ﬁ% electronics

Article

Feasibility Analysis and Implementation of Adaptive Dynamic
Reconfiguration of CNN Accelerators

Ke Han *© and Yingqi Luo

check for
updates

Citation: Han, K_; Luo, Y. Feasibility
Analysis and Implementation of
Adaptive Dynamic Reconfiguration
of CNN Accelerators. Electronics 2022,
11, 3805. https://doi.org/10.3390/
electronics11223805

Academic Editor: Sunggu Lee

Received: 30 October 2022
Accepted: 17 November 2022
Published: 18 November 2022

Publisher’s Note: MDPI stays neutral
with regard to jurisdictional claims in
published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, China
* Correspondence: hanke@bupt.edu.cn

Abstract: In multi-tasking scenarios with dynamically changing loads, the parallel computing of
convolutional neural networks (CNNs) causes high energy and resource consumption in the system.
Another critical problem is that previous neural network hardware accelerators are often limited to
fixed scenarios and lack the function of adaptive adjustment. To solve these problems, a reconfig-
uration adaptive system based on the prediction of algorithm workload is proposed in this paper.
Deep Learning Processor Unit (DPU) from Xilinx has excellent performance in accelerating network
computing. After summarizing the characteristics of hardware accelerators and gaining an in-depth
understanding of the DPU structure, we propose a regression model for CNNs runtime prediction
and a guidance scheme for adaptive reconfiguration combined with the characteristics of Deep
Learning Processor Unit. For different DPU sizes, the accuracy of the proposed prediction model
achieves 90.7%. With the dynamic reconfiguration technology, the proposed strategy can enable
accurate and fast reconfiguration. In the load change scenario, the proposed system can significantly
reduce power consumption.

Keywords: accelerators; convolutional neural networks; adaptive adjustment; prediction model;
FPGA

1. Introduction

Convolutional neural networks (CNNs) have shown significant improvement and high
maturity in many computer vision applications. For example, Advanced Driving Assistance
System (ADAS) involves image classification, object detection, image segmentation, scene
reasoning, and other tasks [1]. Demands for complexity and accuracy have been prioritized
regarding using CNNSs in the past few years. In addition to deep neural networks, many
lightweight networks for edge terminal equipment and embedded devices have also
been proposed. The option of using a lightweight network with depthwise separable
convolution can greatly reduce the system burden in case accuracy is not required as much
as aforementioned [2]. The deployment of CNNs in various scenarios has become a major
trend of future development, which greatly increases the need for a single system to deal
with multiple scenarios. In the face of today’s complex application scenarios, the switching
of the two types of CNNs and the difference in the running rate of the algorithms will lead
to changes in the system workload.

Another reality that has to be faced is that a high degree of automation means a
significant increase in computing power consumption, which cannot be ignored. On the
premise of ensuring computability, the key to reducing power consumption is to increase
the adaptability of CNN accelerators for dynamically changing scenes. Fixed hardware
architectures are prone to redundant or insufficient performance when the load changes.
The key to high flexibility lies in the cooperation between general acceleration units and
dynamic adjustment algorithms. Hence, the main work of adaptive reconfiguration is to ad-
just circuit characteristics in the FPGA according to changes in algorithm requirements. The
Xilinx Deep Learning Processing Unit (DPU) [3] is a configurable computation engine opti-
mized for convolutional neural networks. The degree of parallelism utilized in the engine
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is a design parameter and can be selected according to the target device and application. It
includes a set of highly optimized instructions and supports most convolutional neural
networks, such as VGG [4], ResNet [5], GoogLeNet [6], YOLO [7], SSD [8], MobileNet [2],
FPN [9], and others. At the same time, it also supports dynamic reconfiguration [10] of the
circuit when the resources on the board are sufficient. Therefore, the DPU is very suitable
as a design and verification platform of the model, which is conducive to collecting as
much data as possible and guarantees strong expansibility. The adaptive platform based
on DPUs can be used as a reference for other FPGA accelerators in similar work.

