
Citation: Yang, H.; Kim, Y. Design

and Implementation of Machine

Learning-Based Fault Prediction

System in Cloud Infrastructure.

Electronics 2022, 11, 3765. https://

doi.org/10.3390/electronics11223765

Academic Editors: Sheng Zhang,

Yibo Jin, Bolei Zhang and

Xiangjie Kong

Received: 26 October 2022

Accepted: 15 November 2022

Published: 16 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Design and Implementation of Machine Learning-Based Fault
Prediction System in Cloud Infrastructure
Hyunsik Yang and Younghan Kim *

School of Electronic Engineering, Soongsil University, Seoul 06978, Republic of Korea
* Correspondence: younghak@ssu.ac.kr; Tel.: +82-02-820-0841

Abstract: The method for ensuring availability in an existing cloud environment is primarily a
metric-based fault detection method. However, the existing fault detection method makes it difficult
to configure the environment as the cloud size increases and becomes more complex, and it is
necessary to accurately understand the metric in order to use the metric accurately. Furthermore,
additional changes are required whenever the monitoring environment changes. In order to solve
these problems, various fault detection and prediction methods based on machine learning have
recently been proposed. The machine learning-based fault detection and recovery model most
commonly proposed in the cloud environment is a supervised machine learning method that learns
data relating to fault situations and, based on this data, detects faults. However, there is a limit to
fault learning because it is difficult to obtain all of the fault situation data necessary to learn all of
the fault situations that occur in a large-scale cloud environment. In addition, it is difficult to detect
a fault when a fault that differs from the learned fault pattern occurs. Furthermore, it is necessary
to discuss the automatic recovery architecture leading to the fault recovery procedure based on the
fault detection results. Therefore, in this paper, we designed and implemented a whole system that
predicts faults by detecting fault situations using the anomaly detection method.

Keywords: cloud; availability; machine learning; fault detection; anomaly detection

1. Introduction

In the cloud environment, various frameworks for detection and recovery of faults
have been proposed, and most of the proposed architectures use a fault detection method
based on a defined metric [1–4]. The existing fault detection architecture, which uses a
metric based monitoring tool to utilize the defined metric has the following problems [5]:
First, as the cloud grows in size and complexity, it is difficult to configure a fault detection
environment. The cloud can take a variety of forms, including a VM-based cloud, a
container cloud, and a mixed cloud. In addition, as the number of containers or VMs
increases, the architecture becomes more complex and increases the target monitoring
space [6–9]. In the case of the fault detection method using metrics, as in the above
architecture, the administrator must individually set the threshold for each metric, and the
administrator is required to have a deep understanding of all metrics. However, as the type
of log data increases, the configuration becomes more and more complicated. In addition,
the administrator should consider that each metric value has various types of correlation to
prevent fault through an alarm at an accurate threshold value.

On the other hand, studies on cases of applying machine learning or deep learning to
fault management and prediction have continuously been studied [10–19]. In particular,
recently, various studies using anomaly detection methods have been conducted. In [15,16],
a method for detecting faults using anomaly detection in an SDN environment has been
proposed, and in [14,17–19], fault detection and prediction using anomaly detection based
on cloud log data was proposed. However, because [15,16] uses SVM (Support Vector
Machine), it has issues such as imbalance problems and a labeling problem. In [14,17],

Electronics 2022, 11, 3765. https://doi.org/10.3390/electronics11223765 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics11223765
https://doi.org/10.3390/electronics11223765
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-5359-4653
https://orcid.org/0000-0002-1066-4818
https://doi.org/10.3390/electronics11223765
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics11223765?type=check_update&version=2

Electronics 2022, 11, 3765 2 of 17

the PCA (Principal Component Analysis) technique is used, but it has a disadvantage
as it is difficult to identify the detailed cause of the faults due to the feature of PCA. In
addition, [18,19] used the Bi-LSTM technique, but this technique also has a disadvantage
as labeling is difficult.

In [13], a cloud environment was constructed, and a fault detection model and a fault
prediction model has been proposed by learning the fault situation for a specific resource
(CPU/Memory/Network). Although [13] proposed a fault detection and prediction model
for each resource using various machine learning techniques, supervised learning was
used. Supervised learning-based fault detection and prediction models may also have
problems with the accuracy of training data in addition to the above-mentioned labeling
problems. For example, the supervised learning-based fault detection and prediction
model has the disadvantage that it can detect and predict faults only for learned situations,
making it difficult to detect fault patterns in fault situations that have not occurred before.
Moreover, it is also impossible to create and learn all of the fault situations. In addition
to this, it is also necessary to design the entire framework that controls the fault detection
system and recovery system in order to start the recovery process automatically after fault
detection procedures.

In this work, we designed a model that predicts cloud faults using the Self-Supervised
model and developed the entire framework for fault recovery. The proposed framework is
composed of two parts: The first part is the fault detection and prediction function, which
consists of a monitoring data collection and processing unit and a fault notification unit.
The second part is the fault recovery function, which provides a function to manage the
recovery procedure by receiving fault data from the fault detection and prediction function.
The proposed framework was implemented with open source cloud platforms, such as
OpenStack and Kubernetes, to verify the function [20,21].

The contents of this paper are as follows. In Section 2, we analyze previous works
relating to machine learning-based fault management and recovery system frameworks
in the cloud environment, and in Section 3, we describe the proposed architecture and
machine learning theories we used in this paper. In Section 4, we verify the performance
through the actual implementation environment, based on the proposed architecture, and
we conclude in Section 5.

2. State of the Art: Machine Learning Based Fault Detection and Fault Prediction

In a cloud environment, cloud management functions such as MANO provide avail-
ability for the entire infrastructure and services [22]. In order to guarantee availability in a
cloud environment, information on the entire infrastructure and services, and a recovery
function based on the information, must be provided. Put simply, in the cloud environment,
a monitoring tool is used to detect faults, and a threshold value for each metric is set, and
the case of exceeding the threshold value is determined as a fault [10–13].

However, it is difficult to configure such static policy-based management functions as
the cloud size and its complexity increases. In addition, the understanding of individual
values for all metrics and accurate set values are required, and values must be changed
according to circumstances. To solve this problem, machine learning-based fault detection
models have recently been proposed.

In [13], the researchers designed and validated an architecture for machine learning-
based fault detection and prediction in a cloud environment: a cloud environment, con-
sisting of a center cloud and an edge cloud, was implemented using Kubernetes and
OpenStack, and then an architecture for a fault detection model and prediction was de-
signed and applied to the cloud and verified. In [13], various fault detection models and
deep learning models were used to verify the accuracy of the proposed architecture. To
implement fault situations, CPU, memory, and HDD failures were artificially generated to
generate data on failure conditions, and the accuracy of the proposed model was measured
based on the generated data.

However, the supervised learning-based method has the following limitations:

Electronics 2022, 11, 3765 3 of 17

Firstly, data generated in an actual fault situation is not used for model learning. In
the previous work, data was generated by artificially generating a fault in order to learn
the fault situation. As this data was used for fault detection and predictive learning, it
will be easy to detect faults because the pattern is almost the same as the learning data.
In other words, the data generated for fault learning and the data used to detect the fault
situation in the previous study are the same. However, in an environment where the cloud
is actually operated, various types of fault patterns can exist; therefore, it is difficult to
determine actual faults through learning using artificially generated data.

