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Abstract: Federated learning is a hot area of concern in the field of privacy protection. There are local
model parameters that are difficult to integrate, poor model timeliness, and local model training
security issues. This paper proposes a blockchain-based differential optimization federated incre-
mental learning algorithm, First, we apply differential privacy to the weighted random forest and
optimize the parameters in the weighted forest to reduce the impact of adding differential privacy on
the accuracy of the local model. Using different ensemble algorithms to integrate the local model
parameters can improve the accuracy of the global model. At the same time, the risk of a data leakage
caused by gradient update is reduced; then, incremental learning is applied to the framework of
federated learning to improve the timeliness of the model; finally, the model parameters in the model
training phase are uploaded to the blockchain and synchronized quickly, which reduces the cost of
data storage and model parameter transmission. The experimental results show that the accuracy of
the stacking ensemble model in each period is above 83.5% and the variance is lower than 10−4 for
training on the public data set. The accuracy of the model has been improved, and the security and
privacy of the model have been improved.

Keywords: federated learning; blockchain; incremental learning; differential privacy

1. Introduction

Google proposed a new privacy protection technology—federated learning—in 2016 [1–3].
Due to its advantages of protecting privacy and local data security, it is widely used in
many fields.

Federated learning can be applied to the fields of machine learning and deep learning.
In the field of machine learning, Yang, K. et al. [4] propose an implementation method

of vertical federated logistic regression under the central federated learning framework,
which can realize the logistic regression in vertical federated learning. However, it is
difficult to find a third-party auxiliary party that both partners trust in real life. Therefore,
Yang, S.W. et al. [5] proposed a vertical federated logistic regression method under the
decentralized federated learning framework. The data between the partners are always
confidential, and the transmission channel is also confidential. Liu, Y. et al. [6] proposed
a framework based on a central longitudinal federated study method of random forests—
federal forest. In the process of modeling, each tree is joint modeling and its structure is
stored in each data center server, and the parties have the right to hold it, but each party
holds data matching with their characteristics of scattered node information, while unable
to obtain useful information from other data-holding parties, to ensure the privacy of data.
Finally, the structure of the whole random forest model is scattered and stored, the central
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server retains the complete structure information, and the node information is scattered
among all data holders. When using the model, the node information stored locally is first
used, and then the distributed nodes are coordinated by the central server. This method
reduces the communication frequency of each tree during the prediction, which is helpful
to communication efficiency. A decentralized horizontal federated learning framework
for multi-party GBDT modeling, federated learning based on similarity, is proposed by
Li, Q.B. et al. [7] and compensates for communication efficiency but sacrifices a small
amount of privacy protection performance. Hartmann V. et al. [8] put forward a method of
deploying support vector machines in federated learning, mainly protecting data privacy
using feature hash and update block.

In the field of deep learning, Zhu, X.H. et al. [9–11] used a simple CNN to test the
existing federated learning framework and the impact of the number of data sets and
clients on the federated model. Li, T. et al. [12] proposed FedProx, a federated learning
framework for solving statistical heterogeneity, to train LSTM classifiers in the federated
data set, which is mainly used for emotion analysis and character prediction.

The training data of federated learning come from different data sources, so the
distribution and quantity of training data become the conditions that affect the federated
model. If the training data distribution of the data sources is different, it becomes difficult
to integrate the local models of multiple parties [13,14]. The logistic regression model was
used as the initial global model to train the data of all data sources, and the neural network
was used to integrate the local model. However, the performance of the neural network
model was non-convex, so it was difficult to achieve the optimal loss function of the model
after averaging the parameters. Aiming at this problem, the federated average algorithm
(FedAvg) is proposed to integrate the local models of multiple parties with the average
value of weights or gradients to obtain the integrated global model [15–18]. However, the
gradient depth leak algorithm is proposed for the federated average algorithm, which can
restore most of the training data problems according to the gradient update of the local
model [19,20]. At the same time, the timeliness of federated models and the security of
data and models when training local models are not considered in the above references.