This study explores the characteristics of DPUs under standard convolution and depth-
wise separable convolution. Our work integrates the standard convolution network and
lightweight network, and proposes a prediction model for adaptive reconfiguration based
on the collected data sets. Moreover, an adaptive reconfiguration scheme is designed based
on the model, which is optimized for the power consumption and resource utilization
of CNNs on the DPU platform. The accuracy of the prediction model has reached more
than 90%, and system flexibility is greatly improved with the aid of the adaptive recon-
figuration scheme. The proposed method can be used as an idea to construct an adaptive
reconfiguration system. The main contributions of this paper are as follows:

1. Analysis of DPUs under dynamic load in terms of power consumption and resources
that provides basic guidance for adaptive reconfiguration;

2. Aruntime prediction model that considers a combination of the standard convolution
and depthwise separable convolution for reconfiguration. It ensures the prediction
accuracy of depthwise separable convolution;

3. A model-based adaptive reconfiguration scheme, successfully deployed and validated
in DPUs. The adaptive reconfiguration function significantly improves the system
resource utilization and reasonably reduces power consumption.

The rest of the paper is organized as follows: Section 2 provides a research background
of CNN accelerators for two different convolutions, as well as related research on DPUs.
Section 3 presents the basic research work of DPUs in terms of reconfiguration and power
consumption. Section 4 introduces the thinking and implementation of DPUs runtime
modeling and prediction. Section 5 describes the dynamic reconfiguration scheme based
on Section 4. Section 6 shows the details and results of the experiment Section 7 concludes
the paper and presents our vision for future work.

2. Background

Due to the high parallel computing characteristics, CNNs quickly attracted the interest
of researchers in hardware implementation after it had already been applied on a large scale.
Yu-Hsin Chen et al. proposed Eyeriss to minimize the energy cost of data movement [11].
Aiming at the pruned model, Sangkug Lym et al. proposed FlexSA, a flexible systolic
array architecture, in order to make the systolic array more efficient for pruning and
training [12]. To accelerate various CNN models, researchers tend to design a general
accelerator architecture. FPGA has been used as the acceleration platform of CNNs by
many researchers because of its flexibility and reconfigurability, which can maximize the
benefit of hardware [13].

Standard convolution networks have high computational complexity and a large
amount of data, which are the main reasons for the high cost and difficulty in deploying
them at terminals with limited resources [14]. The lightweight network has the advantage
of fast inference speed and low power consumption when implemented in hardware. It
can be seen in Figure 1 that for the standard convolution, an image with size M x N and
a number of input channels as C;;, needs to be convolved with Cy,; x K X K x Cj;, pixels
to get the output image of R X C x Cyyt. In contrast, input activations of each channel are
convolved with weights in the same channel to produce output activations in the same
channel in depthwise convolution. Ideally, deep convolutional layers account for a small
fraction of total MAC operations [15,16]. Although depthwise separable convolution still
takes advantage of the convolutional reuse in the spatial domain, most multipliers remain
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unused when calculating the depthwise convolution layer. So, only a few multipliers
process the entire depthwise convolution layer in a large number of clock cycles, which
degrades the overall system performance.
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Figure 1. Comparison of computational modes between (a) depthwise convolution with (b) standard
convolution. The same color corresponds to the same convolution channel.

Due to their low computational intensity, they cause great resource redundancy in
high parallelism accelerators [17]. Most previous research has focused on the related work
of deep standard convolution and rarely combines depthwise separable convolution with
it or takes depthwise separable convolution as the object of acceleration alone. For some
scenarios that do not require large computation, it is necessary to use lightweight networks
and further optimize their hardware deployment.

In terms of flexible deployment of Xilinx DPUs, Rajesh Kediad et al. studied the design
space exploration of DPU based on a FPGA platform [18], demonstrating the feasibility
and flexibility of different DPU deployments. Furthermore, they estimated the energy
consumption of different CNN models on the DPU platform [19]. Rajesh Kediad's research
motivated us to use DPUs for adaptive reconfiguration. For the characteristics of DPUs
when running on different networks, Yutian Lei et al. analyzed the resource utilization of
DPUs running different CNN models [20]. At the same time, there is growing interest in
predicting the performance of accelerators in FPGAs through algorithmic models [21].