Secondly, the number of monitoring data resources used in the cloud environment
consist of thousands to tens of thousands of types. This is constantly changing each time
the cloud environment is operated, and the pattern of change is different for each resource.
As in previous studies, supervised machine learning methods require learning about a
specific resource, and this requires knowing which resource changes to apply in the event
of a fault. However, as the size of the cloud increases, it becomes difficult to ascertain the
changing nature of resources or the correlation between resources. In addition, in order to
analyze the fault of various resources, a detailed analysis of the data is required because
the labeling of the fault status for each resource is required.

Thirdly, it is difficult to accurately analyze the cause of a fault. In existing studies,
because only the data classified as a fault during learning is detected as a fault, analysis
is difficult when there are other causes, and it is difficult to determine various causes of a
fault when it occurs due to complex causes.

Fourthly, an interworking architecture is required alongside the cloud management
architecture. In order to prevent actual faults by using the results derived through fault
detection and fault prediction models, it is necessary to link with the recovery system.
However, previous works focus on fault detection techniques; therefore, to provide an
environment that guarantees actual system availability, a design and interworking pipeline
for an integrated architecture is required.

Therefore, in this paper, we designed a framework that can detect and predict faults
using unsupervised learning. In addition, a function to automatically perform fault recovery
based on the detection result was designed. The proposed architecture was implemented
by applying it to the actual cloud environment, and the proposed model and functions
were verified in the implementation environment.

3. Design and Implementation of Machine Learning-Based Fault Prediction System in
Cloud Infrastructure
3.1. Proposed Architecture

Cloud infrastructure has a complex architecture. With respect to the complex architec-
ture of the cloud infrastructure, the types of log data are also diverse, and the number of
log data also changes as the number of virtual machines increases or decreases. Moreover,
the average utilization rate of each resource varies according to the type of service and
resources. In the cloud environment, cloud availability has been traditionally guaranteed
through a monitoring system, but accurate fault detection is difficult due to the above-
mentioned structural characteristics. To overcome this, fault detection techniques using
supervised learning have been proposed, but the problem of labeling all data, securing
data for fault learning, and detecting the causes of complex faults still remain. To overcome
this, in this paper, we proposed a fault detection method using a self-supervised learning
method that does not require labeling.

The proposed architecture is shown in Figure 1 And, as shown, the proposed architec-
ture consists of two components: The first component is cloud infrastructure management,
and the second component is a machine learning-based fault prediction system. The man-
agement component consists of an orchestrator for the overall infrastructure management
and a fault management and recovery function. The orchestrator includes the ability to
manage the VM-based cloud infrastructure and container-based cloud infrastructure.

Electronics 2022, 11, 3765 4 of 17

Electronics 2022, 11, x FOR PEER REVIEW 4 of 17

management and a fault management and recovery function. The orchestrator includes

the ability to manage the VM-based cloud infrastructure and container-based cloud infra-

structure.

Figure 1. Proposed Architecture for ML based Fault Prediction Model.

The fault management and recovery function provides a function to check and re-

cover from a fault, according to the fault management policy. The recovery function in-

cludes functions such as VM restart, VM respawn, and switch over. The machine learning-

based fault prediction system consists of a receiving unit that receives monitoring data, a

data processing unit that processes it, and a fault prediction system that checks the fault

prediction value by inputting the processed data into a learned model. The data receiving

unit periodically receives the current state data from the monitoring tool of the cloud in-

frastructure, and the received data is processed into a form suitable for the machine learn-

ing model through the data processing unit.

Subsequently, the processed data determines whether a fault has occurred through a

machine learning model, and the fault information is delivered to the cloud management

function.

3.2. Self-Supervised Fault Prediction

Supervised learning could not show a better performance than the existing work

which used supervised method because it requires an abnormal sample for training. In

the case of semi-supervised learning, anomalous samples are not required, but labeling is

required. However, labeling is not suitable for data-heavy environments such as cloud

environments. Therefore, self-supervised learning, a model suitable for cloud environ-

ments and that overcomes the above shortcomings, was selected as the model for this

work.

The proposed architecture uses an Anomaly Detection method based on Long Short-

Term Memory models (LSTM) like a Figure 2 [23–26].

Figure 1. Proposed Architecture for ML based Fault Prediction Model.

The fault management and recovery function provides a function to check and recover
from a fault, according to the fault management policy. The recovery function includes
functions such as VM restart, VM respawn, and switch over. The machine learning-
based fault prediction system consists of a receiving unit that receives monitoring data, a
data processing unit that processes it, and a fault prediction system that checks the fault
prediction value by inputting the processed data into a learned model. The data receiving
unit periodically receives the current state data from the monitoring tool of the cloud
infrastructure, and the received data is processed into a form suitable for the machine
learning model through the data processing unit.

Subsequently, the processed data determines whether a fault has occurred through a
machine learning model, and the fault information is delivered to the cloud management
function.

3.2. Self-Supervised Fault Prediction

Supervised learning could not show a better performance than the existing work
which used supervised method because it requires an abnormal sample for training. In
the case of semi-supervised learning, anomalous samples are not required, but labeling
is required. However, labeling is not suitable for data-heavy environments such as cloud
environments. Therefore, self-supervised learning, a model suitable for cloud environments
and that overcomes the above shortcomings, was selected as the model for this work.

The proposed architecture uses an Anomaly Detection method based on Long Short-
Term Memory models (LSTM) like a Figure 2 [23–26].

For anomaly detection, a data set of a normal environment is required, and in this
proposal, data is collected and learned in a cloud environment that operates normally for
normal state learning. After learning, we saved the model that is trained based on the
normal data, the average of the reconstruction error data of the normal data, the covariance,
and the scaler. Next, the data set required for fault detection was put into the model,
from which normal data was trained and the reconstruction error was calculated. The
calculated reconstruction error was entered into the Gaussian distribution, created from
the previously learned data, and the likelihood was calculated, and this value was defined
as an anomaly score.

Electronics 2022, 11, 3765 5 of 17Electronics 2022, 11, x FOR PEER REVIEW 5 of 17

Figure 2. Self-Supervised LSTM model for Fault Prediction.

For anomaly detection, a data set of a normal environment is required, and in this

proposal, data is collected and learned in a cloud environment that operates normally for

normal state learning. After learning, we saved the model that is trained based on the

normal data, the average of the reconstruction error data of the normal data, the covari-

ance, and the scaler. Next, the data set required for fault detection was put into the model,

from which normal data was trained and the reconstruction error was calculated. The cal-

culated reconstruction error was entered into the Gaussian distribution, created from the

previously learned data, and the likelihood was calculated, and this value was defined as

an anomaly score.

3.3. Data Pre-Processing

In order to use data for a machine learning model, data collection and processing

procedures are required. In the present work, the Prometheus monitoring tool was used

to check the current state of the cloud environment. Data were collected from each node,

VM, and other services, once per second, and the total number of features is approxi-

mately 4600. In this study, the following data pre-processing procedure was performed to

learn and predict a failure detection model. First, data was collected using PROMQL [27].

Then, a format change was performed to adjust the format of the collected data. In Pro-

metheus, it is defined to use a Count value or a Gauge value according to the data type.

Some count values were changed to gauge values to ensure the accurate analysis of the

collected data. Finally, the data were changed to the “csv file” format and subsequently

saved. Interpolation and missing value processing were also performed on the missing

data; the Standard Scaler was used for data scaling before learning the data.

3.3.1. LSTM Based Anomaly Detection

In this study, we designed an architecture for anomaly detection with self-supervised

learning. The data do not require labeling after the pre-processing process, but the data

set we created and configured to determine whether fault detection is performed accu-

rately. The data set used in this study is shown in Table 1.

Figure 2. Self-Supervised LSTM model for Fault Prediction.

