
����������
�������

Citation: Papatheofanous, E.A.;

Kalekis, V.; Venitourakis, G.; Tziolos,

F.; Reisis, D. Deep Learning-Based

Image Regression for Short-Term

Solar Irradiance Forecasting on the

Edge. Electronics 2022, 11, 3794.

https://doi.org/10.3390/

electronics11223794

Academic Editor: Gwanggil Jeon

Received: 20 October 2022

Accepted: 15 November 2022

Published: 18 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Deep Learning-Based Image Regression for Short-Term Solar
Irradiance Forecasting on the Edge
Elissaios Alexios Papatheofanous 1 , Vasileios Kalekis 1,2, Georgios Venitourakis 1,2, Filippos Tziolos 1

and Dionysios Reisis 1,2,*

1 Electronics Lab, Department of Physics, National and Kapodistrian University of Athens,
15784 Athens, Greece

2 Institute of Accelerating Systems and Applications, 15784 Athens, Greece
* Correspondence: dreisis@phys.uoa.gr

Abstract: Photovoltaic (PV) power production is characterized by high variability due to short-
term meteorological effects such as cloud movements. These effects have a significant impact on
the incident solar irradiance in PV parks. In order to control PV park performance, researchers
have focused on Computer Vision and Deep Learning approaches to perform short-term irradiance
forecasting using sky images. Motivated by the task of improving PV park control, the current
work introduces the Image Regression Module, which produces irradiance values from sky images
using image processing methods and Convolutional Neural Networks (CNNs). With the objective of
enhancing the performance of CNN models on the task of irradiance estimation and forecasting, we
propose an image processing method based on sun localization. Our findings show that the proposed
method can consistently improve the accuracy of irradiance values produced by all the CNN models
of our study, reducing the Root Mean Square Error by up to 10.44 W/m2 for the MobileNetV2
model. These findings indicate that future applications which utilize CNNs for irradiance forecasting
should identify the position of the sun in the image in order to produce more accurate irradiance
values. Moreover, the integration of the proposed models on an edge-oriented Field-Programmable
Gate Array (FPGA) towards a smart PV park for the real-time control of PV production emphasizes
their advantages.

Keywords: computer vision; deep learning; convolutional neural networks; edge computing; irradi-
ance forecasting; photovoltaic

1. Introduction

The ongoing transition from traditional coal and fossil fuels to Renewable Energy
Sources (RES) has led to solar photovoltaic (PV) parks having an increased share in the
energy production mix of many countries. In order to serve the needs of this energy
transition, PV production plants have to be integrated in the utility electrical grids, or
even in mini-grid and off-grid systems such as in autonomous islands. Moreover, the
development of technologies in the fields of Artificial Intelligence (AI), Computer Vision
(CV), and edge computing, combined with the Smart Grid (SG) concept [1], promotes
on-site data intelligence in PV parks. In this direction, AI-enabled smart PV parks can
contribute towards adapting PV power production to the dynamic requirements of the
grid [2].

Currently, attempts to efficiently and reliably integrate PV production into the energy
mix come up against the challenge of controlling its high intermittency and variability [3]. A
source of this variability is short-term meteorological effects, especially dynamic changes in
cloud coverage over PV facilities. Cloud features, such as their thickness, distribution in the
sky, and position with regard to the sun, significantly affect the incoming solar irradiance,
which is the most important factor in PV power generation. The ability to locally forecast
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short-term irradiance for PV facilities plays a key role in controlling the intermittence
of PV-generated electricity [4]. However, forecasting methods that are based solely on
historical irradiance data cannot reliably model the short-term effects of cloud flows. On
the other hand, image analysis techniques and CV-based methods can provide information
about the state of the clouds in the sky with a high spatial resolution when the images are
extracted from sky imagers (SIs) located close to the PV panels [5]. Furthermore, continuous
advances in the field of Machine Learning (ML), and particularly Deep Learning (DL) and
Convolutional Neural Networks (CNNs), have led modern CV tasks and applications
to employ these DL and CNN techniques. The combination of CNN-based sky image
processing with irradiance data with high temporal frequency (at least 1 min) constitutes
a very promising direction towards short-term (up to 15 min) forecasting, sometimes
called nowcasting, of irradiance [6]. The current availability of high quality and publicly
accessible image datasets [7–9] is in favor of the image-based ML approaches for irradiance
forecasting as well. Finally, DL-based image processing is following the trend of moving
from cloud servers towards edge devices in order to enable smart applications and the
Internet of Things (IoT) [10]. Edge devices can have resource and energy constraints, which
has led to the development of lightweight CNN models such as MobileNetV2 [11] and
SqueezeNet [12].