Dynamic reconfigurability techniques have been applied to inference in convolutional
neural networks. JinYong Yin’s work leveraged coprocessor mechanism and partial re-
configuration to realize accelerator dynamic reconfiguration online [22]. Lei Gong et al.
proposed a new accelerator architecture for implementing CNNs on FPGAs in which
the static and dynamic reconfigurability of the hardware was cooperatively utilized to
maximize the acceleration efficiency [23]. Hasan Irmak et al. presented a dynamically
reconfigurable CNN accelerator architecture composed of reconfigurable macroblocks and
utilized the device resources according to model parameters [24]. However, the previous
work focused on the reconfiguration within the CNN algorithm during the inference pro-
cess. Moreover, few studies have focused on circuit reconfiguration patterns following
changes in task load. Internal reconfiguration is beneficial to the maximization of resource
utilization. Nevertheless, for the case requiring low delay and multiple CNNs, internal
reconfiguration will increase the inference time and is not compatible with multiple CNNs.
Therefore, a single CNN algorithm is taken as the minimum unit of reconfiguration in our
study. Standard convolution and depthwise separable convolution is combined to achieve
multi-dimensional reconfiguration.

3. Design Exploration of DPU Architecture and Power

This section explores the architecture of DPUs and their operating characteristics and
provides a basis for subsequent research. The detailed hardware architecture of a DPU
is shown in Figure 2. The DPU fetches instructions from the off-chip memory to control
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the calculation of the computing engine. The instructions are generated by the Vitis Al
compiler [25]. The AI compiler maps the model to a highly-efficient instruction set and
performs sophisticated optimizations such as layer fusion, instruction scheduling, and
reuses on-chip memory as much as possible. On-chip memory is used to buffer input,
intermediate, and output data to achieve high throughput and efficiency. Input data for
maps and weights is reused as much as possible to reduce the memory bandwidth. A
deep pipelined design is used for the computing engine. The processing elements (PE)
take full advantage of the fine-grained building blocks such as multipliers, adders, and
accumulators in Xilinx devices.
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Figure 2. DPU hardware architecture.

The DPU IP can be configured with various convolution architectures that are related
to the parallelism of the convolution unit. The architecture for the DPU IP includes B512,
B800, B1024, B1152, B1600, B2304, B3136, and B4096. B is the symbol of DPU size and the
size of the following number represents the degree of computing parallelism, which equals
the peak number of operations per cycle. Meanwhile, the peak number of operations per
cycle is equal to the product of three dimensions of parallelism in the DPU convolution
architecture: pixel parallelism, input channel parallelism, and output channel parallelism.
The higher the degree of parallelism, the more FPGA resources are consumed. At the
same time, if the resources are sufficient, FPGA can support the deployment of up to three
core DPUs.

Due to the parameter characteristics and computation amount of different CNNSs, their
performance on the same DPU is different. The power consumption and performance of
seven typical CNNs deployed on the dual-core B4096 DPU was measured. As seen from
Figure 3, the operating power consumption of different networks varies greatly. Taking
yolov3 and ssdmobilenetv2 for detection tasks as examples, the backbone network in
yolov3 is standard convolution. In the forward calculation, the network fully utilizes the PE
computing power inside the DPU. Most layers of ssdmobilenetv2 are depthwise separable
convolution, which are less than one-third of the former in terms of computing power, but
their power consumption is reduced from 13.45 W to 7.53 W. When running a lightweight
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network in a specific task scenario, the traditional convolution deployment idea should be
abandoned and the optimal solution to improve the system in terms of power consumption
and resources must be proposed, which is the focus of our work.
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Figure 3. Power consumption and performance of different networks on dual-core B4096 DPU. The

last column is the idle power consumption of the DPU when no network is running.

4. Proposed Approach for Runtime Estimation

The first principle to achieve reconfigurability is predicting the performance of dif-
ferent networks on different hardware configurations. Estimating the runtime of CNNs
on different configurations of the DPU platform is a key issue to select the hardware
configuration that satisfies the running conditions of the algorithm.

4.1. Roofline Model for DPU

The performance of DPUs is modeled to find the difference between standard convo-
lution and depthwise separable convolution. The computation intensity of the algorithm
determines its performance on the computing platform [26]. When computation intensity
is less than a specific value, the algorithm will not be able to exert the best performance
of the computing platform due to the limited bandwidth. When the intensity crosses this
value, the actual performance is fixed below the theoretical maximum performance of the
computing platform. The depthwise convolution layers of lightweight networks often
suffer from memory bottlenecks.

