Krylov
subspace such as the generalized minimum residual (GMRES) and the conjugate gradient
(CG) algorithms are applicable. The bottleneck arises due to the fact of the computational
complexity and memory cost scale, as O

(
N2
)

or O
(

N3
)

, where N is the number of
unknowns. Therefore, it becomes prohibitive for large-scale modeling.

The emergence of many fast algorithms enable MoM to be used to solve real-world
electromagnetic applications. Generally, these algorithms can be divided into two cate-
gories. The first are dependent on the kernel function of the problems of interest, namely
Green’s functions. The representative methods include the multilevel fast multipole algo-
rithm (MLFMA) [1] and the fast Fourier transform (FFT) based method [2,3]. For instance,
the MLFMA exploits the analytical harmonic expansion of Green’s function and addition
theorem, which can achieve O(NlogN) storage complexity and O(NlogN) computational
complexity per matrix-vector multiplication for 3D PEC electromagnetic scattering prob-
lems. The FFT-based methods leverage the translation invariance property of the kernel
function which can reduce memory requirement and CPU time complexity with O

(
N1.5

)
and O

(
N1.5logN

)
for 3D problems, respectively. The second are purely algebraic methods

Electronics 2022, 11, 3753. https://doi.org/10.3390/electronics11223753 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics11223753
https://doi.org/10.3390/electronics11223753
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://doi.org/10.3390/electronics11223753
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics11223753?type=check_update&version=1


Electronics 2022, 11, 3753 2 of 11

that are kernel independent. These methods approximate some sub-blocks, with rank
deficiency of the dense matrix, by low-rank algorithms such as the adaptive cross ap-
proximation (ACA) [4,5] and the multilevel matrix decomposition algorithm (MLMDA).
Li et al. have provided an ample review on the low-rank algorithms for solving multi-scale
problems in the electromagnetic field [6]. However, these fast algorithms based on iterative
approaches always suffer from convergence issues, especially in the solution of multi-scale
problems. Most of the iterative approaches are sensitive to the condition number of matrix
systems and the number of iterations required to achieve a desired accuracy is highly
problem-dependent. Although preconditioner techniques and domain decomposition
methods (DDM) have been developed to cure a large majority of such problems, the con-
vergence is still unpredictable. On the other hand, iterative solvers prove ineffective in
solving multiple right-hand sides problems.

Recent exploration of fast direct solvers for integral equations can overcome the
aforementioned deficiencies. The earliest research in the electromagnetic community can
be traced back to the IES3 algorithm proposed by Kapur and Long for the solution of the
extraction of integral circuit structures [7]. At the same time, Michielssen and Boag also
proposed a direct solution method for 2-dimensional slender smooth scatterers [8,9]. The
compressed block decomposition (CBD) algorithm is presented by Herdring et al. for
direct capacitance extraction with the help of the matrix decomposition algorithm and SVD
technique [10]. A local-global solution (LOGOS) method was proposed to provide a useful
strategy for modular electromagnetic analysis on large domains [11]. A fast multilevel
direct solver based on a non-uniform sampling grid approach for electromagnetic scattering
from a quasi-planar object is reported in [12]. Recently, it has been found that the multilevel
nonuniform grid (MLNG) approach can be used for direct inversion of the electrical field
integral equation (EFIE) [13]. In addition, a great deal of effort in applied mathematics
has been devoted to the direct solution methods [14–22], which has also greatly inspired
related research in the field of electromagnetics, such as the work of Greengard et al. It
is well known that H-matrix is the most general class of hierarchical matrices, originally
proposed by Grasedyck and Hackbusch [23,24]. In the structure of the H-matrix, the
interaction between nearby groups is full-rank while the interaction between well-separated
groups can be efficiently compressed as a low-rank format. This is based on the strong
admissibility criterion. When the H-matrix is applied to discrete integral equations, it
needs to satisfy the condition of the smoothing of the integral kernel. For the integral
equations of an electromagnetic field, due to the oscillatory nature of its integral kernel,
the H-matrix method can only be applied to the propagation, radiation and scattering
problems in the mid-low frequency range. When the H-matrix is applied to high-frequency
problems, it cannot achieve the acceleration effect of reducing storage and computational
complexity [25]. In fact, any algebraically fast algorithms based on low rank compression
are hard to speed up high-frequency problems. Because the rank of a matrix block is
not a constant in a high frequency scenario, it is proportional to the dimension of the
matrix block. Jiao completed some representative work [26–28] by applying the direct
solution methods based on H-matrices and an advanced version of H2-matrices. In [29], an
H-matrix-based direct solver is used to accelerate the solution of the partial modification
problem. The authors extend the direct solver based on skeletonization to solve SIEs for
3-D electrodynamic applications [30,31]. Guo et al. also analyzed and compared two direct
methods of multi-level block inversion and multi-level LU decomposition [32]. Recently,
Guo et al. have demonstrated a fast direct solver based on the butterfly method and
randomized compression technique to achieve O