Aiming at an improved performance in short-term irradiance forecasting using sky
images, the current article introduces an image processing block, the Image Regression
Module (IRM). The IRM is a CNN-based block that processes a sky image and produces
a single value, out of a continuous range, that represents the estimated irradiance for the
particular sky image. The IRM is modular and can serve the task of irradiance forecasting
by processing an externally predicted future sky image or perform as standalone by being
trained on sky images with backwards shifted irradiance values. The development and
evaluation of CNN models and image processing methods for the IRM is based on the
Folsom, CA dataset [13], an extensive and publicly available dataset. Moreover, this work
aims to support the concept of the edge-enabled smart PV park [14] that meets the real-
time requirements of the PV power production control. For this purpose, we implement
and accelerate the CNNs of the IRM on an edge device, the Xilinx Zynq UltraScale+
MPSoC Field-Programmable Gate Array (FPGA). The current work makes the following
contributions:

1. To improve the performance of image regression CNN models, an image processing
method based on sun localization is proposed which improves the accuracy of the
irradiance values that the models produce, by up to 13.75% for the MobileNetV2
model.

2. To showcase the applicability of the proposed method for many CNN models and for
both irradiance estimation and forecasting, a study on four popular CNN models is
conducted, where the method improves the results in all cases.

3. To demonstrate the concept of a smart PV park with edge computing capabilities, we
deploy the image regression CNN models on an edge FPGA using the Xilinx Vitis AI
framework, achieving real-time processing rates.

The rest of this paper is organized as follows. First, Section 2 reports related results
in the literature. Then, Section 3 presents a formulation of the image regression for the
irradiance forecasting problem and an analysis of the dataset that we used. Section 4
introduces the proposed image processing method based on sun localization. Section 5
describes the development flow for porting the CNN models to the edge FPGA. Section 6
presents evaluation results for both the performance of the CNN models as well as FPGA
implementation results. Finally, Section 7 concludes the article.

2. Related Work

Image processing techniques towards irradiance forecasting can be applied on satellite
imagery [15–17]. However, images obtained from fisheye lens (180◦ field of view) SIs local
to the PV parks can provide increased spatial and temporal resolution. This fact can
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favor the precise irradiance forecasting for specific areas, such as PV parks, and for very
short-term forecast horizons of up to 15 min.

Several works in the literature propose image processing techniques to extract in-
formation regarding cloud coverage from sky images for irradiance forecasting [18–21].
The authors of [18] used ground-based sky images statistical features such as the Red
Blue Ratio (RBR) and Red Blue Difference (RBD) for cloud cover calculation. The authors
performed cloud cover forecasting using machine learning approaches such as Support
Vector Regression (SVR) and Artificial Neural Network (ANNs). In [19], the authors in-
troduced the Hybrid Thresholding Algorithm (HYTA) for cloud detection, which utilizes
Normalized Red Blue Ratio (NRBR) image metrics and adaptive thresholding methods.
The authors in [20] proposed a method for forecasting irradiance using the cloud cover
index. They used the RBR to calculate the cloud cover index, a Long Short-Term Memory
(LSTM) model for forecasting the future cloud cover index and a numerical solar radiation
model for calculating future irradiance. The work of [21] used image processing methods
to identify the cloud coverage and combined it with the clear sky index and LSTM models
to perform irradiance forecasting. The current work is different from the above results, as it
proposes an image processing method that precedes the corresponding CNN processing
and provides information to CNNs regarding the position of the sun in the image instead
of the cloud coverage features.

Regarding sun localization in sky images, different image processing approaches have
been reported in the literature [22–24]. In [22], the authors introduced a sun localization
algorithm based on pixel values and a masking algorithm for background removal based on
edge detection. Numerical NRBR values were generated from the processed sky images and
these values were fed to a Multilayer Perceptron (MLP) network for irradiance forecasting.
The work of [23] implemented and compared three different approaches for the identifica-
tion of the sun position in sky images targeting nowcasting applications. The ML-based
approach was shown to overcome the ones that are based on solar coordinates calculation
and traditional image processing. The sun tracking algorithm introduced in [24] used
image pixel values to identify the position of the sun when it is visible and an interpolation
method when it is not. While the aforementioned works performed sun localization based
on pixel values, the proposed method utilizes the solar angles and the mapping function of
the fisheye lens to accurately calculate the position of the sun in the image regardless of
any sky image effects such as clouds, high-intensity glare, and background objects.