The runtime of individual convolutional layers on the B4096 DPU is measured and col-
lected. Then the computational load of each layer is added to get the relationship between
computation intensity and performance. Figure 4 shows the relationship between compu-
tation intensity and actual performance of nearly 600 standard convolution and depthwise
separable convolution layers. The blue line indicates the roofline performance of the model,
which is the theoretical performance of a DPU with a frequency of 300 M and parallelism
of 4096. It can be clearly seen that for B4096 DPU, depthwise separable convolution layers
are all located in the memory bottleneck. In contrast, standard convolution layers are more
computationally intensive and achieve better performance on the same circuit.
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Figure 4. Relationship between computation intensity and the performance of standard convolution
and depthwise separable convolution on B4096 DPU.

Due to the difference in the computing mode between standard convolution and
depthwise separable convolution, low resource utilization will occur when computing
them on the same platform. Moreover, as the degree of parallelism increases, this situation
becomes more and more evident. When it comes to scenarios suitable for lightweight net-
works, an overly parallelized computing circuit has become the most significant drawback.
The difference in computation intensity makes it impossible for a fixed hardware circuit
to perform both algorithms efficiently. Therefore, our work will continue to explore how
to solve the above problems by using a prediction model to guide reconfiguration when
hardware circuits can be changed dynamically.

4.2. Regression Prediction Model for Runtime

Our study models the two types of convolution separately to resolve the difference
between them and obtain the runtime of a complete network by predicting the runtime of
each convolution layer and summing them together. The error between the predicted value
and the actual value of the network runtime is used as the index to evaluate the prediction
model. Computation intensity is included in the model as a characteristic parameter
because it is closely related to the performance and runtime of CNNs, as can be seen from
Table 1 and the previous analysis.

In the process of convolution operation, the factors that determine the calculation time
are as follows:

DPU size (SiZQDpu);

MAC operand (OPS);

Memory (Mem);

Intensity (Int);

Kernel size (k);

Input map size (M);

Output map size (R);

Number of input channels (Cj,,);

Number of output channels (Cyyt).

The purpose of establishing the prediction model is to find the relationship between the
runtime of a single-layer network on a specific DPU and the above independent variables.
The runtime of a layer of CNN can be written as:

0 XN LN

Runtime = f,(Sizeppy, OPS, Mem, Int, k, M, R, Ciy,, Cout) (1)
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Since the characteristics of each hardware circuit are different, it is difficult to solve this
type of CNN accelerator performance evaluation problem by theoretical derivation. Hence,
linear regression, polynomial regression, decision tree regression, and random forest are
selected as candidate models instead of complex machine learning methods. This kind of
model also ensures low computational cost and avoids excessive complexity. A certain
amount of measured data on B4096 DPU for model training was collected and part of the
measured data for testing was reserved. Based on the data set, the prediction accuracy of
the model verify whether it meets the requirements. Because the number of samples of
depthwise separable convolution is less than that of standard convolution, the prediction
performance will be slightly worse than that of standard convolution.

The r2_score metric and the mean of the prediction error are used to evaluate the
model, which measures how well the prediction model fits the actual data. The closer the
r2_score is to one, the better the performance of the model is. The calculation formula of
the r2_score is as follows:

i1 (Vi —?i)z

r2_score =1 — —
Ly —7)?

@

where i is the number of samples, y; is the observation value, j; is the prediction value, 7 is
the average of observation values.

Through its estimated performance on B4096 DPU, Table 1 shows that the average error
of the random forest model is 8.53% for standard convolution and 10.48% for depthwise
separable convolution. The random forest regression model builds multiple unrelated
decision trees by randomly selecting samples and features. Each decision tree can get a
prediction result based on the samples and features extracted, and the regression prediction
result of the whole forest can be obtained by taking the average of the results of all trees.
Therefore, the random forest model is selected as the prediction model in our research,
which is easy to implement and has little computational overhead.

Table 1. Prediction performance of regression models on B4096 DPU.

Prediction Model Layer Score Mean Error
Linear regression StandConv 0.972 12.23%
DepthwiseConv 0.915 15.21%
Polynomial regression StandConv 0.974 11.77%
DepthwiseConv 0.922 13.67%
Decision tree StandConv 0.959 10.19%
DepthwiseConv 0.901 11.95%
Random forest StandConv 0.968 8.53%
DepthwiseConv 0.926 10.48%

In addition, we also calculated the correlation factors between the parameters and the
runtime according to the model. According to the correlation factors in Table 2, the runtime
of a single layer is mainly related to the amount of computation, computation intensity,
the size of the kernel, and the size of the memory occupied. Nevertheless, the remaining
features are still incorporated into the prediction model to get better prediction results.

Table 2. Correlation between the characteristics considered and the runtime.