(
Nlog2N

)
CPU complexity and storage

when applied to SIE solution of 3D PEC scattering problems. Furthermore, the butterfly
method enhanced by the MPI-OpenMP parallel technique successfully solved irregular
PEC target scattering problems with more than 10 million unknowns [33]. Fast direct
solutions based on SIEs have also been developed for the simulation of penetrable objects.
In [34], a quasi-block-Cholesky (QBC) algorithm exploring the checker-board symmetry
pattern of the Poggio-Miller-Chang-Harrington-Wu-Tsai (PMCHWT) impedance matrix
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was proposed to simulate human models. Recently, it has been reported that the multilevel
matrix decomposition algorithm (MLMDA) based on the butterfly scheme [35] was also
applied to homogeneous penetrable objects. The above investigation shows that the fast
direct solution algorithm has always been a research hotspot in the field of computational
electromagnetic fields. In this review, we will focus on our recent contributions in this area,
which are based on three kinds of matrix structures, namely hierarchical off-diagonal low
rank (HODLR), hierarchically semiseparable (HSS) matrix and H2-matrix.

The remainder of the paper is organized as follows: in Section 2, the boundary value
problem of PEC is formulated. A fast direct solver based on modified hierarchical off-
diagonal low rank method (HODLR) is introduced in Section 3. Two kinds of direct solvers
based on skeletonization factorization are illustrated in Section 4. Finally, a brief conclusion
is given in Section 5.

2. Boundary Value Problem Statement

Consider electromagnetic scattering from an arbitrarily three-dimension (3-D) perfect
electrically conducting (PEC) object Ω. Time-harmonic electromagnetic fields

(
Einc, Hinc

)
impinge on the surface of object ∂Ω Then, the well-known electric field integral equation
(EFIE) and magnetic field integral equation (MFIE) can be given by

− ikη
x

∂Ω

(
J(r′) +

1
k2∇

(
∇·J(r′)

))
G
(
r, r′
)
dr′ = Einc(r) (1)

1
2

J(r′)− ^
n× P.V.

x

∂Ω

J(r′)×∇G
(
r, r′
)
=

^
n×Hinc(r) (2)

where J(r) denotes the induced surface current.
^
n is the outward unit normal to the surface

of the object ∂Ω. G(r, r′) is Green’s function in 3-D free space, P.V. denotes Cauchy principal
value integration, k denotes the wavenumber and η denotes the intrinsic impedance.

Usually, the combined field integral equation (CFIE) is employed to avoid internal
resonances, which is the linear combination of EFIE and MFIE that is given by

CFIE = αEFIE+(1 − α)ηMFIE 0 ≤ α ≤ 1 (3)

where α is combination factor.
For the numerical solution of CFIE, the induced surface current J(r) is expanded in a

series of N basis functions:

J(r) =
N

∑
n=1

Infn(r) (4)

where In denotes the expansion coefficients of surface electric current and fn denotes Rao-
Wilton-Glisson (RWG) basis function [36]. After the discretization and Galerkin testing, a
N×N linear dense system of CFIE is obtained.