The reported results that are the most closely related to the current work are the
ones which perform sky image regression using Deep Learning to produce irradiance
values [25–29]. The work in [25] provided an in-depth comparison of deep learning model
types for short-term irradiance forecasting from sky images. The four model types, namely,
CNN, CNN plus LSTM, 3D-CNN, and Convolutional LSTM (ConvLSTM), were all shown
to achieve around 20% forecast skill on the 10 min ahead prediction. The authors in [26]
used the ResNet CNN model for performing irradiance regression and forecasting tasks
for forecasting. By stacking different RGB channels of past images on the input of the
model they could achieve up to 18% forecast skill for a 10 min horizon. In [27], the authors
proposed replacing costly irradiance measurement instruments, e.g., pyranometers, with
a CNN-based image regression model to produce irradiance values. They particularly
focused on cloudy days that have the most sudden irradiance deviations, showing the
feasibility of their approach. The work in [28] investigated the performance of CNN and
LSTM models on image regression for irradiance mapping. Apart from the deterministic
methods, it applied probabilistic ones to statistically evaluate the performance of the models.
The authors of [29] performed irradiance nowcasting from sky images by enhancing a
traditional CNN with attention modules to improve its performance. It is worth noting
that all of the above works utilized datasets with a relatively limited number of samples
of up to a few tenths of thousands. In contrast, we utilize the entire Folsom, CA dataset,
which contains three consecutive years of data with more than 700,000 image samples.
This allows us to extract the evaluation results of the CNN models from an extensive test
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dataset of one whole year, which includes indicative samples of all sky image effects. By
examining the performance on individual months, we quantify how the distributions of
sky image phenomena affect the irradiance forecasting problem. Finally, we showcase
the task of image regression for irradiance estimation performed on an edge FPGA. The
CNN models of the study all achieve real-time processing rates on the FPGA towards the
real-time control of PV power production in a smart PV park.

3. Problem Formulation & Image Dataset Analysis

In the current section, we first present the task of the image regression for irradiance
estimation and forecasting and describe its main objectives. Then, we explain the dataset
pre-processing steps and perform an analysis of the Folsom, CA dataset utilized in this
work. Through this analysis, we highlight the sky image features and their distributions,
which play a key role in the performance of the CNN models that perform image regression
for irradiance estimation and forecasting.

3.1. Image Regression for Irradiance Forecasting Problem Formulation

The problem of image regression for irradiance estimation can be formulated as
follows. Considering a dataset that consists of a paired sky image Xt and corresponding
irradiance measurement It at time t, an image regression CNN model can be trained to
produce a single value that represents an estimation of the irradiance Ît when provided
with the sky image Xt. With the above formulation, the image regression for irradiance
estimation can be expanded to image regression for irradiance forecasting in two ways. First,
assuming an external module that can predict the future sky image X̂t+H after timeH in a
sequence [30–32], the image regression CNN model can then produce the corresponding
estimation of the irradiance Ît+H from this image. Alternatively, an image regression CNN
model can be trained on sequences of images where the corresponding irradiance values
have been shifted backwards in time byH. In this way, when the model is provided with a
sky image Xt at time t it produces the irradiance forecast Ît+H. The above image regression
for the irradiance forecasting problem formulation is illustrated in Figure 1.

Figure 1. Irradiance forecasting using an image regression CNN with either (a) an external module
for future sky image prediction or (b) irradiance values shifted backwards in time byH.

The objective of the tasks described above is to minimize the error between the actual
It values and the Ît values produced by a CNN model after processing an image. In the
evaluation of such models, it is common to use the error metrics of mean absolute error
(MAE) and root mean square error (RMSE). In order to compare the performance of a
model on different subsets that can have largely different distributions of irradiance values
(e.g., a cloudy winter month vs. a clear sky summer one), we emphasized the normalized
RMSE (nRMSE), which we calculate using the mean irradiance value, Ī of the set as

nRMSE =
RMSE

Ī
. (1)
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Regarding forecasting, the Persistence Model (PM) serves as a reference forecasting
model against which to benchmark other CNN models. It assumes that the predicted future
irradiance value Ît+H remains unchanged from the current irradiance value It into the
forecast horizonH, and can be expressed as

Ît+H = It. (2)

In order to measure the improvement of any model against the persistence model,
the Forecast Skill (FS) metric is introduced. It is common for solar irradiance forecasting
applications to use the root mean square error of the persistence model, denoted as RMSEP,
and of the benchmarked model, RMSEM, for the FS calculation, as follows:

FS = 1− RMSEM
RMSEP

. (3)

3.2. Folsom, CA Dataset Analysis

For the development and evaluation of image processing methods and CNN models
for our IRM block, we utilize the Folsom, CA dataset introduced in the work of [13] and
publicly available in [8]. The dataset contains high-resolution 1536× 1536 sky images of
three consecutive years, 2014, 2015, and 2016 taken at a site in Folsom, CA, USA (38.642◦,
−121.148◦). The images come with corresponding Global Horizontal, Direct Normal, and
Diffuse Horizontal Irradiance (GHI, DNI, DHI) measurements, and have a high temporal
resolution of 1 min, making the dataset suitable for very short-term irradiance forecasting.
The GHI describes the total irradiance from the sun on a horizontal surface, including both
the DNI and DHI terms; thus, we focus on GHI for irradiance forecasting. In the remaining
sections of this paper, the term irradiance refers to the GHI. The first step towards adjusting
the dataset for our application is to perform data cleaning. In particular, several images
are missing corresponding irradiance measurements, and vice versa. For this purpose, the
first step taken was the rounding of the image timestamps to the closest integer minute
value. Then, we matched the images to the irradiance timestamps and formulated pairs
that include both an image and a valid irradiance measurement. During the latter step, we
removed all the samples corresponding to the very low solar elevation values during the
night. At this point, we performed dataset analysis.