Based on the above problems, this paper puts forward the differential optimization
federated incremental learning algorithm based on the blockchain. First, the exponential
mechanism and Laplace mechanism are used in the training process of local models to
enhance the security of local models and data, but this will result in a loss of accuracy
of local models. Second, by optimizing the parameters and weights of decision trees to
improve the accuracy of local random forests, we can alleviate the problem of precision loss
caused by adding differential privacy technology to local models. Third, using a stacking
ensemble algorithm to integrate multiple local model parameters can reduce the risk of
information leakage caused by updating local parameters, and further improve the accuracy
of the model. Fourth, the initial global model parameters, the local model parameters,
and the updated global models are uploaded to the blockchain in each period and quickly
synchronized. The consensus algorithm in the blockchain is improved, and a consensus
mechanism based on the quality of training parameters (proof of quality, PoQ) [21] is
proposed. To improve the efficiency of the blockchain, and from the data storage point
of view, storing the model parameters in the blockchain can improve the security and
reliability of the model parameters. Experimental results show that the accuracy of the
algorithm is higher than that of the federated average algorithm [22], which improves
the security of data and model in the training model phase. At the same time, compared
with the general federated learning model, the algorithm can automatically upload each
time segment and iterated parameters and results to the corresponding data blocks and
synchronize quickly, greatly reducing the transmission cost of the model parameters to the
blockchain. At the same time, because the blockchain data cannot be tampered with and
cannot be deleted, it can protect the model parameters stored on the blockchain.

The main contributions of this paper are as follows:
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1. This paper proposes a new federated learning algorithm—differential optimization
federated incremental learning algorithm based on blockchain.

2. This method is an experiment on stream data, which verifies the effect of the algorithm
on stream data.

3. Considering the risk caused by gradient leakage, the algorithm proposed in this paper
applies differential privacy to the algorithm. Gaussian noise is added to the data
during model training, and Laplace noise is added to the output of the local model.

4. This experiment is conducted on an unbalanced data set, taking into account the
balance between model accuracy and privacy.

The paper is ordered as follows. The algorithm flow and performance analysis are
described in the second section. Experimental environment and data set source, data set
division to build multi-source stream data, and specific experimental settings are described
in Section 3. Finally, conclusions are presented in Section 4.

2. Blockchain-Based Differential Optimization Federated Incremental
Learning Algorithm
2.1. Description of the Algorithm

The blockchain-based differential optimization federated incremental learning algo-
rithm applies differential privacy and ensemble learning to the framework of federated
learning. The algorithm includes three stages: model transmission, model training, and
model storage. In the model transmission stage, a 512-byte asymmetric encryption algo-
rithm is used to ensure the security of the model transmission process; in the model training
stage, differential privacy technology and ensemble algorithms are used to optimize and
integrate the parameters while improving the security of the data and the model algorithms
to improve the accuracy of the model; in the model storage stage, the blockchain is used to
store the parameters of each model in each period, which greatly reduces the cost of data
transmission and guarantees the security of the data.

2.1.1. Model Transmission Stage

The algorithm in the model transmission stage is as follows: first, each data source
uses the RSA encryption algorithm to generate a 512-byte key pair, and a trusted third party
uses the public key to encrypt the initial global model and transmits it to each data source.
Each data source uses the private key. Training after decryption ensures the safety of the
model type during transmission; each data source uses the private key to encrypt the local
model parameters and transmits it to a trusted third party. After the trusted third party
uses the public key to decrypt, the ensemble algorithm is used to integrate local model
parameters to ensure the safety of local model parameters during transmission, see the
purple part in Figure 1.

2.1.2. Model Training Stage

The algorithm in the model training stage is: each data source divides the incremental
data into three parts: pre-training set, pre-test set, and test set. The initial global model
obtained after decryption with the private key is trained on the pre-training set, and tested
on the pre-test set, the score obtained is used as the weight of the base classifier in the initial
global model, differential privacy technology is added, the parameters of the model are
optimized, a local model that meets privacy protection is established, and the local model
is placed on the test set. The training score is used as the local model score of the data
source; a trusted third party uses a stacking ensemble algorithm and averaging method to
integrate multiple local models to obtain an updated global model for each period, and
iterative training is continued, see the green part in Figure 1.
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Figure 1. Blockchain-based differential optimization joint incremental learning algorithm framework.

2.1.3. Model Storage Stage

The algorithm in the model storage stage is: the initial global model parameters in
each period are encrypted with a private key and uploaded to the corresponding block.
The verification node on the blockchain uses a consensus mechanism based on the proof of
training quality. If 2/3 nodes think that the initial global model parameters in this period
are the same as the updated global model in the previous period, and they are stored
in the corresponding data block 1 in the block generated in this period, for each period,
the local model parameters inside are encrypted with a private key and uploaded to the
corresponding block. The nodes on the blockchain use a consensus mechanism based on the
quality of the training parameters to verify the accuracy of the model. If the accuracy of the
local model trained during this period is not up to the lowest accuracy rate determined by
the 2/3 nodes, the data source needs to optimize the model parameters to further optimize
the local model and improve the accuracy of the local model. Until the accuracy of the
local model of the data source meets the requirements, the local model parameters can
be changed. Stored in data blocks 2 to n− 1, the global model updated in each period is
encrypted with a private key and uploaded to the corresponding block. Its nodes on the
blockchain use a consensus mechanism based on the quality of training parameters for
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verification. If 2/3 nodes consider that the updated global model parameters in this period
are comparable with the updated global model in the previous period, and the accuracy
fluctuates within an acceptable range, then the global model parameters updated in this
period can be compared and stored in the data block n corresponding to the block, see the
blue part in Figure 1.