Z·I = V (5)

We know that the solution of matrix Equation (5) via traditional direct methods such
as Gaussian elimination or LU factorization is prohibitively expensive since the CPU and
memory resources of these methods scale as O

(
N3
)

and O
(

N2
)

, respectively. In the
following sections, three kinds of fast direct solution of Equation (5) are introduced.

3. A Fast Direct Solver Based on Hierarchical Off-Diagonal Low Rank Method (HODLR)

Recently, a modified HODLR structure has been proposed to improve the capability
of solving EM scattering problems [37]. The HODLR matrix structure is one special type of
the H-matrix, in which all the off-diagonal matrices are compressed by low rank algorithms.
Based on the idea, the original matrix can be factorized into the multiplication of several
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block diagonal matrices. Finally, the Sherman–Morrison–Woodbury (SMW) formula [38]
can be adopted to efficiently achieve the inverse of the block diagonal matrices.

Usually, the HODLR structure is constructed in the framework of a multilevel binary
tree. The total basis functions are first decomposed into two groups, each containing half
the total bases. If this kind of decomposition repeats L− 1 times and the finest-level groups
involve no more than nmin, a L-level binary tree will be constructed. For the group i and
group j at a certain level l, the off-diagonal dense matrices Zij can be sparsely represented
by low-rank compression methods, while the diagonal matrices should be further split
into four smaller submatrices in the next level L + 1. The process is performed L− 1 times
when all off-diagonal dense matrices are compressed by low-rank methods, while diagonal
matrices at the finest level L are computed with MoM directly. Hence, the HODLR matrix
with L levels can be factorized:

Z =



[
Z(L)

11 U(L)
12 V(L)

12

U(L)
21 V(L)

21 Z(L)
22

]
U(L−1)

12 V(L−1)
12 · · ·

U(L−1)
21 V(L−1)

21

[
Z(L)

33 U(L)
34 V(L)

34

U(L)
43 V(L)

43 Z(L)
44

]
· · ·

...
...

. . .


(6)

where, the superscripts denote the level and the subscripts denote the groups at the same
level. The graphical representation of the three-level HODLR structure is shown in Figure 1.
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Next, Z can be cast into the multiplication of several diagonal block matrices after
decomposition and compression, as shown in Figure 1. Mathematically, the HODLR
structure can be factorized as

Z =
¯
ZL

¯
ZL−1 · · ·

¯
Z1

¯
Z0 (7)

¯
ZL denotes the diagonal block matrix at the finest level, which is the original full rank

matrix. The i-th diagonal blocks of
¯
Z1(l = 0, 1, . . . L− 1) can be written as the following

general form:

¯
Z
(l)

ii =

 I
~
U
(l+1)

2i−1,2iV
(l+1)
2i−1,2i

~
U
(l+1)

2i,2i−1V(l+1)
2i,2i−1 I

 = I +
~
U
(l)

ii
~
V
(l)

ii (8)

Then, the inverse of Equation (8) can be easily obtained by the SMW formula:(
¯
Z
(l)

ii

)−1

= I−
~
U
(l)

ii

(
S(l)

ii

)−1 ~
V
(l)

ii (9)

where

S(l)
ii = I +

~
V
(l)

ii
~
U
(l)

ii (10)
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Therefore, the solution of the matrix equation can be obtained:

I =
(

¯
Z0

)−1(¯
Z1

)−1

· · ·
(

¯
ZL−1

)−1(¯
ZL

)−1

V (11)

However, in the traditional HODLR structure, all off-diagonal matrices are simply com-
pressed by low-rank approximation techniques. If two sets of bases are not far enough, the
corresponding interaction matrix does not have the low-rank property and the rank remains
large after the compression. In addition, the dimensions of off-diagonal matrices might be
large, so the direct and simple processing in this traditional method is very inefficient or
even impractical.