3.3. Data Pre-Processing

In order to use data for a machine learning model, data collection and processing
procedures are required. In the present work, the Prometheus monitoring tool was used
to check the current state of the cloud environment. Data were collected from each node,
VM, and other services, once per second, and the total number of features is approximately
4600. In this study, the following data pre-processing procedure was performed to learn
and predict a failure detection model. First, data was collected using PROMQL [27]. Then,
a format change was performed to adjust the format of the collected data. In Prometheus,
it is defined to use a Count value or a Gauge value according to the data type. Some
count values were changed to gauge values to ensure the accurate analysis of the collected
data. Finally, the data were changed to the “csv file” format and subsequently saved.
Interpolation and missing value processing were also performed on the missing data; the
Standard Scaler was used for data scaling before learning the data.

3.3.1. LSTM Based Anomaly Detection

In this study, we designed an architecture for anomaly detection with self-supervised
learning. The data do not require labeling after the pre-processing process, but the data set
we created and configured to determine whether fault detection is performed accurately.
The data set used in this study is shown in Table 1.

Table 1. Dataset for Fault prediction.

Data Type The Number of Features Description

Normal data for
training 1650 Containers which runs on

the VM

Recurrent Fault

Fault Dataset
(CPU) 1650 Increase CPU usage

Fault Dataset
(Memory) 1650 Increase memory usage

Fault Dataset
(Network) 1650 Increase network I/O usage

Accumulative Fault

Fault Dataset
(CPU) 1650 Increase CPU usage

Fault Dataset
(Memory) 1650 Increase memory usage

Fault Dataset
(Network) 1650 Increase network I/O usage

Electronics 2022, 11, 3765 6 of 17

The first data set is for learning the normal state. A cloud environment was constructed,
and the data were extracted from the actual operating cloud.

In order to create a fault situation, in this work, the amount of change in the Anomaly
Score, according to the change in resource usage, was measured by increasing three re-
sources. First, the CPU usage was arbitrarily increased by using the stress-tool to assume
the CPU fault environment. For the memory and network I/O, the resource usage was
increased using the same tool, and data sets with increased resource usage were stored as
individual data sets [28,29]. The fault data was composed of recurrent data and accumu-
lative data, and the data were separately generated for each. In the case of the recurrent
dataset, a fault was generated, periodically, for a specific period of time, and in the case of
the accumulative dataset, the data set was generated by continuously increasing the stress
by 20–30%. To produce a learning model, we entered normal data into the LSTM model
and trained it. The model produced at this time is used for subsequent data discrimination,
and the distribution of the trained model and the equation of reconstruction error from the
model is as follows [24].

Reconstruction Error e(i),e(i) =
∣∣∣X(i) − X′(i)

∣∣∣ (1)

X(i) is the value of the i-th timestamp of a specific feature, and X′(i) is the value of the
timestamp after predicting by putting data into the trained model.

The model used in this work predicts the value of the next timestamp through the
trained model and determines whether or not a fault has occurred in the current state,
based on the difference with the actual value. That is, after the model is trained, it is
possible to predict normal data, but it is difficult to predict abnormal data. At this time,
the difference between the predicted value and the actual value is called a Reconstruction
Error, and according to the difference, it is possible to determine whether the current state
is a normal state or not. After the model is trained, the average and covariance matrix of
the reconstruction errors obtained for each feature are stored, and the Anomaly Score can
be calculated as follows [24]. The Reconstruction Error for each feature can represent the
difference between the predicted value and the actual value as an absolute value. When
the predicted value is X′(i) and the actual value is X(i), the Reconstruction Error can be
calculated as e(i) =

∣∣∣x(i) − x′(i)
∣∣∣. The average of the reconstruction error for each feature

is represented by µ and calculated, such as in Equation (2), and the covariance matrix is
represented by ∑ and expressed through Equation (3). Based on this, the anomaly score
can be calculated according to Equation (4).

µ =
1
m ∑m

i=1 e(i) (m = The number of features) (2)

∑ =
1
m ∑m

i=1(e
(i) − µ) (e(i) − µ)

T
(3)

Anomaly Score = (e(i)−µ)T
∑−1

(e(i)−µ) (4)

when normal data comes into the trained model, the anomaly score is low because the
probability of accurately predicting the next data is high. On the other hand, when data
containing a fault comes in, because it is not training data, the prediction probability
decreases and the difference in the anomaly score increases. That is, if the anomaly score
for new data is low, it can be determined as normal, and if it is high, it can be determined
as abnormal.

3.3.2. Fault Recovery System Based on Machine Learning

Figure 3 is the architecture for fault recovery using machine learning-based fault
detection results. According to the fault detection results, appropriate fault recovery was
performed, and for this purpose, a workflow manager was designed that can perform

Electronics 2022, 11, 3765 7 of 17

fault recovery procedures using various infrastructures. The workflow manager provides
a function to perform a defined workflow according to the failure detection result and is
designed to use the management function of the infrastructure.

Electronics 2022, 11, x FOR PEER REVIEW 7 of 17

� =
�

�
∑ �(�)�

��� (m = The number of features) (2)

∑ =
�

�
∑ (�(�)�

��� − �) (�(�) − �)� (3)

Anomaly Score = (�(�) − �)� ∑ (�(�) − �) ��
 (4)

when normal data comes into the trained model, the anomaly score is low because the

probability of accurately predicting the next data is high. On the other hand, when data

containing a fault comes in, because it is not training data, the prediction probability de-

creases and the difference in the anomaly score increases. That is, if the anomaly score for

new data is low, it can be determined as normal, and if it is high, it can be determined as

abnormal.

3.3.2. Fault Recovery System Based on Machine Learning

Figure 3 is the architecture for fault recovery using machine learning-based fault de-

tection results. According to the fault detection results, appropriate fault recovery was

performed, and for this purpose, a workflow manager was designed that can perform

fault recovery procedures using various infrastructures. The workflow manager provides

a function to perform a defined workflow according to the failure detection result and is

designed to use the management function of the infrastructure.

Figure 3. Machine Learning based Fault Prediction Architecture.

In this work, we designed the workflow manager to start the fault recovery proce-

dure using the change amount and value of the anomaly Score. The workflow can be al-

tered according to user definition, and the procedure is as follows.

Following anomaly detection, we used the feature importance model to find of the

cause of the fault. By separately extracting only the abnormally detected part and apply-

ing the feature importance algorithm, the cause of the fault was found efficiently. As

shown in Figure 4, the total time consists of data collection time, data processing time,

prediction processing time, feature importance processing time, and recovery time. The

data collection time is an interval at which is the data are collected by the actual monitor-

ing tool and may vary depending on the setting of the monitoring tool. The data pro-

cessing time is the time required to collect and process data. The prediction processing

time is the time required for the preprocessed data to calculate the anomaly score in the

model. The feature importance time is the time required to check which features have had

a lot of influence in the dataset when an anomaly score increases.

Figure 3. Machine Learning based Fault Prediction Architecture.

In this work, we designed the workflow manager to start the fault recovery procedure
using the change amount and value of the anomaly Score. The workflow can be altered
according to user definition, and the procedure is as follows.

Following anomaly detection, we used the feature importance model to find of the
cause of the fault. By separately extracting only the abnormally detected part and applying
the feature importance algorithm, the cause of the fault was found efficiently. As shown in
Figure 4, the total time consists of data collection time, data processing time, prediction
processing time, feature importance processing time, and recovery time. The data collection
time is an interval at which is the data are collected by the actual monitoring tool and may
vary depending on the setting of the monitoring tool. The data processing time is the time
required to collect and process data. The prediction processing time is the time required for
the preprocessed data to calculate the anomaly score in the model. The feature importance
time is the time required to check which features have had a lot of influence in the dataset
when an anomaly score increases.