In order to distinguish the image features that affect the irradiance measurements, we
first performed a daily analysis. A single day demonstrates the lowest degree of periodicity
in sky image events, that is, the daily change of the sun’s elevation angle. To perform the
analysis, we transformed the original dataset timestamps from the Universal Time Coor-
dinated (UTC) +0 timezone to the Los Angeles timezone (UTC-7, UTC-8) corresponding
to the location of the sky imager in order to correctly identify the day and night periods.
Figure 2 presents daily GHI plots for three indicative days, while Figure 3 shows the sky
images which correspond to the markers of each daily GHI plot. From the first day, which
includes only clear sky images, it can be observed that the position of the sun in the image,
specifically, its distance from the image center, is the feature that is directly correlated
with the GHI measurement. The second day, which features both clear sky and complex
cloud effects in the images, indicates that there can be fluctuations and sudden drops in the
measured irradiance when clouds obstruct the sun. Moreover, due to the larger distance
of the sun from the center of the image during noon (lower elevation angle), the peak
irradiance measurement is lower when compared to the first day. Finally, in the third day,
which is characterized by images with only overcast sky, the measured GHI maintains
consistent and very low values.
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Figure 2. Daily GHI plots for the days (a) 7 June 2014, (b) 3 November 2014, and (c) 24 December
2014.

Figure 3. Sky images corresponding to the markers on the daily irradiance plot, from left to right and
top to bottom, for the days (a) 7 June 2014, (b) 3 November 2014, and (c) 24 December 2014.

Based on the observations of the daily analysis, we expect CNN models that perform
image regression to produce a less accurate irradiance value in cases with complex cloud
effects and overcast sky, resulting in a larger nRMSE. The reason for this is the lack of
information regarding the position of the sun in the image, which is the main image feature
that the CNNs can model in order to produce an irradiance value. We note here that clear
days consistently occur in summer months, while days with complex cloud effects occur
during the rest of the year. We highlight this in Figure 4, where we show all the daily GHI
plots for June and March 2014 arranged in a calendar. Thus, we can quantify the effects
of cloud phenomena on the performance of CNN models by evaluating them on different
months that have different distributions of cloudy vs. clear sky days.

Figure 4. Daily GHI plot calendars of two different months: (a) June 2014 and (b) March 2014.

4. SunMask Generation Image Processing Method

Based on the analysis in Section 3, we propose an image processing method to support
the CNNs in providing more accurate irradiance estimations from sky images. The method
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is based on sun localization in the image. The intuition behind it is that the CNNs can
model the position of the sun in the image and the cloud effects in the sun disk area in
order to produce an irradiance value. The proposed method consists of locating the sun’s
center in the image and generating the SunMask, a circular mask around the center of the
sun which we append as an additional fourth channel to the original three-channel RGB
image. This method provides information to the CNN models about the position of the
sun’s center in the image, which is particularly useful in images where the sun is covered
by clouds. The steps in our image processing method are summarized in Figure 5, and are
explained in detail in the following paragraphs.

Figure 5. Summary of the steps in the SunMask generation image processing method.

The first step in our method is to calculate the center of the sun disk in the image.
Approaches that are based on the RGB values of the image often fail to identify the position
of the sun when it is hidden by clouds. Furthermore, high-intensity background objects
and glare effects can be erroneously identified as the sun. Due to the above, we opt for an
approach based on the solar azimuth and zenith angles, φs and θs. The summary of our
approach to sun localization is illustrated in Figure 6. Considering the timestamp of an
image along with the latitude and longitude coordinates, we calculate φs and θs using pvlib-
python [33]. Because of the fisheye distortion of the lens of the camera, simply projecting
the solar coordinates on a flat surface does not result in accurate identification of the sun’s
center in the image. To address this, we use the mapping function of the lens to calculate
the distance of the sun from the center of the image R as a function of the focal length of the
lens f and the angle from the optical axis Φ. The mapping functions vary based on the type
of projection (stereographic, equidistant, etc.) of the lens, and neither this information nor
the focal length is available for the camera used to create the Folsom, CA dataset. Through
trial and error, we were able to identify that the stereographic projection with a focal length
of f = 0.48 provides the most accurate results. Thus, we use the mapping function of the
stereographic projection

R = 2 f tan
Φ
2

(4)

where we replace Φ with the solar zenith angle θs. After calculating the distance of the sun
from the center of the image, we calculate the Cartesian coordinates xc, yc using the solar
azimuth angle φs with

xc = R sin(φs), (5)

yc = R cos(φs). (6)

In our case, we adjust φs with an angular correction of 165◦ to compensate for the
orientation of the camera. Finally, we transform the Cartesian coordinates xc, yc to pixel
coordinates xp, yp in the image by multiplying them with the image radius which is
ImageWidth/2.