Features Considered Correlation Factor with Runtime
MAC operand 0.96
Memory 0.78
Intensity 0.58
Kernel size 0.39

Input map size 0.25
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Table 2. Cont.

Features Considered Correlation Factor with Runtime
Output map size 0.24
Input channel —0.07
Output channel 0.34

5. Proposed Reconfiguration Scheme
5.1. Optimal Energy Consumption Scheme

The power consumption of a CNN running on FPGA depends on the running frame
rate and the power consumption at runtime. DPUs with higher parallelism will use more
resources and have higher power consumption.

In a real-time processing scenario, a system’s total energy consumption to process each
frame mainly comes from the sum of the running power consumption during real-time
inference and the idle power consumption of the system. In Figure 5, if the running frame
rate is F;, the allowable processing time of each frame is 1/Fs = Ts and below. The actual
runtime for DPU configurations meeting the above conditions is T;. The power consump-
tion during operation is P,. The idle time is T;, T; + T, = Ts. Idle power consumption is P;.
Then the energy consumption of actually running an image is:

E=P T,+P Ti=(P—PF) T,+P T, 3)
P(W) 4

|

|
P, |

|

|

|
Pil—————

|
T Te  TeT 2T, t(s)

Figure 5. Power consumption in a real-time processing scenario. The green rectangle represents the
energy consumption during operation and the blue rectangle represents the idle energy consumption
of the system

For the measurement of system power, the voltage and current values are obtained by
detecting the programmable power rails of the board and the energy consumption of each
DPU for real-time fixed frame inference is calculated by Equation (3).

Because ResNet and MobileNet have become the basic components of most networks,
seven representative networks are selected as research objects. Figure 6 shows that with
the increase of DPU parallelism, the energy consumption of a specific network at a fixed
frame rate tends to increase. Therefore, a DPU with a smaller size should be selected during
reconfiguration to reduce the power consumption.

5.2. Optimal Hardware Resource Scheme

In the process of adaptive reconfiguration, the following question should be con-
sidered: should the strategy of using multiple small cores instead of one large core be
chosen to reduce resource usage? Addressing this question requires calculating whether
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the resources consumed by multiple small cores are less than that of large cores under the
condition of providing the same computing power. Figure 7 shows that with the increase
of hardware parallelism, the consumption of DSP as the primary computing unit increases
significantly compared with other resources. So the DSP utilization determines whether to
use a multi-core state or a single-core state. For example, when mobilenetv2 is running,
due to the low resource utilization of depthwise separable convolution, one B3136 core is
replaced by two B512 cores to save resources. Meanwhile, using two B2304 cores consumes
more resources than one B4096 core when the processed CNN is yolov3, although they all
meet the reconfiguration requirement.

20
—— resnet50(24FPS) »— mobilenetv2(120FPS)
—&— resnetv2_50(20FPS) squeezenet(120FPS)
18 —A— inceptionv3(20FPS) —»— ssdmobilenetv2(24FPS)
© [ |[—v—yolov3(4FpPs)
2
o
16 |
o
3
N
© 14
£
o
Z
12
10
1 1 1 1 1 1 1 1

B512 B800 B1024 B1152 B1600 B2304 B3136 B4096
DPU size

Figure 6. The energy consumption trend of some CNN for different DPU sizes.

5.3. Reconfigurable Scheme

According to the analysis of power and resources in the previous two sections, the
network processing power increases with the increase of the DPU size for the real-time
processing task scenario. Furthermore, the DSP minimum principle is used to reduce
resource consumption. Therefore, a reconfiguration scheme is proposed based on the
previous runtime prediction model in Figure 8. The reconfiguration scheme follows the
design principle of greedy algorithms, and the steps are as follows:

1.  For any CNN to be deployed, the prediction model is used to obtain its runtime under
various configurations;

2. RT(i,j)(0 <i<7j=1,2,3) denotes the predicted runtime of the CNN to be run on
a specific DPU configuration. Circuits that satisfy the reconfiguration requirements
are laid out in a staircase pattern in Figure 7;

3. According to the previous optimal energy consumption reconfiguration scheme, the
scheme first select the DPU configuration at the outermost edge of the ladder as a
candidate (marked in red and blue in the figure);

4. The resources used by candidate circuits are then compared. The strategy can select
the final reconfiguration circuit based on the principle of least DSP.