Electronics 2022, 11, x FOR PEER REVIEW 8 of 17

Figure 4. Workflow of Fault Recovery.

4. System Validation

4.1. Implementation

For evaluation, a test bed was implemented, as shown in Table 2. A total of four serv-

ers were used, and OpenStack and Kubernetes clusters were used as the cloud infrastruc-

tures. For the machine learning environment, one machine learning server was individu-

ally implemented, and the model was designed using Pytorch. Prometheus was used for

cloud monitoring and data collection [30,31].

Table 2. Implementation specifications for container.

Entity Condition Version

Physical Server (4)

Controller Node (1) / Compute Node(2)

Intel(R) Xeon 2.4 GHz x 80 vCPU

RAM: 64 GB

Disk space: 2 TB

GPU Node (1)

Intel(R) Xeon 3.4 GHz x 12 vCPU

NVIDIA Tesla V100 32 G (4EA)

Cloud OS OpenStack stable Stein

Container OS Kubernetes 1.17.1

The collected data were stored in a control node installed with Prometheus, and a

GPU server was used for data preprocessing and the learning model.

4.2. Test Result

Each anomaly value was measured using the data set mentioned in Table 1, and the

results are as follows. In all of the graphs included in this chapter, the red line illustrates

the artificially generated resource usage, and the pattern or amount of change can be al-

tered depending on the data set. The blue line depicts the anomaly score.

In the case of recurrent CPU failure cases, as shown in Figure 5, it was observed that

the anomaly score increased at the same time as the fault occurred. However, it was sim-

ilarly observed that the anomaly score did not increase for temporary CPU changes. In

other words, it was confirmed that the anomaly score did not increase for regular CPU

change patterns through learning.

Figure 4. Workflow of Fault Recovery.

4. System Validation
4.1. Implementation

For evaluation, a test bed was implemented, as shown in Table 2. A total of four servers
were used, and OpenStack and Kubernetes clusters were used as the cloud infrastructures.
For the machine learning environment, one machine learning server was individually
implemented, and the model was designed using Pytorch. Prometheus was used for cloud
monitoring and data collection [30,31].

Electronics 2022, 11, 3765 8 of 17

Table 2. Implementation specifications for container.

Entity Condition Version

Physical Server (4)

Controller Node (1)/Compute Node(2)
Intel(R) Xeon 2.4 GHz × 80 vCPU
RAM: 64 GB
Disk space: 2 TB
GPU Node (1)
Intel(R) Xeon 3.4 GHz × 12 vCPU
NVIDIA Tesla V100 32 G (4EA)

Cloud OS OpenStack stable Stein
Container OS Kubernetes 1.17.1

The collected data were stored in a control node installed with Prometheus, and a
GPU server was used for data preprocessing and the learning model.

4.2. Test Result

Each anomaly value was measured using the data set mentioned in Table 1, and the
results are as follows. In all of the graphs included in this chapter, the red line illustrates the
artificially generated resource usage, and the pattern or amount of change can be altered
depending on the data set. The blue line depicts the anomaly score.

In the case of recurrent CPU failure cases, as shown in Figure 5, it was observed
that the anomaly score increased at the same time as the fault occurred. However, it was
similarly observed that the anomaly score did not increase for temporary CPU changes.
In other words, it was confirmed that the anomaly score did not increase for regular CPU
change patterns through learning.

Electronics 2022, 11, x FOR PEER REVIEW 9 of 17

Figure 5. Anomaly Score (CPU Fault).

Next is a graph of memory fault occurrence. As shown in Figure 6, the memory usage

was repeatedly increased to the maximum. In the case of a memory fault, it was confirmed

that the anomaly score increased at the same time as the fault occurred.

Figure 6. Anomaly Score (Memory Fault).

Subsequently, an experiment was conducted on the network fault. Network faults

were created by increasing I/O, flooding UDP packets, and creating socket processes. Like

a Figure 7, in the case of network failure, it was confirmed that the anomaly score in-

creased when the fault occurred.

Figure 5. Anomaly Score (CPU Fault).

Next is a graph of memory fault occurrence. As shown in Figure 6, the memory usage
was repeatedly increased to the maximum. In the case of a memory fault, it was confirmed
that the anomaly score increased at the same time as the fault occurred.

Electronics 2022, 11, 3765 9 of 17

Electronics 2022, 11, x FOR PEER REVIEW 9 of 17

Figure 5. Anomaly Score (CPU Fault).

Next is a graph of memory fault occurrence. As shown in Figure 6, the memory usage

was repeatedly increased to the maximum. In the case of a memory fault, it was confirmed

that the anomaly score increased at the same time as the fault occurred.

Figure 6. Anomaly Score (Memory Fault).

Subsequently, an experiment was conducted on the network fault. Network faults

were created by increasing I/O, flooding UDP packets, and creating socket processes. Like

a Figure 7, in the case of network failure, it was confirmed that the anomaly score in-

creased when the fault occurred.

Figure 6. Anomaly Score (Memory Fault).

Subsequently, an experiment was conducted on the network fault. Network faults
were created by increasing I/O, flooding UDP packets, and creating socket processes. Like
a Figure 7, in the case of network failure, it was confirmed that the anomaly score increased
when the fault occurred.

Electronics 2022, 11, x FOR PEER REVIEW 10 of 17

Figure 7. Anomaly Score (Network Fault).

Next is the experimental results for cases in which the fault situation gradually oc-

curs. We used same method that was used previously, and the results are as follows.

As shown in Figure 8, with the gradual increase in CPU usage, the anomaly score

gradually increased in line with this increase. It was confirmed that the anomaly score

also gradually increased between the timestamps 80 and 100, which is the time that the

change occurred.

Figure 8. Anomaly Score (CPU Fault-Accumulative).

As shown in Figures 9 and 10, it was confirmed that the same results as in the case of

a CPU increase were produced, even when the memory and network faults were gradu-

ally made.

Figure 7. Anomaly Score (Network Fault).

Next is the experimental results for cases in which the fault situation gradually occurs.
We used same method that was used previously, and the results are as follows.

As shown in Figure 8, with the gradual increase in CPU usage, the anomaly score
gradually increased in line with this increase. It was confirmed that the anomaly score
also gradually increased between the timestamps 80 and 100, which is the time that the
change occurred.

Electronics 2022, 11, 3765 10 of 17

Electronics 2022, 11, x FOR PEER REVIEW 10 of 17

Figure 7. Anomaly Score (Network Fault).

Next is the experimental results for cases in which the fault situation gradually oc-

curs. We used same method that was used previously, and the results are as follows.

As shown in Figure 8, with the gradual increase in CPU usage, the anomaly score

gradually increased in line with this increase. It was confirmed that the anomaly score

also gradually increased between the timestamps 80 and 100, which is the time that the

change occurred.

Figure 8. Anomaly Score (CPU Fault-Accumulative).

As shown in Figures 9 and 10, it was confirmed that the same results as in the case of

a CPU increase were produced, even when the memory and network faults were gradu-

ally made.

Figure 8. Anomaly Score (CPU Fault-Accumulative).

As shown in Figures 9 and 10, it was confirmed that the same results as in the case of
a CPU increase were produced, even when the memory and network faults were gradu-
ally made.

Electronics 2022, 11, x FOR PEER REVIEW 11 of 17

Figure 9. Anomaly Score (Memory Fault-Accumulative).