After calculating the position of the sun’s center in the image, we generate the SunMask
and append it as a fourth channel to the RGB image. The SunMask consists of a mask
around the center of the sun with a pixel value of 255, while the rest of the pixels have
a value of 0. In Figure 7, we showcase the results of our image processing method for
indicative images, with the SunMask portrayed in orange. It can be observed that the
proposed sun localization method accurately identifies the position of the sun in all the
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images, regardless of their variations in terms of the solar azimuth angle, zenith angle, and
cloud coverage of the sun.

Figure 6. Overview of our sun localization approach on a sky image produced by fisheye lens.

Figure 7. The SunMask, in orange colour for visualization purposes, for a few selected image samples.

Based on the above, we applied the two steps used in our image processing method
to the entire Folsom, CA dataset and provided four-channel images to the Irradiance
Regression Module during both training and testing of CNN models. With the IRM
configured to perform forecasting in standalone mode by being trained on backwards-
shifted GHI data, we perform one additional image processing step. Instead of providing
only one four-channel image (RGB & SunMask), denoted as Xt, we stack two additional
four-channel images, Xt−H and Xt−2H, which correspond to two steps backwards in the
forecast horizonH. As a result, the IRM operates on an input of 12 channels in total. For
example, if the IRM is trained to perform forecasting 5 min ahead, we provide as input the
images Xt, Xt − 5 and Xt − 10 and their corresponding SunMasks. In this way, the IRM
has additional information regarding the past state of the sky.

5. Porting and Acceleration on Edge FPGA

In the current work, in order to support the concept of an edge-enabled smart PV park
that can fulfill the control requirements of real-time PV, we implement the CNN models
of our Irradiance Regression Module on an FPGA device targeting an edge computing
application, the Xilinx Zynq UltraScale+ MPSoC [34]. This System-on-Chip (SoC) family
of FPGAs features heterogeneous resources, including both an ARM-based Processing
Subsystem (PS) and a configurable fabric known as the Programmable Logic (PL). For
porting the models to the FPGA, we utilized the Xilinx Vitis AI framework [35]. This
framework provides an end-to-end set of tools that allows the developer to port and
execute CNN models from popular frameworks such as PyTorch and Tensorflow to Xilinx
FPGAs. The development workflow that we followed for implementing and accelerating
our models on the FPGA is summarized in Figure 8, and is described in the following
paragraphs.
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On the host PC side, the tools included the Vitis AI Quantizer. Using the Quantizer, we
first developed a Python application for quantizing our 32-bit floating-point CNN model
descriptions to the corresponding 8-bit fixed-point ones, as required by the framework. Vitis
AI offers several quantization related solutions, such as Post-Training Quantization (PTQ),
which implements the cross layer equalization algorithm [36], Fast Fine-tuning (FF), which
implements the AdaQuant algorithm [37], and Quantization-Aware Training (QAT). In this
work, we combine the PTQ, FF, and QAT solutions to reduce the effect of quantization to
the performance of the studied models as much as possible. After quantization, we utilized
the Vitis AI Compiler to produce the graph description and instructions for the compiled
model that are executed on the target FPGA during runtime.

On the target FPGA side, the framework provides the Deep-Learning Processor Unit
(DPU) IP Core. The DPU is a programmable computation engine which is implemented on
the PL resources of the target FPGA. Its architecture and the set of instruction it supports is
highly optimized for accelerating a wide range of operations that most of the popular CNNs
require. In the current work, we configured the DPU for optimized resource utilization
on the FPGA in order to enable the employment of two processing cores of the DPU for
increased throughput. The DPU is integrated in the FPGA design, which includes the
ARM-based PS. After FPGA programming, we developed the runtime application that is
executed on the PS of the FPGA and controls the DPU during runtime. The development of
the runtime application was based on the APIs that the Vitis AI Runtime library provides
for developers, which are available in both C++ and Python.

Figure 8. The Vitis AI development flow that we followed in the current work.