The algorithm framework is as follows:

2.2. Algorithm Flow

The algorithm flow is as follows:
Model transfer phase
Step 1: Each data source uses the RSA encryption algorithm to generate a 4096-bit

public key and private key, and transmits the public key to a trusted third party;
Step 2: A trusted third party uses the public key to encrypt the initial global model

and transmits it to each data source;
Step 3: After each data source obtains the local model, use the private key to encrypt

the local model and transmit it to a trusted third party. The trusted third party uses the
public key to decrypt and integrate multiple local models.

Model training phase
Step 1: Each data source uses the private key to decrypt to obtain the initial global

model—random forest;
Step 2: Each data source determines the initial parameters of the algorithm, the number

of decision trees: L, the number of pre-test samples: X, and the pre-pruning parameter: ε;
Step 3: Each data source extracts L training sets Dt(t = 1, 2, . . . , L) from the incremen-

tal data with replacement, and divides the samples in the training set Dt into training data
and test data;

Step 4: Each data source selects a certain percentage of data from the training data as
pre-training samples, and the remaining samples in the training data are used as pre-test
samples;

Step 5: Evenly distribute the privacy protection budget B to each tree ε′ = B
L , each

layer ε′′ = ε′
d+1 , and divide the privacy protection budget of each node into two equal

ε = ε′′
2 ;
Step 6: Randomly select m features from the training sample; if the m features contain

n continuous features, assign the privacy protection budget in each node to each continuous
feature, and assign a copy to the discrete feature ε = ε

n+1 . For continuous features, use

the calculated value from the formula
exp( ε

2∆q q(Dc ,F))
∣∣∣Ri

∣∣∣
∑i exp( ε

2∆q q(Dc ,F))
∣∣∣Ri

∣∣∣ to replace pk in the formula

Gini(p) = ∑K
k=1 pk(1− pk) = 1− ∑K

k=1 p2
k , calculate the corresponding Gini index, and

then select the best continuity feature;
Step 7: Compare the Gini index corresponding to the best continuous feature with

the Gini index corresponding to each discrete feature, and select the split feature and split
point with the smallest Gini index among the randomly selected m features, according to
this feature and the best split point, divide the current node into two child nodes, and use
Step 6 and Step 7 for each child node;

Step 8: If the node reaches the stopping condition, set the current node as a leaf node,
and use the Laplace mechanism to add noise to classify the current node; otherwise, set the
current node as a child node, calculate the number of samples of the child node, and use
the Laplace mechanism to add noise N = NoisyCount (the number of child node samples),
and establish a decision tree that satisfies ε—differential privacy protection;

Step 9: Use the classification accuracy of L decision trees in the pre-test samples as the
weight of L decision trees to form a random forest that satisfies ε—differential privacy;

Step 10: Iteratively optimize the parameters in Step 1, select the final optimized param-
eters, and generate an optimized random forest model that satisfies ε—differential privacy.



Electronics 2022, 11, 3814 6 of 19

Step 11: A trusted third party integrates multiple local models that meet differential
privacy using a stacking ensemble algorithm and averaging method to obtain an updated
global model.

Model storage stage
Step 1: A trusted third party uses the ECC encryption algorithm to generate a 521-bit

key and a private key and transmits the generated private key to each data source while
keeping a private key in each period, and the public key is transmitted to the corresponding
generated block i;

Step 2: Each data source uses the private key to encrypt the initial global model and
uploads it to the corresponding generated block i. The corresponding block is decrypted
with the public key. The nodes on the blockchain adopt a consensus mechanism based on
the proof of training quality (PoQ), for verification, if 2/3 nodes believe that the initial global
model parameters in this period are the same as the updated global model parameters in
the previous period, that is, whi