Figure 10. Anomaly Score (Network Fault-Accumulative).

In order to check the accuracy of the model, a virtual noise was created, and the de-

tection results were plotted. As shown in Figure 11, virtual noise was synthesized in only

some sections of one data extracted from the cloud environment. It was inferred that the

actual anomaly score value increased for the section to which noise was applied.

Figure 9. Anomaly Score (Memory Fault-Accumulative).

Electronics 2022, 11, 3765 11 of 17

Electronics 2022, 11, x FOR PEER REVIEW 11 of 17

Figure 9. Anomaly Score (Memory Fault-Accumulative).

Figure 10. Anomaly Score (Network Fault-Accumulative).

In order to check the accuracy of the model, a virtual noise was created, and the de-

tection results were plotted. As shown in Figure 11, virtual noise was synthesized in only

some sections of one data extracted from the cloud environment. It was inferred that the

actual anomaly score value increased for the section to which noise was applied.

Figure 10. Anomaly Score (Network Fault-Accumulative).

In order to check the accuracy of the model, a virtual noise was created, and the
detection results were plotted. As shown in Figure 11, virtual noise was synthesized in
only some sections of one data extracted from the cloud environment. It was inferred that
the actual anomaly score value increased for the section to which noise was applied.

Electronics 2022, 11, x FOR PEER REVIEW 12 of 17

Figure 11. Anomaly Score (Virtual noise Fault).

As shown in Table 3, over 95% of the precision, recall, and F1 score were verified.

However, in the case of an Accumulative Fault, it was confirmed that the precision de-

creased in the section in which the resource usage increased and affected the overall per-

formance. In addition, the overall precision was higher than the recall. However, in the F1

score, considering these two, it was confirmed that overall performance was measured

similarly. Next, the classification performance was measured using the ROC (Receiver

Operating Characteristic) curve.

Table 3. Precision, Recall, F1 Score of LSTM Model.

 Recurrent Fault Accumulative Fault

Precision 96.1 95.6

Recall 95 95.6

F1 Score 95.5 95.6

The precision, recall, and F1 scores for the results are as follows [32,33].

Figure 12 shows the ROC values for the test sets of Recurrent Fault and Accumulative

Fault. As shown in Figure 12, it was confirmed that the overall data set was accurately

classified. With Table 3 and Figure 12, it was confirmed that the overall performance of

the proposed architecture was high.

Figure 11. Anomaly Score (Virtual noise Fault).

As shown in Table 3, over 95% of the precision, recall, and F1 score were verified. How-
ever, in the case of an Accumulative Fault, it was confirmed that the precision decreased

Electronics 2022, 11, 3765 12 of 17

in the section in which the resource usage increased and affected the overall performance.
In addition, the overall precision was higher than the recall. However, in the F1 score,
considering these two, it was confirmed that overall performance was measured similarly.
Next, the classification performance was measured using the ROC (Receiver Operating
Characteristic) curve.

Table 3. Precision, Recall, F1 Score of LSTM Model.

Recurrent Fault Accumulative Fault

Precision 96.1 95.6
Recall 95 95.6

F1 Score 95.5 95.6

The precision, recall, and F1 scores for the results are as follows [32,33].
Figure 12 shows the ROC values for the test sets of Recurrent Fault and Accumulative

Fault. As shown in Figure 12, it was confirmed that the overall data set was accurately
classified. With Table 3 and Figure 12, it was confirmed that the overall performance of the
proposed architecture was high.

Electronics 2022, 11, x FOR PEER REVIEW 13 of 17

Figure 12. ROC Curve of LSTM Model.

4.3. Testbed for ML Based Cloud Infrastructure Management

Based on the model described in the previous chapter, the entire architecture that can

perform the processes, from data collection to recovery, was implemented.

Figure 13 shows the architecture for measuring an anomaly score of the cloud using

the learned model and calling the recovery function based on the result value. The fault

prediction procedure in the proposed architecture is as follows. The data collected by the

monitoring tool is forwarded to the prediction model. Once these data are received, the

anomaly score is tested to confirm whether the value is higher than the specified thresh-

old. If the value is high, check the rate of change in the anomaly score. If the rate of change

is not higher than the reference value, a warning message is sent to the cloud system. On

the other hand, if the anomaly score change rate is more than the value administrator

defined, the fault label is added to the area where the anomaly score is high and trans-

ferred to the feature importance analysis. The feature importance analysis forward the

feature list that has changed the most in the current state to the operator, and the operator

checks the current status of the cloud system with the feature lists. If there is an anomaly

pattern in the resource value and system, it is immediately transmitted to the recovery

function of the cloud system. If not, additional learning is performed, including previous

data, to include the abnormal operation in the normal data set.

Root Cause

Cloud Management System
(MANO)

Data Collection
Database

 Monitoring Data

 Normal Status
Training

Preprocessing

Dataset
Configuration

Model
Learning

Model Save
&

Transmission

 Dataset
Configuration

Anomaly Score measuring
(Anomaly Score ≥ Threshold)

Yes

Normal
Warning Message

Notification

No
Yes

Data Labelling
under threshold = '0'
Over threshold = '1'

Anomaly Score Analysis
(Anomaly Score Change Rate ≥

Threshold of Rate Change)

Feature Importance
Analysis

Feature Verification
(By Operator)

Monitoring Data Forwarding(unit =1W)

Model
Update

A
n
o
m

a
ly

 P
re

d
ic

ti
o
n
 M

o
d
e
l

L
e
a
rn

in
g
 S

y
st

e
m

Monitoring Data

A
n
o
m

a
ly

 S
co

re
 b

a
se

d

F
a
u
lt P

re
d
ictio

n
 S

y
ste

m

Time stamp of Data = (Time stamp of Data - 60 Time Stamp) + (Time stamp of Data +60 Time Stamp)

Normal
Data

Fault Notification

Fault

Figure 13. ML based Cloud management System.

Figure 12. ROC Curve of LSTM Model.

4.3. Testbed for ML Based Cloud Infrastructure Management

Based on the model described in the previous chapter, the entire architecture that can
perform the processes, from data collection to recovery, was implemented.

Figure 13 shows the architecture for measuring an anomaly score of the cloud using
the learned model and calling the recovery function based on the result value. The fault
prediction procedure in the proposed architecture is as follows. The data collected by the
monitoring tool is forwarded to the prediction model. Once these data are received, the
anomaly score is tested to confirm whether the value is higher than the specified threshold.
If the value is high, check the rate of change in the anomaly score. If the rate of change is
not higher than the reference value, a warning message is sent to the cloud system. On the
other hand, if the anomaly score change rate is more than the value administrator defined,
the fault label is added to the area where the anomaly score is high and transferred to
the feature importance analysis. The feature importance analysis forward the feature list
that has changed the most in the current state to the operator, and the operator checks the
current status of the cloud system with the feature lists. If there is an anomaly pattern in
the resource value and system, it is immediately transmitted to the recovery function of the
cloud system. If not, additional learning is performed, including previous data, to include
the abnormal operation in the normal data set.

Electronics 2022, 11, 3765 13 of 17

Electronics 2022, 11, x FOR PEER REVIEW 13 of 17

Figure 12. ROC Curve of LSTM Model.

4.3. Testbed for ML Based Cloud Infrastructure Management

Based on the model described in the previous chapter, the entire architecture that can

perform the processes, from data collection to recovery, was implemented.