6. Model Evaluation and Implementation Results

In the current section, we present the evaluation results of the studied CNN models
and our image processing method on the task of image regression for irradiance estimation
and forecasting. We study the performance of the VGG11 [38] and ResNet-50 [39] models,
for which similar comparative studies have been conducted on various applications [26,40].
We study the performance of two CNN models which target edge devices with limited
resources, namely, the MobileNetV2 [11] and SqueezeNet [12] models. With this selection
of models, we cover a wide range of model sizes and number of operations, as shown in
Table 1. The models and all training and evaluation processes were implemented in Python
using PyTorch on a Linux workstation with an Intel(R) Core(TM) i7-9700K CPU @ 3.60
GHz and NVIDIA GeForce RTX 3080 GPU. The edge FPGA deployment and evaluation of
the models was performed on a Xilinx ZCU104 FPGA board using the Xilinx Vitis 2021.2,
Vivado 2021.2, and Vitis AI 2.0 tools.
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Table 1. Number of parameters and number of operations for the four models of the study.

Model # Parameters # OPs (Mult-Adds)

VGG11 128.77 Mil. 2.57 G
ResNet-50 23.51 Mil. 1.33 G

MobileNetV2 2.23 Mil. 0.10 G
SqueezeNet 0.74 Mil. 0.23 G

6.1. Image Regression Models Training and Performance Evaluation

First, we trained the four models of the study to perform irradiance estimation from sky
images. The training dataset included the years 2015 and 2016 (522,320 samples), while the
test dataset consisted of the entire year 2014 (240,944 samples). During training, we used
the Mean Square Error (MSE) loss function, which is suitable for image regression tasks. The
hyperparameters were tuned based on the RMSE results of the trained models on the entire
test dataset. Tuning was performed for the ResNet-50 model and the hyperparameters were
kept the same for all the training procedures in the work in order to keep the experimental
environment consistent. All the models are trained for ten epochs, which was identified
as sufficient, because all models showcased overfitting after only a few epochs. This can
be attributed to the high number of training steps during each epoch due to the large size
of the training dataset. Regarding the batch size and the image size, these were limited
to 16 and 128× 128, respectively, due to GPU memory limitations and the training time
required. Regarding the learning rate, it was initialized to 10−3 and automatically tuned by
a scheduler that reduced the learning rate by a factor of 0.75 if the validation loss plateaued
for five epochs.

The training dataset was split into the training subset and validation subset for evalu-
ation of the models during training. Instead of a random split, we selected all the samples
of one random day of each consecutive month of the training dataset and added them to
the validation subset until we reached the desired training–validation split ratio of 80–20%.
In this way, the validation subset included indicative samples of the entire dataset in terms
of the yearly periodical phenomena in the sky images. Furthermore, we avoided including
in the validation subset samples only 1 min apart from almost identical ones in the training
subset. We evaluated the performance of the models after every training epoch and selected
the saved model with the minimum validation loss to avoid overfitting.

In Table 2, we present the performance evaluation results of the four different models
on the original dataset as well as on the dataset with the images enhanced with the SunMask
channel. The ResNet-50 model appears to result in the lowest error metrics, with an RMSE
of 64.83 W/m2. When introducing our SunMask generation method, it can be observed
that it consistently improves the performance of all models. The MobileNetV2 model is
favoured the most by our SunMask generation method, with its RMSE decreasing from
75.95 W/m2 to 65.51 W/m2, a 13.75% improvement.

Table 2. Evaluation and comparison of the four models; SM indicates the models trained and evalu-
ated with the four-channel images that include SunMask and the improved models are highlighted
in bold.

Model RMSE (W/m2) nRMSE (%) MAE (W/m2)

VGG11 65.25 15.88 38.31
VGG11SM 59.03 14.36 32.93

ResNet-50 64.83 15.77 37.23
ResNet-50SM 60.31 14.67 36.02

MobileNetV2 75.95 18.48 47.74
MobileNetV2SM 65.51 15.94 39.53

SqueezeNet 70.18 17.08 44.65
SqueezeNetSM 62.93 15.31 38.56
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In order to quantify the effect that the SunMask generation method has on different
distributions of sky image phenomena, we evaluated the MobileNetV2 model, which
shows the largest improvement with the SunMask, on individual months. The RMSE and
nRMSE results are presented in Figure 9. We note here that we focus on the nRMSE metric
in order to directly compare the performance of the models across different months. The
reason for this is that the distribution of the sky image features and irradiance values is
different for each month. Thus, a month with a smaller RMSE can correspond to a larger
nRMSE, and vice versa; this is apparent in months such as February, May, and December.
The nRMSE plot indicates that, in general, the model tends to perform better in months
when there are less complex effects of clouds obstructing the sun in the image, such as
June and August. Furthermore, the improvement in the performance thanks to SunMask is
larger in months with complex sky image phenomena. In particular, MobileNetV2 shows
the largest nRMSE improvement with SunMask in February (4.1%), May (3.9%), March
(3.7%), April (3.7%), and January (3.6%). The current work focuses on the dataset generated
at the location of Folsom, CA, USA (38.642◦, −121.148◦). However, it would be worth
exploring the performance of image regression CNNs for irradiance estimation and of the
proposed SunMask generation method on other geographic areas. These geographic areas
could include regions with significantly different sky image feature distributions, such
as higher latitude regions where the sun is close to the horizon. Of course, this would
require an extensive, publicly available, and high-quality dataset for the particular area.
The availability of such extensive, annotated, and public datasets is currently an open
issue in the field of Deep Learning-based irradiance forecasting and Machine Learning
in general.
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Figure 9. RMSE and nRMSE monthly plots for MobileNetV2 with and without the SunMask.