= whi−1
, then the initial global model parameters in the

period are stored in the corresponding data block 1 in the generated block;
Step 3: Each data source uses the private key to encrypt the local model and uploads it

to the corresponding block i. The corresponding block is decrypted with the public key. The
nodes on the blockchain adopt a consensus mechanism based on PoQ for verification. If
the accuracy of the local model trained in this period does not reach the minimum accuracy
determined by 2/3 nodes, the data source needs to further optimize the local model and
improve the accuracy of the local model until the accuracy of the local model meets the
requirements, that is, it satisfies the formula scorelocal_model ≥ α (α is the lowest accuracy
rate recognized by 2/3 nodes), and the local model parameters can be stored in data blocks
2 to n− 1;

Step 4: The global model updated in each period is encrypted with a private key and
uploaded to the corresponding block, the corresponding block is decrypted with the public
key, and the nodes on the blockchain use a consensus mechanism based on the quality
of training parameters for verification. If 2/3 nodes think that the updated global model
parameters in this period are comparable with the updated global model in the last period,
and the accuracy rate fluctuates within an acceptable range, namely

∣∣∣scorehi
− scorehi−1

∣∣∣≤ β

(β is the acceptable fluctuation range of 2/3 nodes), then the global model parameters
updated in this period can be stored in the data block n corresponding to this block.

The schematic diagram of the storage part is shown in Figure 2:

Electronics 2022, 11, x FOR PEER REVIEW 7 of 21 
 

 

Step 4: The global model updated in each period is encrypted with a private key and 

uploaded to the corresponding block, the corresponding block is decrypted with the pub-

lic key, and the nodes on the blockchain use a consensus mechanism based on the quality 

of training parameters for verification. If 2 3  nodes think that the updated global model 

parameters in this period are comparable with the updated global model in the last period, 

and the accuracy rate fluctuates within an acceptable range, namely 

1
| |

i ih hscore score 


   ( is the acceptable fluctuation range of 2 3  nodes), then the 

global model parameters updated in this period can be stored in the data block n corre-

sponding to this block. 

The schematic diagram of the storage part is shown in Figure 2: 

initial global model 
parameters

local model parameters local model parameters …… updated global model parameters

……Block  i…… Block  i+1

Block head…… Block head ……

 

Figure 2. Block storage diagram. 

2.3. Performance Analysis 

The federated incremental learning algorithm based on differential optimization 

based on blockchain proposed in this paper is more accurate than the federated average 

algorithm, and the security of the model is also improved. 

2.3.1. Complexity Analysis of the Algorithm 

The complexity of the differential optimization federated incremental learning algo-

rithm: the complexity of the RSA encryption algorithm, the complexity of the ECC digital 

signature algorithm, the complexity of model transmission, the complexity of model up-

date, and the complexity of model storage, that is, the sum of time complexity is 
2 2 2((( log( ) ) ) )k kO n n d k N w G l         (where n  is the sample, d  is the 

feature, k  is the number, N  is the complexity of the encryption algorithm, w  is the 

complexity of the initial global model transmission, G  is the complexity of the local 

model transmission, and l  is the number of rounds), using the federated learning and 

stacking ensemble algorithm, will inevitably cause the time complexity of this algorithm 

to be higher than the federated average algorithm. 

2.3.2. Security Analysis of the Algorithm 

The algorithm uses the federated learning framework and the idea of ensemble learn-

ing. In the model training stage, the algorithm is implemented under the framework of 

federated learning, and the data of each data source are always stored locally, eliminating 

the risk caused by data transmission, thereby improving the security of the model and 

data. In the model storage stage, the algorithm uses ECC to generate a key pair by a trusted 

third party and uses a private key to sign the initial global model parameters, local model 

parameters, and updated global model parameters in each period and transmit them to 

the block i . The block i  is verified using the public key and sequentially stored in the 

data block, which can ensure the security of the model storage process. 

Figure 2. Block storage diagram.

2.3. Performance Analysis

The federated incremental learning algorithm based on differential optimization based
on blockchain proposed in this paper is more accurate than the federated average algorithm,
and the security of the model is also improved.
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2.3.1. Complexity Analysis of the Algorithm

The complexity of the differential optimization federated incremental learning al-
gorithm: the complexity of the RSA encryption algorithm, the complexity of the ECC
digital signature algorithm, the complexity of model transmission, the complexity of
model update, and the complexity of model storage, that is, the sum of time complexity
is O(((n ∗ log(n) ∗ d ∗ k) + N2 + wk+2 + Gk+2) ∗ l) (where n is the sample, d is the feature,
k is the number, N is the complexity of the encryption algorithm, w is the complexity of the
initial global model transmission, G is the complexity of the local model transmission, and
l is the number of rounds), using the federated learning and stacking ensemble algorithm,
will inevitably cause the time complexity of this algorithm to be higher than the federated
average algorithm.