Through the above four steps, the circuit to be deployed can be quickly found by
combining the low-complexity prediction model and the optimization strategy. Firstly,
the prediction model can avoid the repeated trial and error process when deploying new
algorithm models, which significantly improves the efficiency of reconfiguration. Moreover,
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according to the proven characteristics of DPU, the greedy algorithm is chosen instead of
a global comparison algorithm, which further reduces the time to compare data during
reconfiguration and ensures a higher hit probability of the optimal solution. In 100 times
verification, the optimal solution rate of the reconfiguration scheme reaches 97%.

8F =—e—LUT —o— Block RAM
? —eo— Register —e—DSP 7.21
N 7L parallelism
®© yolov3
£ (12FP9)
ger
N—r
§ 5L mobilenetv2
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il
(%)) yolov3
3 (7.4FPS)
= 3l
>
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X (108FPS) 15
D -

1

1 1 1 1 1 1 1 1

B512 B800 B1024 B1152 B1600 B2304 B3136 B4096
DPU size

Figure 7. Normalized resource consumption of eight DPUs.
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Figure 8. Schematic diagram of the reconfiguration scheme.

In addition, using dynamic reconfiguration technology is beneficial to minimize the
waste of hardware resources. There are many operators with low usage in CNNs, such as
element-wise dot product, average pooling, Leaky ReLU, and so on. These modules remain
idle in the circuit most of the runtime and increase the energy and resource consumption
of the system. For the same size of DPU, the max and compact modes should be set. Max
mode contains all operators, while compact mode contains only the common operators. For
example, ResNet50 does not contain computation operations such as depthwise separable
convolution, Leaky ReLU, and element-wise dot product. These operators can be removed
at runtime. As can be seen from Table 3, the performance of the two modes on a B2304
DPU is almost the same. Nevertheless, the compact mode greatly reduces the hardware
resource consumption.
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Table 3. Comparison of resource utilization between max and compact modes on B2304 DPU.

Arch B2304 (Max) B2304 (Compact)
LUT (Utilization) 84,041 (31.28%) 69,856 (26.01%)
REG (Utilization) 139,222 (25.79%) 126,754 (23.48%)
BRAM (Utilization) 422 (47.15%) 322 (35.98%)
DSP (Utilization) 844 (33.49%) 580 (23.02%)
Performance (FPS) 45.34 4498

6. Evaluation and Results

The first part of the section describes the data processing and prediction results of the
random forest model. The second part shows the establishment of the adaptive system.
The third part describes the performance of the system in an ADAS scenario.

6.1. Model Training and Prediction

At present, the DPU platform supports a total of eight architectures. CNNs running
under configurations of B800, B1152, B2304, and B4096 are selected as the training set. A
variety of CNNs is divided into standard convolution layers and depthwise separable
convolution layers with different parameters. Based on Xilinx ZCU102, we measured the
runtime of all layers with the Vitis profiler and took the average of 50 runs as the final data
to form a dataset with 2000 samples. A test set composed of 12 CNNss is used to evaluate
the prediction performance after model training.

Figure 9 shows the prediction error for all CNN layers among different DPU sizes.
Because the maximum error may contain some anomalies, its reference significance is low
and the maximum error is not used as a metric. We count the mean error and median error.
It can be seen that the maximum value of the mean error is 14.9% on the B512 DPU. The
runtime of a CNN is accumulated by the prediction results of multiple layers. Therefore,
when considering the prediction results of a single CNN, the prediction error is significantly
reduced, which is what we hope to see. The mean prediction error of CNN is between 2%
and 5%.

16
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Figure 9. Single-layer prediction error for different DPU and the mean error of various CNNs.

Twelve CNNS for image classification and object detection are used as a test set to
comprehensively evaluate our proposed model. Table 4 shows the basic parameters of each
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CNN, including the number of layers, the number of MAC operations, and the size of MEM.
Figure 10 shows the results of the prediction model for 12 CNNs in 2 DPU operation modes,
B1024 and B4096. The execution time for different CNNs varies significantly, ranging from
4.7 ms to 82.8 ms for B4096 DPU and from 7.2 ms to 279.5 ms for B1024 DPU.