Following the results for irradiance estimation, we selected the ResNet-50 model,
which had the best performance, to perform standalone irradiance forecasting. For this
purpose, we shifted the irradiance values of the dataset backwards in time by the forecast
horizon H, as explained in Section 3. We formulated the dataset in this way for three
different forecast horizons 5, 10, and 15 min ahead. We trained the ResNet-50 model
similarly to before, with the simple RGB input and the 12-channel stacked SunMask
images described in Section 4. The results of the ResNet-50 model on image regression for
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irradiance forecasting and the persistence model are shown in Table 3. It can be observed
that the ResNet-50 model achieves a forecast skill which is incremental with regards to the
forecast horizon, having slightly worse forecasting performance than the persistence model
for the 5 min forecasting horizon. When ResNet-50 is trained to operate on the proposed
stacked SunMask images, the results show that it achieves consistently improved forecast
skill for all forecast horizons. Using this method, the ResNet-50 model can surpass the
persistence model even in the very short-term forecast horizon of 5 min, adding 8.79% to
its forecast skill.

Table 3. Standalone irradiance forecasting results for the ResNet-50 model on 5, 10, and 15 min
horizons. SSM indicates that the input is three stacked images of four channels each (i.e., RGB and
SunMask) and the improved results are highlighted in bold.

Horizon Model RMSE (W/m2) nRMSE (%) FS (%)

Persistence 72.64 17.32 -
5-min Resnet-50 73.18 17.44 −0.75

Resnet-50SSM 66.79 15.93 8.04

Persistence 86.77 20.26 -
10-min Resnet-50 78.06 18.23 10.04

Resnet-50SSM 73.06 17.06 15.80

Persistence 94.52 21.67 -
15-min Resnet-50 80.87 18.54 14.44

Resnet-50SSM 75.78 17.37 19.83

6.2. Edge FPGA Porting and Acceleration Results

Following the evaluation of the performance of the CNN models, including those that
included our proposed image processing method, in this subsection we present the results of
our implementation flow on the edge-oriented Xilinx MPSoC FPGA. The first step towards
implementing the CNN models of the IRM on the FPGA is to perform quantization. The
Python quantization application that we developed utilizes several different quantization
functionalities of the Xilinx Vitis AI 2.0 Quantizer. The results of the quantization process
for the four different models of our study are presented in Table 4. First, we performed
Post-Training Quantization using a batch of unlabeled images. It can be observed that
the PTQ has a very significant effect of 111.23 W/m2 increased RMSE compared to the
performance of the original floating-point VGG11 in Table 2. After performing an additional
Fast Fine-tuning step using 1000 unlabeled images, the effect was reduced to 4.26 W/m2.
For the ResNet-50 model, PTQ results in a slight increase in RMSE of 3.52 W/m2, which is
reduced to 2.18 W/m2 with FF. MobileNetV2 suffers a loss in performance which cannot be
corrected even after FF, resulting in a loss of 12.47 W/m2. Finally, the quantized SqueezeNet
model has a large performance degradation from its original floating-point model, with an
increase in RMSE of 19.76 W/m2. With FF the increase in RMSE becomes 6.84 W/m2. The
SqueezeNet model architecture allows us to perform an additional Quantization-Aware
Training step instead of FF. We trained the SqueezeNet model for an additional epoch using
the QAT capabilities of the Vitis AI Quantizer. After the QAT step, the performance of
SqueezeNet is restored to a similar level as the original floating-point model, suffering an
increase of only 2.09 W/m2 RMSE.
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Table 4. Performance metrics for the four quantized models with combinations of PTQ, FF, and QAT.