2.3.2. Security Analysis of the Algorithm

The algorithm uses the federated learning framework and the idea of ensemble learn-
ing. In the model training stage, the algorithm is implemented under the framework of
federated learning, and the data of each data source are always stored locally, eliminating
the risk caused by data transmission, thereby improving the security of the model and data.
In the model storage stage, the algorithm uses ECC to generate a key pair by a trusted
third party and uses a private key to sign the initial global model parameters, local model
parameters, and updated global model parameters in each period and transmit them to
the block i. The block i is verified using the public key and sequentially stored in the data
block, which can ensure the security of the model storage process.

2.3.3. Timeliness Analysis of the Algorithm

The algorithm adopts the idea of incremental learning. From the data level, the data
generated by each data source in each period are used as the data when the model is trained
in that period, to ensure the timeliness of the data level; from the model at that level, the
global model is updated in the period and is used as the initial global model for the next
period for training, and the local model and the updated global model for the next period
can be obtained, thereby ensuring the timeliness of the model level.

2.3.4. Privacy Analysis of the Algorithm

The algorithm proposed in this paper first distributes the given privacy protection
budget B equally to T trees in the random forest ε′ = B

T . Since the samples in each tree
are randomly selected again, there will be a certain cross. According to the sequence
combination of differential privacy protection, the consumed privacy protection budget
is the superposition of the privacy protection budget consumed by each decision tree.
The privacy protection budget ε [23] is equally allocated to the leaf nodes in the tree,
namely ε = ε′/2(d + 1). If the node is a leaf node, the other half of the privacy protection
budget is used combined with the Laplace mechanism to add noise to the count value
to determine the category of the leaf node; if the node is an intermediate node, the other
half of the privacy protection budget is used combined with the index mechanism and
Laplace mechanism to select the best split feature and the best split point [14]. The privacy
protection budget of each data source is not greater than B, and according to the sequence
combination of differential privacy [15,16], this algorithm can meet the requirements of
ε—differential privacy protection.

3. Analysis of the Experiment
3.1. Experimental Parameter Setting

The algorithm is developed and implemented in the Python language and Pycharm
integrated software. The experimental hardware environment is: Intel(R) Core i5-4200
MCPU2.50 GHz processor, memory 8 G; the operating system is Windows 10. In terms of ex-
perimental data, the data set downloaded from https://www.heywhale.com/mw/dataset/
5e61c03ab8dfce002d80191d/file (accessed on 1 June 2022) (Supplementary Material) is

https://www.heywhale.com/mw/dataset/5e61c03ab8dfce002d80191d/file
https://www.heywhale.com/mw/dataset/5e61c03ab8dfce002d80191d/file
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used, and the data set is 15.6 Mb. This data set is the data set in the actual data competition, and
has practical significance. Details of the dataset are provided in the supplementary materials.

3.2. Analysis of Experimental Data

The data set is randomly divided into 12 parts to represent the data generated by
different data sources in different periods, and the result of 20 divisions represents the
randomness and rationality of the data. The data set randomly divided 20 times reflects
the relationship between the data before and after the division. The randomly divided data
set can meet the needs of the same data source and different samples and can meet the
rationality of the cross-validation model.

3.3. Analysis of Experimental Model

The experiment in this article is divided into three parts: model distribution, model
training, and model storage. The first part is to use the random forest as the initial global
model and use the public key generated by the RSA encryption algorithm to encrypt and
transmit to each data source. Each data source is decrypted with a private key. The initial
global model is obtained. The second part: each data source trains the acquired initial global
model on incremental data, optimizes the number of trees L and the number of pre-test
samples X, and the pre-pruning parameter l, obtains the period local model, then uses the
private key generated by the RSA encryption algorithm to encrypt the local model on each
data source and transmit it to a trusted third party. The trusted third party uses the public
key to decrypt and integrates the local model with the stacking ensemble algorithm to
obtain the most effective updated global model during the period. The third part: a trusted
third party uses the ECC digital signature algorithm to generate a key pair, transmits its
private key to each data source, and retains a private key, and the public key is transmitted
to the corresponding block. Each data source is a trusted third party that uses a private key
to sign the initial global model parameters, local model parameters, and updated global
model parameters in each period and transmit them to the corresponding block. The block
uses the public key to verify and store it in the corresponding data block.

In the model distribution stage, to ensure that each initial global model Hi can be
safely transmitted to each data source, the initial global model needs to be encrypted with
a 4096-bit public key for transmission.