Table 4 also lists the CNN prediction error under B1024 and B4096 DPU. In the case of
B4096 DPU, the prediction accuracy is basically maintained at 3% or less. Although the
convolution layer prediction error in B1024 DPU increases slightly, the overall prediction
error is less than 5%, which fully realizes the acceptable prediction results. Using a random
forest model to train and predict the required convolution network can get satisfactory
results, and it can be used as the basis of the reconfiguration scheme. Because the two
algorithms are modeled separately, the maximum error is effectively reduced. For the test
results under eight DPUs, the maximum error is 9.27%. Because the DPU of B500, B1024,
B1600, and B3136 is the test set, the performance of the prediction model in these four sizes
is slightly worse than the others. All in all, the prediction performance of the regression
model after training is overall satisfactory.
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Figure 10. (a) Comparison of the predicted and actual runtime of 12 CNNs at B1024 DPU (b) Com-
parison of the predicted and actual runtime of 12 CNNs at B4096 DPU.
Table 4. Prediction results of the different CNN models.
MAC Ops Data Required Prediction Error ~ Prediction Error
CNN Name (x10%) (MB) # Layers (B4096) (B1024)
refinedet (ref) 10.12 26.44 48 2.57% 2.67%
resnet18 (res_18) 3.655 17.23 21 1.46% 3.39%
resnetv2_50 (resv2_50) 13.09 82.18 70 2.98% 4.29%
ssdlite_mobnetv2 (slmobv2) 1.50 18.85 61 0.93% 5.08%
inception_v4 (inc_v4) 24.54 101.25 166 1.93% 3.24%
vggl9 (vggl9) 39.27 172.98 19 0.40% 2.21%
ssd_mobnetv?2 (ssdmobv?2) 6.53 44.76 50 0.49% 4.04%
mobilenet_v2 (mobv2) 0.60 9.68 36 0.16% 1.06%
squeezenet (squ) 0.78 4.85 26 0.96% 2.49%
yolo_v3 (yolov3) 65.43 162.35 77 0.66% 2.49%
inception_v3 (inc_v3) 11.44 50.71 105 1.39% 2.11%
resnet50 (res_50) 7.72 51.25 59 4.08% 3.92%

6.2. Implementation of Adaptive Reconfiguration System

The schematic diagram of the adaptive system is shown in Figure 11. Our regression
model is executed on an ARM CPU core available on Xilinx ZCU102 board, and the average
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cost of our model is 1.8 ms for a CNN with about 30 layers. This time is negligible compared
to the actual runtime and switching cycles of CNNs in the application. In addition, the
prediction occurs on the CPU core and does not affect the execution of CNNs on DPUs.
Therefore, our prediction model applies to both design time and runtime.

____________ N
Changeable application
scenarios PS i‘
Regression - Dynamic

Reconfigurable

Figure 11. Schematic diagram of adaptive reconfiguration system implementation. The bold circle rep-
resents the process of a random forest regression. The brown circle indicates the final regression result.

The compiled xmodel file contains model parameters and model instructions. When
the DPU hardware part is updated, the xmodel needs to be updated to match different
DPU structures at the same time. Different xmodel files are pre-stored on the FPGA and
the optimal DPU configuration is obtained through the reconfiguration scheme. Then the
system loads the corresponding xmodel after configuring the DPU. In this way, Xilinx
runtime (XRT) can transfer the instructions and data required at runtime to DDR according
to xmodel. After that, the DPU is driven to start working by writing the instruction stream
address in the control register of it. The DPU reads data and instructions from the memory
through the INSTR bus to complete the inference of networks.

Through the three dimensions of DPU architecture (8), DPU number (3), and operator
mode (2), 48 different configurations can be formed. In these configurations, the FPGA idle
power consumption range is 1.45 W-5.49 W, the onboard DSP usage range is 110-1380,
and the power consumption range of running ResNet50 is 2.25 W-12.41 W. The dynamic
adjustment range is extensive.

6.3. Dynamic Reconfiguration in ADAS Scenario

A real-time inference scenario is assumed to test our system, including two CNNs often
used in ADAS: Vpgnet [27] and Refinedet [28]. Vpgnet is a network for lane line and road
sign detection and recognition, and the network used in this paper is its pruned version.
Refinedet is an object detection network that can be used for pedestrian detection. There
are two scenes: the vehicle running at low speed and high speed. In low-speed scenarios,
Vpgnet and Refinedet run at 96 FPS and 32 FPS. Both are 180 FPS and 60 FPS in high-speed
scenarios. The reconfiguration method is applied to the two algorithms, respectively.