Model Quantization
Method RMSE (W/m2) nRMSE (%) MAE (W/m2)

VGG11 PTQ 176.48 42.94 38.31
PTQ & FF 69.51 16.91 41.04

ResNet-50 PTQ 68.37 16.63 40.39
PTQ & FF 67.01 16.30 39.18

MobileNetV2 PTQ 88.42 21.51 59.91
PTQ & FF 88.78 21.60 60.67

SqueezeNet PTQ 89.94 21.89 63.24
PTQ & FF 77.02 18.74 50.30

PTQ & QAT 72.27 17.58 45.84

After quantization of the CNN models, we implemented the FPGA processing archi-
tecture described in Section 5 on the Xilinx ZCU104 FPGA board using the Xilinx Vitis
and Vivado 2021.2 tools. The dual-core DPU IP was operated at 300 MHz; the entire
design consumed 15.585 W as measured by the Vivado power analysis tool. In Table 5,
we present the resources utilization of the PL of the FPGA. We observe that the dual-core
DPU IP consumes a very significant amount of resources, especially regarding the Digital
Signal Processing (DSP) slices responsible for performing most computations. It is worth
noting that for applications where processing throughput is not critical, the developer can
configure the DPU with a single processing core, reducing resource utilization by about
half for most resources.

Table 5. FPGA resource utilization for the implemented design on the ZCU104 board.

Resource 2-Core DPU IP 1-Core DPU IP

LUTs 108K (47%) 50K (22%)
FFs 204K (44%) 98K (21%)

DSPs 1394 (81%) 690 (40%)
RAMBs 203 (65%) 145 (46%)

In order to showcase the real-time capabilities of the edge FPGA on the image regres-
sion task, we benchmarked the four different CNNs on the DPU IP Core. We evaluated
their throughput in terms of Frames per Second (FPS) on both cores of the DPU using
multithreading; the results are presented in Figure 10. The results show that the VGG11
model with the highest number of parameters and operations has the lowest throughput
of 46 FPS on a single core of the DPU. The lightweight MobileNetV2 and SqueezeNet
models showcase significantly higher throughput than the VGG11 and ResNet-50 models.
In particular, SqueezeNet has the highest throughput of 1028 FPS, even though its original
floating-point model requires more operations with a lower number of parameters than
MobileNetV2. When utilizing both cores of the DPU, all the models can achieve a little
less than ×2 throughput. For the ResNet-50, MobileNetV2 and SqueezeNet models, the
achieved throughput rates can be considered to satisfy real-time requirements, e.g., for a
sky imager providing a video at 60 FPS, leaving space for additional algorithms to complete
more PV related processes.
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Figure 10. Throughput results for the four studied models on one and two processing cores of
the DPU.

7. Conclusions

The current work presents the Image Regression Module, a CNN-based block for
performing sky image regression to produce irradiance values. We have highlighted the
findings from our analysis of the Folsom, CA image dataset, which includes sky image
features that can affect the performance of CNN models. For better performance in this
regard, we propose the SunMask generation image processing method to support CNNs
in providing more accurate results for irradiance estimation and forecasting tasks. Our
study on the VGG11, ResNet-50, MobileNetV2, and SqueezeNet models for the IRM
shows that the SunMask generation method can consistently improve the RMSE of the
irradiance values produced by all of these models by up to 13.75%. The current study on
the performance of the CNN models and our image processing method was limited to only
one publicly available dataset which covers a geographic area with a particular distribution
of sky image phenomena. As a future step, we aim to extend our study to include more
regions, particularly from our region of interest, namely, Greece, where we have already
installed a sky imager and a pyranometer in order to create our own dataset. Furthermore,
in the current work we utilized only image regression CNNs. Future work might include
more advanced DL models such as ConvLSTMs to produce future sky images for irradiance
forecasting. Finally, we have outlined the concept of a smart PV park with edge computing
capabilities achieved by implementing CNN models, such as in our study of the Xilinx
MPSoC FPGA targeting edge applications and using the Xilinx Vitis AI framework for
development. The results show that the FPGA can achieve real-time processing rates for
the image regression CNN process. In the future, we plan on extending the proposed
edge implementation with more processes in order to present a complete and real-time
irradiance forecasting application for edge computing applications.
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DPU Deep Learning Processor Unit
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DNI Direct Normal Irradiance
FF Fast Fine-tuning
FPGA Field-Programmable Gate Array
FFs Flip-Flops
FPS Frames per Second
FS Forecast Skill
GHI Global Horizontal Irradiance
HLS High-Level Synthesis
HYTA Hybrid Thresholding Algorithm
IoT Internet of Things
LSTM Long Short-Term Memory
LUT Lookup Table
ML Machine Learning
MAE Mean Absolute Error
MLP Multilayer Perceptron
MSE Mean Square Error
NRBR Normalized Red–Blue Ratio
PM Persistence Model
PV Photovoltaic
PTQ Post-Training Quantization
PS Processing Subsystem
PL Programmable Logic
QAT Quantization-Aware Training
RBD Red–Blue Difference
RBR Red–Blue Ratio
RES Renewable Energy Sources
RMSE Root Mean Square Error
SG Smart Grid
SI Sky Imager
SVR Support Vector Regression
SoC System-on-Chip
UTC Universal Time Coordinated
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