In the model training phase, each data source uses the private key to decrypt to obtain
the initial global model—random forest—uses the random forest to train on each data
source, and optimizes the tree L and the number of pre-test samples X, and pre-pruning
parameters l. The optimal parameter model in the t1 period is obtained. Detailed parameter
optimization is shown in the Supplementary Material.

The accuracy of the random forest in the t1 period can be expressed as the average of
the training accuracy of the random forest on the incremental data generated by each data
source in the t1 period, which can ensure the accuracy of each data. Three local models hin
are generated each time. To test the performance of the local model, the average value and
variance are used to measure. Table 1 shows the performance of the initial global model H0
on each data source.

Among them, k = 1, 2, 3 indicates the number of data sources. To see the difference
between the variances more clearly, the original variance is magnified by 105. In the
following table, k indicates the data source, and the variances are all magnified by 105.

It is obvious from Table 1 that the accuracy of the initial global model H0 trained on
the data generated in the t1 period is above 74.5%, and the variance is very small, indicating
that the performance of multiple local models is good, and weighting is slightly better than
unweighting, and the model without differential privacy is significantly better than the
differential privacy protection model with different privacy protection budgets. When the
privacy protection budget is 0.25, the accuracy of the model is slightly better than 0.5 and
0.75, indicating privacy while the protection is guaranteed, and the accuracy of the model
is also improved.
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Table 1. The performance of the initial global model H0 in the t1 period.

Privacy Budget Weighted or Unweighted Data Source Means Variance

k = 1 0.749648 3.30
weighted k = 2 0.74902933 4.59

0.25 k = 3 0.745424 4.77
k = 1 0.75021867 5.14

unweighted k = 2 0.74872 4.34
k = 3 0.74356267 2.16
k = 1 0.75088 6.25

weighted k = 2 0.74970667 3.49
k = 3 0.74642133 4.32

0.5 k = 1 0.749008 4.02
unweighted k = 2 0.750864 4.36

k = 3 0.74667733 4.32
k = 1 0.75013867 4.84

weighted k = 2 0.74949867 5.38
k = 3 0.74707733 3.34

0.75 k = 1 0.750416 4.15
unweighted k = 2 0.75041067 3.45

k = 3 0.74593067 5.68
k = 1 0.84373333 2.37

weighted k = 2 0.843712 2.08
original k = 3 0.83837333 2.05

k = 1 0.84249067 2.81
unweighted k = 2 0.84322667 2.55

k = 3 0.839104 1.87

It can be seen from Table 2 that when no differential privacy is added, the accuracy of
the weighted model is slightly better than that of the unweighted model. The variance of
the weighted model is greater than that of the non-unweighted model, but the variances
in Table 2 are all less than 10−4. For the model with differential privacy, when the privacy
protection budget is 0.25, the accuracy of the model is the lowest, followed by the privacy
protection budgets of 0.5 and 0.75. It shows that the smaller the privacy protection budget,
the lower the availability of the model, but the higher the privacy of the data and the model;
compared with the federated average algorithm, the accuracy of the updated global model
obtained by the stacking ensemble algorithm is increased by about 5%, and at the same
time it is smaller than the variance of the federated average algorithm, indicating that
the stability and generalization ability of the model are better than that of the federated
average algorithm.

To test the training results of the global model h1 updated in the t1 period, the global
model h1 updated in the t1 period is used as the initial global model H1 in the t2 period,
and training is performed on the data generated in the t2 period. The initial global model
H1 is used to train on each data source, the tree L of the tree, the number of pre-test
samples X, and the pre-pruning parameter l are optimized, and the model of the optimal
parameter in the t2 period is obtained. Detailed parameter optimization is shown in the
Supplementary Material.

The accuracy of the random forest in the t2 period can be expressed as the average
of the training accuracy of the random forest on the incremental data generated by each
data source in the t2 period, which can ensure the accuracy of each data. Three local
models are generated each time. To test the performance of the local model, the average
value and variance are used to measure. Tables 3 and 4 indicate that the initial global
model H1 is the update of each data source using a stacking ensemble during the t1 period.
The performance of the updated global model was obtained by the global model and the
federated average algorithm in the t2 period.
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Table 2. A table of changes in the situation of the updated global model h1 over t1 time using
different methods.