In [37], instead of applying the low rank compression method to the off-diagonal block
matrices directly, the modified technique subdivides the original large off-diagonal blocks
into smaller ones. This subdivision process is determined by the extended admissibility
condition (EAC). Compared with the admissibility condition, such an approach can further
reduce the ranks of off-diagonal blocks. The computational resource can be reduced in
terms of both computational cost and memory storage cost.

Firstly, we consider a PEC sphere (r = 1.0 m) to demonstrate the complexity of both
computational time and storage cost [37]. With the increasing of the frequency of the plane
wave from 0.6 GHz to 3.0 GHz, the number of unknowns is varied from 18,252 to 458,901.
The tolerance of ACA and SVD is fixed at 0.001 in this example. Figure 2a shows that the
modified solver and the conventional solver have a complexity of O

(
N1.5

)
and O

(
N2
)

in

terms of matrix assembly, while the complexity of factorization and storage are O
(

N2
)

and O
(

N1.5
)

for both solvers as shown in Figure 2b,c. However, we can see that the cost of
factorization and the memory is less due to the smaller rank of the modified solver. The
efficiency can be improved significantly by the modified solver.
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To show the accuracy of the modified HODLR method, a PEC sphere with radius
r = 3.0λ is considered, which is discretized into 37,647 RWGs and an 8-level matrix structure
is constructed. The results of the proposed method are compared with those of the Mie
series. It is shown that a good agreement is achieved in Figure 3.
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4. Skeletonization-Based Direct Solvers

Recently, the skeletonization-based fast methods [15–17] have attracted much attention
in the area of CEM. The matrix structures of these solvers are based on weak admissibility
condition, which is similar to the hierarchically semiseparable (HSS) [16] matrix. The basic
idea behind skeletonization is that the interactions between well-separated groups are
calculated by dominant bases named skeletons, which are selected via the interpolative
decomposition (ID) [39]. After obtaining the hierarchical low-rank representation, the
inverse of the system matrix can be performed recursively [17].

Skeletonization factorization begins with building a multilevel structure with octree
technique. Here, we assume that the off-diagonal matrix Zij represents interaction between
groups i and j, which is of low rank property and compressed by ID:

Zij = LiSijRj (12)
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where, Li and Rj denote the projection matrices associating with i and j. Sij is the subset of
Zij, which physically means the skeleton interaction matrix between groups i and j. The
explicit expression of Li can be written as:

Li = Pi

(
I, TT

i

)T
(13)

Pi is the permutation matrix. Ti is the interpolation matrix related to the skeleton and
redundant basis functions.

How to efficiently extract the skeleton bases of one group and its projection matrix
is the key to the method. One should regroup all interaction matrices associated with the
chosen group into a new matrix. However, the size of such a matrix is too large, so it
would be costly to construct such a dense matrix. To cut down the high cost of constructing
the matrix, a proxy surface approach based on Huygens’ principle is generally used. The
interactions among the chosen group and the groups outside the proxy surface can be
replaced with the interactions between the chosen group and the proxy surface. In this way,
skeletons of the chosen group can be efficiently extracted by the combination of neighboring
interaction matrices and proxy interaction matrices, i.e.,

Zi =
(

Zi,nb, Zi,s, ZT
nb,i, ZT

s,i

)
(14)

The size of Zi can be shrunk from 2(N− ni) × ni to ni × 2
(
nnb

i +2ns
i
)
, ns

i is the number
of sample points on the proxy surface and nnb

i is the number of basis functions in the
neighboring groups of the chosen group i.