Figure 13 shows the architecture for measuring an anomaly score of the cloud using

the learned model and calling the recovery function based on the result value. The fault

prediction procedure in the proposed architecture is as follows. The data collected by the

monitoring tool is forwarded to the prediction model. Once these data are received, the

anomaly score is tested to confirm whether the value is higher than the specified thresh-

old. If the value is high, check the rate of change in the anomaly score. If the rate of change

is not higher than the reference value, a warning message is sent to the cloud system. On

the other hand, if the anomaly score change rate is more than the value administrator

defined, the fault label is added to the area where the anomaly score is high and trans-

ferred to the feature importance analysis. The feature importance analysis forward the

feature list that has changed the most in the current state to the operator, and the operator

checks the current status of the cloud system with the feature lists. If there is an anomaly

pattern in the resource value and system, it is immediately transmitted to the recovery

function of the cloud system. If not, additional learning is performed, including previous

data, to include the abnormal operation in the normal data set.

Root Cause

Cloud Management System
(MANO)

Data Collection
Database

 Monitoring Data

 Normal Status
Training

Preprocessing

Dataset
Configuration

Model
Learning

Model Save
&

Transmission

 Dataset
Configuration

Anomaly Score measuring
(Anomaly Score ≥ Threshold)

Yes

Normal
Warning Message

Notification

No
Yes

Data Labelling
under threshold = '0'
Over threshold = '1'

Anomaly Score Analysis
(Anomaly Score Change Rate ≥

Threshold of Rate Change)

Feature Importance
Analysis

Feature Verification
(By Operator)

Monitoring Data Forwarding(unit =1W)

Model
Update

A
n
o
m

a
ly

 P
re

d
ic

ti
o
n
 M

o
d
e
l

L
e
a
rn

in
g
 S

y
st

e
m

Monitoring Data

A
n
o
m

a
ly

 S
co

re
 b

a
se

d

F
a
u
lt P

re
d
ictio

n
 S

y
ste

m

Time stamp of Data = (Time stamp of Data - 60 Time Stamp) + (Time stamp of Data +60 Time Stamp)

Normal
Data

Fault Notification

Fault

Figure 13. ML based Cloud management System. Figure 13. ML based Cloud management System.

Figure 14 is an experiment that increases the anomaly score by adding virtual noise,
and tests whether the anomaly score increases. Following this test, for the purpose of cause
analysis, a label was added to the area (blue) where the anomaly score increased and was
transferred to the feature importance module.

Electronics 2022, 11, x FOR PEER REVIEW 14 of 17

Figure 14 is an experiment that increases the anomaly score by adding virtual noise,

and tests whether the anomaly score increases. Following this test, for the purpose of

cause analysis, a label was added to the area (blue) where the anomaly score increased

and was transferred to the feature importance module.

Figure 14. Feature Importance Test.

Figure 15 is the result of confirming which features have substantially changed

through the feature importance module. It was confirmed using the LGBM(Light Gradient

Boosting Machine)-based feature importance method, and as shown in Figure 15, it was

confirmed that the feature omitting virtual noise was ranked at the top [34]. After con-

firming the actual feature change pattern through resource verification, if there is a prob-

lem, it is forwarded to the cloud system. If not, it is retrained by adding the data to the

existing prediction model.

Figure 15. Feature Importance Result.

Figure 16 is the architecture for fault information transmission. The information in-

cludes the server addresses, feature importance results, and fault levels. After receiving

the information, the server’s workflow manager begins the recovery procedure, according

to the defined policy.

Figure 14. Feature Importance Test.

Figure 15 is the result of confirming which features have substantially changed through
the feature importance module. It was confirmed using the LGBM(Light Gradient Boosting
Machine)-based feature importance method, and as shown in Figure 15, it was confirmed
that the feature omitting virtual noise was ranked at the top [34]. After confirming the
actual feature change pattern through resource verification, if there is a problem, it is
forwarded to the cloud system. If not, it is retrained by adding the data to the existing
prediction model.

Electronics 2022, 11, 3765 14 of 17

Electronics 2022, 11, x FOR PEER REVIEW 14 of 17

Figure 14 is an experiment that increases the anomaly score by adding virtual noise,

and tests whether the anomaly score increases. Following this test, for the purpose of

cause analysis, a label was added to the area (blue) where the anomaly score increased

and was transferred to the feature importance module.

Figure 14. Feature Importance Test.

Figure 15 is the result of confirming which features have substantially changed

through the feature importance module. It was confirmed using the LGBM(Light Gradient

Boosting Machine)-based feature importance method, and as shown in Figure 15, it was

confirmed that the feature omitting virtual noise was ranked at the top [34]. After con-

firming the actual feature change pattern through resource verification, if there is a prob-

lem, it is forwarded to the cloud system. If not, it is retrained by adding the data to the

existing prediction model.

Figure 15. Feature Importance Result.

Figure 16 is the architecture for fault information transmission. The information in-

cludes the server addresses, feature importance results, and fault levels. After receiving

the information, the server’s workflow manager begins the recovery procedure, according

to the defined policy.

Figure 15. Feature Importance Result.

Figure 16 is the architecture for fault information transmission. The information
includes the server addresses, feature importance results, and fault levels. After receiving
the information, the server’s workflow manager begins the recovery procedure, according
to the defined policy.

Electronics 2022, 11, x FOR PEER REVIEW 15 of 17

Figure 16. Recovery action based on Anomaly Score.

Figure 17 is the result of fault recovery facilitated by fault information. In this exper-

iment, it is assumed that a fault has occurred as a result of one of the causes illustrated in

Figure 15, and a specific server respawn was set to be used as a recovery operation to

prevent faults.

Figure 17. Recovery Result.

5. Conclusions

In this work, a machine learning-based cloud management system was proposed, devel-

oped and implemented. In addition, an architecture that can be used to identify and prevent

faults in advance, by collecting data from the cloud infrastructure, was designed and imple-

mented using open source cloud technologies. In order to check the change of numerous data,

a method of calculating the anomaly score of the data collected in the cloud, using the self-

supervised method, was utilized. Using the anomaly score, it was possible to quickly check

the change situation of thousands of feature data, and based on this, the linkage structure with

the failure recovery model was suggested. In addition, for the actual cause analysis, cause

analysis was performed by adding a label to the anomaly score. The cause was analyzed using

RFE, and the actual resource change pattern was confirmed based on the analysis result. If it

was determined that there was an abnormal situation, the information was delivered to the

recovery function. Through this, it was confirmed that the disadvantages of supervised learn-

ing based anomaly score can be supplemented, and fault can be prevented in advance. In a

future study, we intend to conduct research on a model that can find the exact cause, through

linkage, of additional cause analysis methods.

Contributions in this paper are as follows.

We designed a monitoring system for fault detection in a cloud environment and de-

signed an architecture that links it to a deep learning-based fault detection architecture. For

monitoring, a monitoring tool called Prometheus was used, and data were collected and

learned. Subsequently, we designed an architecture that automatically labels the part to deter-

mine the exact cause of the faults and an architecture that can check the actual cause by using

it. To identify the cause, the feature importance method was applied. Once a fault is deter-

mined, the interlocking structure with the cloud is designed so that the related restoration

procedure can be automatically started. The entire designed architecture was implemented

using open source, such as openstack and Kubernetes, and verified from the fault stage to the

recovery stage.

Figure 16. Recovery action based on Anomaly Score.

Figure 17 is the result of fault recovery facilitated by fault information. In this exper-
iment, it is assumed that a fault has occurred as a result of one of the causes illustrated
in Figure 15, and a specific server respawn was set to be used as a recovery operation to
prevent faults.