Privacy Budget Weighted or Unweighted Methods Means Variance

stacking 0.84379733 2.39
0.25 weighted average 0.805264 2.83

stacking 0.84299733 2.04
unweighted average 0.80557333 4.04

stacking 0.84381333 2.22
weighted average 0.805024 3.18

0.5 stacking 0.8444 1.66
unweighted average 0.806496 3.24

stacking 0.84392533 2.25
0.75 weighted average 0.80664533 3.05

stacking 0.84402133 3.33
unweighted average 0.80640533 1.80

stacking 0.843344 2.69
original weighted average 0.843808 2.67

stacking 0.84368 2.32
unweighted average 0.84405333 2.45

Table 3. The stacking ensemble performance of the initial global model H1 for the t2 period.

Privacy Budget Weighted or Unweighted Data Source Means Variance

k = 1 0.841850667 2.33
weighted k = 2 0.842965333 1.51

0.25 k = 3 0.84672 2.03
k = 1 0.841221333 2.04

unweighted k = 2 0.840698667 2.98
k = 3 0.844698667 1.93
k = 1 0.841344 2.05

weighted k = 2 0.84 2.03
k = 3 0.844874667 2.84

0.5 k = 1 0.841210667 2.86
unweighted k = 2 0.838474667 3.39

k = 3 0.846522667 2.65
k = 1 0.841978667 2.40

weighted k = 2 0.840890667 2.41
k = 3 0.845226667 2.14

0.75 k = 1 0.843002667 2.14
unweighted k = 2 0.840112 2.75

k = 3 0.846149333 3.47
k = 1 0.843664 2.39

weighted k = 2 0.839664 2.36
original k = 3 0.84568 2.78

k = 1 0.844496 2.86
unweighted k = 2 0.8408 2.81

k = 3 0.846170667 1.97

It is obvious from Table 3 that the accuracy of the initial global model H1 trained on the
data generated by the t2 period is above 83.5%, and the variance is very small, indicating
that the performance of multiple local models is good, the weighted and unweighted
accuracy rates are almost equal because the model trained on the data generated in the t2
period have converged, and compared with the t1 period, the accuracy of the differential
privacy protection model with different privacy protection budgets is the same as the
accuracy of the model without differential privacy.

It is obvious from Table 4 that when the initial global model H1 is a federated average
algorithm, the accuracy of the model trained on the data generated in the t2 period is all
above 80%, and the variance is very small, indicating multiple local models compared
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with the t1 period, and the accuracy of the differential privacy protection model with
different privacy protection budgets increased by about 5%, indicating that the model has
strong generalization.

Table 4. The performance of the initial global model H1 over the t2 period of the federated aver-
age algorithm.

Privacy Budget Weighted or Unweighted Data Source Means Variance

k = 1 0.80474667 3.92
weighted k = 2 0.80414933 3.99

0.25 k = 3 0.80739733 3.02
k = 1 0.80486933 4.23

weighted k = 2 0.80140267 3.79
k = 3 0.80955733 3.01
k = 1 0.80399467 2.95

weighted k = 2 0.80283733 3.16
k = 3 0.807296 4.37

0.5 k = 1 0.80453867 4.25
weighted k = 2 0.80230933 3.32

k = 3 0.806624 6.64
k = 1 0.80642667 4.62

weighted k = 2 0.803792 3.74
k = 3 0.80810133 3.81

0.75 k = 1 0.80309867 3.04
weighted k = 2 0.80331733 3.51

k = 3 0.807088 2.90
k = 1 0.84232 2.58

weighted k = 2 0.84066133 3.09
original k = 3 0.84746667 3.59

k = 1 0.84256533 2.55
weighted k = 2 0.84032 3.07

k = 3 0.84507733 2.18

It can be seen from Table 5 that when differential privacy is not added, the accuracy
of the weighted model is almost equal to that of the unweighted model. The variance of
the weighted model is greater than that of the non-weighted model, but the variances in
the table are all less than 10−4; for the model with differential privacy, when the privacy
protection budget is 0.25, the accuracy of the model is the lowest, followed by the privacy
protection budgets of 0.5 and 0.75. It shows that the smaller the privacy protection budget,
the lower the availability of the model, but the higher the privacy of the data and the model;
compared with the federated average algorithm, the accuracy of the updated global model
obtained by the stacking ensemble algorithm is increased by about 2%, and at the same
time it is smaller than the variance of the federated average algorithm, indicating that
the stability and generalization ability of the model are better than that of the federated
average algorithm.

To fully test the influence of increasing or reducing data sources on the algorithm, the
t3 period is reduced by one data source (two data sources) for training, and the global model
h2 updated in the t2 period is used as the initial global model H2 in the t3 period. Training
on the data generated in the t3 period is carried out. The initial global model is used to train
on each data source, the tree L of the tree, the number of pre-test samples X, and the pre-
pruning parameter l are optimized, and the model of the optimal parameter in the t3 period
is obtained. Detailed parameter optimization is shown in the Supplementary Material.