After off-diagonal blocks have been compressed, the original impedance matrix Z can
be represented as:

Z = D+LSR (15)

Then, the inverse of Z can be written as:

Z−1 =
~
D+

~
L(E + S)−1 ~

R (16)

In [40], we developed a fast direct solver based on recursive skeletonization factoriza-
tion (RSF) [41], based in turn on weak admissibility condition. To accelerate the procedure
of skeletonization, a novel skeletonization strategy is proposed. Firstly, a series of equiva-
lence points are generated on the sphere proxy surface. Two constant vector basis functions
are defined on each point with θ̂ and ϕ̂ components, which represent electric and magnetic
currents on the proxy surface. In terms of Huygens’ principle, the interactions between the
group and its far field can be expressed by the interactions between the group and these
sampled points. Compared with the conventional method, these points can be uniformly
distributed on the proxy surface. For example, in our empirical and numerically test, the
sample number P can be defined as P = max

{(
kri
3 + 3

)
, 5
}

, which increases proportionally
with the radius of proxy sphere. Besides, the skeletons in the selected neighboring groups
are further used to reduce the number of basis functions of the neighboring groups, since
they are dominant bases that can represent the interactions of both near-field and far-field.
Finally, the size of proxy matrix is further shrunk and the cost of implementation would be
reduced.

Once the skeletonization factorization has been performed level by level and all rele-
vant matrices in each group have been obtained, the RSF can be applied to the compressed
form of Z in Equation (5).

Z =
~
VL . . .

~
V1Z0

~
W1 . . .

~
WL (17)
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Finally, the solution of Equation (17) can be obtained by a series of matrix-vector
multiplications:

I = Z−1V =

(
~

WL

)−1
. . .
(

~
W1

)−1

(Z0)
−1
( ~

V1

)−1
. . .
( ~

VL

)−1
V (18)

The inverse of
~
V1 and

~
W1 can be directly obtained during the skeletonization and only

the diagonal matrix Z0 needs to be inverted by LU decomposition, which implementation
is detailed in [40].

In order to demonstrate the computational complexity and storage requirement of the
proposed skeletonization method, a radius r = 2.0 m PEC sphere is analyzed in [40]. The
frequency of incident plane wave is set to 300 MHz, 600 MHz, 1200 MHz and 2400 MHz.
Mesh size is fixed at 0.1λ. In Figure 4, it is validated that the skeletonization factorization
time and memory costs scale with O

(
N1.8

)
and O

(
N1.3

)
, respectively.
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The aforementioned skeletonization factorization is based on weak admissibility
(WASF). The main process is that all interactions involving far-field interactions and neigh-
boring interactions contributed from redundant bases are decoupled, so zero matrices
are introduced in the relevant blocks, while all dominating interactions between skele-
tons remain and will be further aggregated into a coarser level for further factorization.
Consequently, a series of block diagonal matrices is used to achieve the multiplicative
decomposition representation of the original system matrix. The inverse can be solved
easily. However, since neighboring interactions need to be assembled in advance in the
skeletonization factorization and the resultant ranks remain large, it requires much memory
and time consumption for multilevel compression.
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Therefore, we further proposed the skeletonization factorization based on strong
admissibility condition (SASF) [42,43]. Only the far-field interactions are compressed
instead of both the far-field and neighboring interactions. Similarly, the proxy surface
method based on Huygens’ surface is used. The data structure built in SASF is similar to
MLFMA, which is a kind of H2-matrix. Subsequently, the inverse of system matrix can be
also obtained by the recursive skeletonization factorization.

In [42], we demonstrated that the complexity of computational time and memory
costs of SASF solver are with O

(
N1.5

)
and O(NlogN) for electrically moderate problems,

respectively. In order to compare with the accuracy of the two kinds of direct solvers
based on skeletonization, a model with length 1.75 m, width 0.9 m and height 0.2 m is
investigated, as shown in Figure 5. The plane wave at 3.0 GHz is illuminated from the
nose of the model with z-direction polarization. The mesh size is 0.1λ and 65,814 RWGs
are needed. Here, ID tolerance of both WASF and SASF is set as 0.001. In Figure 5, the
Monostatic RCS results in x-y plane are compared among SASF, WASF and MLFMA. They
agree with each other very well.