Electronics 2022, 11, x FOR PEER REVIEW 15 of 17

Figure 16. Recovery action based on Anomaly Score.

Figure 17 is the result of fault recovery facilitated by fault information. In this exper-

iment, it is assumed that a fault has occurred as a result of one of the causes illustrated in

Figure 15, and a specific server respawn was set to be used as a recovery operation to

prevent faults.

Figure 17. Recovery Result.

5. Conclusions

In this work, a machine learning-based cloud management system was proposed, devel-

oped and implemented. In addition, an architecture that can be used to identify and prevent

faults in advance, by collecting data from the cloud infrastructure, was designed and imple-

mented using open source cloud technologies. In order to check the change of numerous data,

a method of calculating the anomaly score of the data collected in the cloud, using the self-

supervised method, was utilized. Using the anomaly score, it was possible to quickly check

the change situation of thousands of feature data, and based on this, the linkage structure with

the failure recovery model was suggested. In addition, for the actual cause analysis, cause

analysis was performed by adding a label to the anomaly score. The cause was analyzed using

RFE, and the actual resource change pattern was confirmed based on the analysis result. If it

was determined that there was an abnormal situation, the information was delivered to the

recovery function. Through this, it was confirmed that the disadvantages of supervised learn-

ing based anomaly score can be supplemented, and fault can be prevented in advance. In a

future study, we intend to conduct research on a model that can find the exact cause, through

linkage, of additional cause analysis methods.

Contributions in this paper are as follows.

We designed a monitoring system for fault detection in a cloud environment and de-

signed an architecture that links it to a deep learning-based fault detection architecture. For

monitoring, a monitoring tool called Prometheus was used, and data were collected and

learned. Subsequently, we designed an architecture that automatically labels the part to deter-

mine the exact cause of the faults and an architecture that can check the actual cause by using

it. To identify the cause, the feature importance method was applied. Once a fault is deter-

mined, the interlocking structure with the cloud is designed so that the related restoration

procedure can be automatically started. The entire designed architecture was implemented

using open source, such as openstack and Kubernetes, and verified from the fault stage to the

recovery stage.

Figure 17. Recovery Result.

5. Conclusions

In this work, a machine learning-based cloud management system was proposed,
developed and implemented. In addition, an architecture that can be used to identify and
prevent faults in advance, by collecting data from the cloud infrastructure, was designed
and implemented using open source cloud technologies. In order to check the change of

Electronics 2022, 11, 3765 15 of 17

numerous data, a method of calculating the anomaly score of the data collected in the cloud,
using the self-supervised method, was utilized. Using the anomaly score, it was possible
to quickly check the change situation of thousands of feature data, and based on this, the
linkage structure with the failure recovery model was suggested. In addition, for the actual
cause analysis, cause analysis was performed by adding a label to the anomaly score. The
cause was analyzed using RFE, and the actual resource change pattern was confirmed
based on the analysis result. If it was determined that there was an abnormal situation, the
information was delivered to the recovery function. Through this, it was confirmed that
the disadvantages of supervised learning based anomaly score can be supplemented, and
fault can be prevented in advance. In a future study, we intend to conduct research on a
model that can find the exact cause, through linkage, of additional cause analysis methods.

Contributions in this paper are as follows.
We designed a monitoring system for fault detection in a cloud environment and

designed an architecture that links it to a deep learning-based fault detection architecture.
For monitoring, a monitoring tool called Prometheus was used, and data were collected
and learned. Subsequently, we designed an architecture that automatically labels the part
to determine the exact cause of the faults and an architecture that can check the actual cause
by using it. To identify the cause, the feature importance method was applied. Once a
fault is determined, the interlocking structure with the cloud is designed so that the related
restoration procedure can be automatically started. The entire designed architecture was
implemented using open source, such as openstack and Kubernetes, and verified from the
fault stage to the recovery stage.

6. Discussion

Cloud infrastructure has a complex architecture. With respect to this, the types of
log data are also diverse, and the number of log data also changes as the number of
virtual machines increases or decreases. Moreover, the average utilization rate of each
resource varies according to the type of service and resources. In the cloud environment,
cloud availability has been traditionally guaranteed through a monitoring system, but
accurate fault detection is difficult due to the above-mentioned structural characteristics.
To overcome this, fault detection techniques using supervised learning have been proposed,
but the problem of labeling all data, securing data for fault learning, and detecting the
causes of complex faults still remain. To overcome this, in this paper, we proposed a fault
detection method using a self-supervised learning method that does not require labeling.
In addition, for accurate fault detection, a cause analysis function that can find problems
using abnormal data was also added. Finally, based on the detection result, a recovery
function was also designed. All designed functions were integrated and implemented in
the cloud environment and verified.

Author Contributions: All the authors contributed to the research and wrote the article. H.Y. pro-
posed the idea, designed, and performed the evaluation. Y.K. suggested directions for the detailed
designs and evaluation, as well as coordinating the research. All authors have read and agreed to the
published version of the manuscript.

Funding: This work was partly supported by the Institute of Information & Communications
Technology Planning & Evaluation (IITP) grant, funded by the Government of Korea (MSIT) (No.2020-
0-00946, Development of Fast and Automatic Service recovery and Transition software in Hybrid
Cloud Environment).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Electronics 2022, 11, 3765 16 of 17

References
1. Guan, Q.; Fu, S. Adaptive Anomaly Identification by Exploring Metric Subspace in Cloud Computing Infrastructures. In

Proceedings of the 2013 IEEE 32nd International Symposium on Reliable Distributed Systems, Braga, Portugal, 1–3 October 2013;
pp. 205–214.

2. Pannu, H.S.; Liu, J.; Guan, Q.; Fu, S. AFD: Adaptive Failure Detection System for Cloud Computing Infrastructures. In Proceedings
of the 2012 IEEE 31st International Performance Computing and Communications Conference (IPCCC), Austin, TX, USA, 1–3
December 2012; pp. 71–80.

3. Wang, C.; Talwar, V.; Schwan, K.; Ranganathan, P. Online Detection of Utility Cloud Anomalies Using Metric Distributions. In
Proceedings of the 2010 IEEE Network Operations and Management Symposium—NOMS 2010, Osaka, Japan, 19–23 April 2010;
pp. 96–103.

4. Wang, C.; Viswanathan, K.; Choudur, L.; Talwar, V.; Satterfield, W.; Schwan, K. Statistical Techniques for Online Anomaly
Detection in Data Centers. In Proceedings of the 12th IFIP/IEEE International Symposium on Integrated Network Management
(IM 2011) and Workshops, Dublin, Ireland, 23–27 May 2011; pp. 385–392.

5. Bianchini, R.; Fontoura, M.; Cortez, E.; Bonde, A.; Muzio, A.; Constantin, A.M.; Moscibroda, T.; Magalhaes, G.; Bablani, G.;
Russinovich, M. Toward ML-Centric Cloud Platforms. Commun. ACM 2020, 63, 50–59. [CrossRef]

6. Bolivar, L.T.; Tselios, C.; Mellado Area, D.; Tsolis, G. On the Deployment of an Open-Source, 5G-Aware Evaluation Testbed. In
Proceedings of the 2018 6th IEEE International Conference on Mobile Cloud Computing, Services, and Engineering (MobileCloud),
Bamberg, Germany, 26 March 2018; pp. 51–58.

7. Salah, T.; Zemerly, M.J.; Yeun, C.Y.; Al-Qutayri, M.; Al-Hammadi, Y. Performance Comparison between Container-Based and
VM-Based Services. In Proceedings of the 2017 20th Conference on Innovations in Clouds, Internet and Networks (ICIN), Paris,
France, 26–29 March 2017; pp. 185–190.