The experimental results are shown in Table 5. Vpgenet at 96 FPS uses the B1024 dual-
core configuration and chooses the compact mode. In this configuration, the measured
power consumption is 4.95 W. Refindet requires a small amount of computation, and
the single-core B1024 suffices. However, Refinedet contains element-wise dot product
and transposed convolution operations, so max mode was selected. The working power
consumption is 4.86 W. In the case of high load, Vpgnet uses the dual-core B3136 DPU, and
configures the compact mode as in the case of low load. Refinedet is optimally configured
by the reconfiguration scheme to include the max mode of the triple-core B512. The
power consumption of the two is 7.17 W and 6.24 W, respectively. The advantage of the



Electronics 2022, 11, 3805

14 of 16

reconfiguration scheme is that it can accurately and quickly find the appropriate circuit in
only one run, avoiding the redundant, time-consuming compilation and selection processes.

Table 5 also presents the suboptimal solution for the adaptive reconfiguration scheme
and the benchmark scheme for the fixed DPU configuration. The three-core B1152 DPU and
three-core B4096 DPU are considered as the baseline in two scenarios for non-reconfiguration
consideration. All three schemes meet the requirements of real-time processing at the cur-
rent frame rate. By comparing the above three situations, it can be seen that the circuit
obtained by the adaptive reconfiguration scheme has the lowest power consumption.
In addition, the selected configuration is also the most resource-efficient because of the
resource-minimum reconfiguration strategy.

Table 5. Results based on proposed reconfiguration scheme. The networks all run at the frame
rate in parentheses, and the power consumption is the average of multiple measurements during
real-time processing.

CNI(\II:II,\g)del Configuration = DPU Size #Cores Mode Power (W)
most optimal B1024 2 compact 4.95
Vpgnet (96) suboptimal B1152 2 compact 5.07
baseline B1152 3 max 6.32
most optimal B3136 2 compact 7.17
Vpgnet (180) suboptimal B4096 2 compact 9.25
baseline B4096 3 max 12.63
most optimal B1024 1 max 4.86
Refinedet (32)  suboptimal B1152 1 max 5.06
baseline B1152 3 max 6.93
most optimal B512 3 max 6.24
Refinedet (60)  suboptimal B1024 2 max 6.44
basline B4096 3 max 14.54

7. Conclusions and Future Works

Through modeling and experiments in actual scenarios, the feasibility of adaptive dy-
namic reconfiguration based on Xilinx DPU has been proved to explore the reconfiguration
of FPGAs under various CNN deployments in the future and alleviate the power consump-
tion caused by high computing power questions. The proposed prediction model and
reconfiguration scheme achieve an accuracy of 90.7%, which provides guidance for resource-
saving and energy consumption reduction for specific CNN deployments. Through the
experimental data in the simulation scenario, the reliability of our adaptive system is veri-
fied, and the resources and power consumption are significantly optimized. At the same
time, our research can be effectively extended to other FPGA refactoring designs similar to
CNN accelerators as a methodological basis for adaptive reconfiguration. In the future, we
will continue to explore efficient reconfigurable systems and develop separate hardware
architectures for standard convolution and depthwise separable convolution. We plan to
further solve the compatibility of depthwise separable convolution through data stream
reconfiguration so as to achieve more a efficient software/hardware co-design of dynamic
reconstructed circuits.

Author Contributions: Conceptualization, K.H.; methodology, K.H. and Y.L.; software, Y.L.; vali-
dation, Y.L.; formal analysis, Y.L.; investigation, K.H. and Y.L.; writing—original draft preparation,
Y.L.; writing—review and editing, K.H. and Y.L.; visualization, Y.L.; project administration, K.H. All
authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by Beijing Natural Science Foundation grant number 4222072
and National Key Research & Development Program of China grant number 2020YFC1511702.

Data Availability Statement: Not applicable.



Electronics 2022, 11, 3805 15 of 16

Acknowledgments: The research is supported by School of Electronic Engineering, Beijing University
of Posts and Telecommunications. Xilinx Zynq UltraScale+ MPSoC ZCU102 used in this paper is
sponsored by Beijing Natural Science Foundation.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

CNN Convolutional Neural Network
FPGA  Field Programmable Gate Array
ADAS  Advanced Driving Assistance System
FPS Frame Per Second

DDR Double Data Rate

XRT Xilinx Runtime

DPU Deep Learning Processing Unit
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