Electronics 2022, 11, x FOR PEER REVIEW 10 of 12 
 

 

 
Figure 5. Monostatic RCS (HH-polarized) of the model at 3.0 GHz. 

5. Conclusions 
In this paper, three kinds of fast direct solution algorithms are investigated to solve 

surface integral equations for 3-D electromagnetic wave scattering from PEC targets. The 
modified HODLR algorithm can further compress the rank-deficient off-diagonal blocks 
effectively compared with the conventional HODLR method. Then, two kinds of skele-
tonization-based direct solvers are introduced, which are based on weak and strong ad-
missibility condition and utilize a recursive skeletonization factorization process. How-
ever, skeletonization factorization leads to a relatively high rank since all off-diagonal 
blocks are performed by compression techniques, which implies that all near-field of 
nearby-groups are assumed to be low-rank in nature. Therefore, the bottom-up factoriza-
tion process is inefficient, while SASF extracts fewer skeleton basis functions because only 
far-field groups that satisfy the strong admissibility condition are considered to be com-
pressed. Meanwhile, it is efficient to compress the far-field interaction matrix with the 
reduced dimension in the SASF. Recently, the SASF approach has been extended to apply 
to the solution of homogeneous penetrable objects [43], but there are few related reports 
on the direct solution algorithm for solving the PEC-dielectric composite problem. Finally, 
the proposed direct solvers provide a promising, alternative tool for DDM when facing 
complex electromagnetic problems with multiscale geometrical features [44]. 

Author Contributions: M.J. and J.H. conceived of the presented idea. Y.L. verified the analytical 
methods. L.L. performed the numerical calculations and performed the numerical simulations. All 
authors discussed the results and contributed to the final manuscript. All authors have read and 
agreed to the published version of the manuscript. 

Funding: This work was supported in part by National Natural Science Foundation of China under 
Grant No. 62071103, 61871090. Guangdong Basic and Applied Basic Research Foundation under 
grant 2019A1515111166, 2022A1515010483. This work was also supported in part by The Major Key 
Project of PCL Department of Broadband Communication. 

Conflicts of Interest: The authors declare no conflict of interest. 

References 
1. Song, J.; Lu, C.-C.; Chew, W.C. Multilevel fast multipole algorithm for electromagnetic scattering by large complex objects. IEEE 

Trans. Antennas Propag. 1997, 45, 1488–1493. 
2. Zwamborn, P.; van den Berg, P.M. The three-dimensional weak form of conjugate gradient FFT method for solving scattering 

problems. IEEE Trans. Microw. Theory Techn. 1992, 40, 1757–1766. 

Figure 5. Monostatic RCS (HH-polarized) of the model at 3.0 GHz.

5. Conclusions

In this paper, three kinds of fast direct solution algorithms are investigated to solve
surface integral equations for 3-D electromagnetic wave scattering from PEC targets.
The modified HODLR algorithm can further compress the rank-deficient off-diagonal
blocks effectively compared with the conventional HODLR method. Then, two kinds of
skeletonization-based direct solvers are introduced, which are based on weak and strong ad-
missibility condition and utilize a recursive skeletonization factorization process. However,
skeletonization factorization leads to a relatively high rank since all off-diagonal blocks are
performed by compression techniques, which implies that all near-field of nearby-groups
are assumed to be low-rank in nature. Therefore, the bottom-up factorization process
is inefficient, while SASF extracts fewer skeleton basis functions because only far-field
groups that satisfy the strong admissibility condition are considered to be compressed.
Meanwhile, it is efficient to compress the far-field interaction matrix with the reduced
dimension in the SASF. Recently, the SASF approach has been extended to apply to the
solution of homogeneous penetrable objects [43], but there are few related reports on the
direct solution algorithm for solving the PEC-dielectric composite problem. Finally, the
proposed direct solvers provide a promising, alternative tool for DDM when facing complex
electromagnetic problems with multiscale geometrical features [44].
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