8. Li, Z.; Kihl, M.; Lu, Q.; Andersson, J.A. Performance Overhead Comparison between Hypervisor and Container Based Virtualiza-
tion. In Proceedings of the 2017 IEEE 31st International Conference on Advanced Information Networking and Applications
(AINA), Taipei, Taiwan, 27–29 March 2017; pp. 955–962.

9. Kaur, K.; Dhand, T.; Kumar, N.; Zeadally, S. Container-as-a-Service at the edge: Trade-off between energy efficiency and service
availability at fog nano data centers. IEEE Wireless Commun. 2017, 24, 48–56. [CrossRef]

10. Sauvanaud, C.; Lazri, K.; Kaaniche, M.; Kanoun, K. Anomaly Detection and Root Cause Localization in Virtual Network Functions.
In Proceedings of the 2016 IEEE 27th International Symposium on Software Reliability Engineering (ISSRE), Ottawa, ON, Canada,
23–27 October 2016; pp. 196–206.

11. Liu, J.; Chen, S.; Zhou, Z.; Wu, T. An Anomaly Detection Algorithm of Cloud Platform Based on Self-Organizing Maps. Math.
Probl. Eng. 2016, 2016, 3570305. [CrossRef]

12. Cotroneo, D.; Natella, R.; Rosiello, S. A Fault Correlation Approach to Detect Performance Anomalies in Virtual Network Function
Chains. In Proceedings of the 2017 IEEE 28th International Symposium on Software Reliability Engineering (ISSRE), Toulouse,
France, 23–26 October 2017; pp. 90–100.

13. Soualhia, M.; Fu, C.; Khomh, F. Infrastructure Fault Detection and Prediction in Edge Cloud Environments. In Proceedings of the
4th ACM/IEEE Symposium on Edge Computing (SEC ’19). Association for Computing Machinery, New York, NY, USA, 7–9
November 2019; pp. 222–235.

14. Wang, B.; Hua, Q.; Zhang, H.; Tan, X.; Nan, Y.; Chen, R.; Shu, X. Research on anomaly detection and real-time reliability evaluation
with the log of cloud platform. Alex. Eng. J. 2020, 61, 7183–7193. [CrossRef]

15. El-Shamy, A.M.; El-Fishawy, N.A.; Attiya, G.; Mohamed, M.A. Anomaly Detection and Bottleneck Identification of The Distributed
Application in Cloud Data Center using Software–Defined Networking. Egypt. Inform. J. 2021, 22, 417–432. [CrossRef]

16. Garg, S.; Kaur, K.; Kumar, N.; Rodrigues, J.J.P.C. Hybrid Deep-Learning-Based Anomaly Detection Scheme for Suspicious Flow
Detection in SDN: A Social Multimedia Perspective. IEEE Trans. Multimed. 2019, 21, 566–578. [CrossRef]

17. He, Z.; Lee, R.B. CloudShield: Real-time Anomaly Detection in the Cloud. arXiv 2021, arXiv:2108.08977.
18. Vu, D.D.; Vu, X.T.; Kim, Y. Deep Learning-Based Fault Prediction in Cloud System. In Proceedings of the 2021 International

Conference on Information and Communication Technology Convergence (ICTC), Jeju Island, Republic of Korea, 20–22 October
2021; pp. 1826–1829.

19. Gao, J.; Wang, H.; Shen, H. Task Failure Prediction in Cloud Data Centers Using Deep Learning. In Proceedings of the 2019 IEEE
International Conference on Big Data (Big Data), Los Angeles, CA, USA, 9–12 December 2019; pp. 1111–1116.

20. Openstack. Available online: https://wiki.openstack.org/wiki (accessed on 14 March 2021).
21. Kubernetes. Available online: https://kubernetes.io/docs/home/ (accessed on 14 March 2021).
22. Kourtis, M.; Mcgrath, M.J.; Gardikis, G.; Xilouris, G.; Riccobene, V.; Rapadimitriou, P.; Trouva, E.; Liberati, F.; Trubian, M.; Batalle,

J.; et al. T-NOVA: An Open-Source MANO Stack for NFV Infrastructures. IEEE Trans. Netw. Serv. Manag. 2017, 14, 586–602.
[CrossRef]

23. Li, B. Anomaly Detection in Streaming Data using Autoencoders; Hannover University: Hannover, Germany, 2018.
24. Malhotra, P.; Ramakrishnan, A.; Anand, G.; Vig, L.; Agarwal, P.; Shroff, G. Lstm-based encoder-decoder for multi-sensor anomaly

detection. arXiv 2016, arXiv:1607.00148.
25. Russo, S.; Disch, A.; Blumensaat, F.; Villez, K. Anomaly Detection using Deep Autoencoders for in-situ Wastewater Systems

Monitoring Data. arXiv 2020, arXiv:2002.03843.

http://doi.org/10.1145/3364684
http://doi.org/10.1109/MWC.2017.1600427
http://doi.org/10.1155/2016/3570305
http://doi.org/10.1016/j.aej.2021.12.061
http://doi.org/10.1016/j.eij.2021.01.001
http://doi.org/10.1109/TMM.2019.2893549
https://wiki.openstack.org/wiki
https://kubernetes.io/docs/home/
http://doi.org/10.1109/TNSM.2017.2733620

Electronics 2022, 11, 3765 17 of 17

26. Ahmad, S.; Purdy, S. Real-Time Anomaly Detection for Streaming Analytics; Numenta: Redwood City, CA, USA, 2016.
27. PromQL. Available online: https://prometheus.io/docs/prometheus/latest/querying/basics/ (accessed on 14 March 2021).
28. Stress-ng. Available online: http://kernel.ubuntu.com/~cking/stress-ng/ (accessed on 14 March 2021).
29. Iperf3. Available online: https://iperf.fr/ (accessed on 14 March 2021).
30. Pytorch. Available online: https://pytorch.org/ (accessed on 14 March 2021).
31. Prometheus. Available online: https://prometheus.io/ (accessed on 14 March 2021).
32. Gunasegaran, T.; Cheah, Y. Evolutionary Cross Validation. In Proceedings of the 2017 8th International Conference on Information

Technology (ICIT), Amman, Jordan, 17–18 May 2017; pp. 89–95.
33. Hajian-Tilaki, K. Receiver Operating Characteristic (ROC) Curve Analysis for Medical Diagnostic Test Evaluation. Caspian J Int.

Med. 2013, 4, 627–635.
34. Ke, G.; Meng, Q.; Finley, T.; Wang, T.; Chen, W.; Ma, W.; Ye, Q.; Liu, T.-Y. Lightgbm: A highly efficient gradient boosting decision

tree. Proc. Adv. Neural Inf. Process. Syst. 2017, 30, 3146–3154.

https://prometheus.io/docs/prometheus/latest/querying/basics/
http://kernel.ubuntu.com/~cking/stress-ng/
https://iperf.fr/
https://pytorch.org/
https://prometheus.io/

	Introduction
	State of the Art: Machine Learning Based Fault Detection and Fault Prediction
	Design and Implementation of Machine Learning-Based Fault Prediction System in Cloud Infrastructure
	Proposed Architecture
	Self-Supervised Fault Prediction
	Data Pre-Processing
	LSTM Based Anomaly Detection
	Fault Recovery System Based on Machine Learning

	System Validation
	Implementation
	Test Result
	Testbed for ML Based Cloud Infrastructure Management

	Conclusions
	Discussion
	References