The accuracy of the random forest in the t3 period can be expressed as the average
of the training accuracy of the random forest on the incremental data generated by each
data source in the t3 period, which can ensure the accuracy of each data. Two local models
hin are generated each time. To test the performance of the local model, the average value
and variance are used to measure. Tables 6 and 7 indicate that the initial global model
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H2 is the update of each data source using a stacking ensemble during the t2 period. The
performance of the updated global model was obtained by the global model and the
federated average algorithm in the t3 period.

Table 5. Situation change table for updated global h2 models calculated using different methods over
t2 time.

Privacy Budget Weighted or Unweighted Methods Means Variance

stacking 0.843301333 3.27
0.25 weighted average 0.837573333 2.17

stacking 0.844074667 2.65
unweighted average 0.837616 2.99

stacking 0.842176 2.80
weighted average 0.836944 1.68

0.5 stacking 0.84328 2.76
unweighted average 0.836021333 2.19

stacking 0.842784 4.25
0.75 weighted average 0.836458667 2.46

stacking 0.842357333 2.49
unweighted average 0.836304 1.98

stacking 0.842890667 1.97
original weighted average 0.842773333 2.53

stacking 0.842906667 1.91
unweighted average 0.842922667 2.07

Table 6. The stacking ensemble performance of the initial global model H2 for the t3 period.

Privacy Budget Weighted or Unweighted Data Source Means Variance

k = 1 0.839586667 2.42
0.25 weighted k = 2 0.841786667 1.36

k = 1 0.840706667 3.03
unweighted k = 2 0.84352 2.22

k = 1 0.8406 2.05
weighted k = 2 0.842213333 1.60

0.5 k = 1 0.840666667 2.11
unweighted k = 2 0.844933333 2.43

k = 1 0.843333333 3.36
weighted k = 2 0.845373333 1.89

0.75 k = 1 0.841493333 2.15
unweighted k = 2 0.843893333 1.89

k = 1 0.843973333 2.48
original weighted k = 2 0.842946667 1.47

k = 1 0.841082667 1.38
unweighted k = 2 0.842 1.84

It is obvious from Table 6 that the accuracy of the initial global model H2 trained on
the data generated in the t3 period is more than 83.5%, and the variance is very small,
which shows that the performance of multiple local models is good and has good stability.
Compared with the accuracy of the model in the t2 period, the accuracy of the model is
improved, which indicates that the initial global model H2 has a strong generalization
ability.

It is obvious from Table 7 that the accuracy of the initial global model H2 trained on
the data generated in the t3 period is more than 83.5%, and the variance is very small,
which shows that the performance of multiple local models is good and has good stability.
Compared with the accuracy of the model in the t2 period, the accuracy of the model is
improved by more than 3%, which indicates that the initial global model H2 has a strong
generalization ability.
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Table 7. The performance of the initial global model H2 in t3 of the federated average algorithm.

Privacy Budget Weighted or Unweighted Data Source Means Variance

k = 1 0.83484 2.25
0.25 weighted k = 2 0.83756 3.30

k = 1 0.836253333 1.96
unweighted k = 2 0.83624 2.14

k = 1 0.834106667 2.37
weighted k = 2 0.838666667 2.73

0.5 k = 1 0.833946667 1.96
unweighted k = 2 0.838266667 1.41

k = 1 0.83268 2.24
weighted k = 2 0.8396 1.45

0.75 k = 1 0.834413333 1.99
unweighted k = 2 0.83792 2.23

k = 1 0.839413333 2.33
original weighted k = 2 0.84612 2.62

k = 1 0.841586667 2.37
unweighted k = 2 0.845813333 2.60

It can be seen from Table 8 that the accuracy of the weighted model is almost equal to
that of the unweighted model without adding differential privacy, and the variance of the
weighted model is greater than that of the non-weighted model, but the variance in the
table is less than 10−4; for the model with differential privacy, when the privacy protection
budget is 0.25, 0.5, 0.75, the accuracy of the model is almost equal, compared with the
federated average algorithm, and the accuracy of the updated global model obtained by
the stacking ensemble algorithm is almost equal to that obtained by the federal average
algorithm, but the security of the model is improved.

Table 8. The t3 time section uses different methods to calculate the change table of the updated global
model h3.

Privacy Budget Weighted or Unweighted Methods Means Variance

stacking 0.8388533 2.94
0.25 weighted average 0.83928 2.32

stacking 0.8416533 2.00
unweighted average 0.83896 3.33

stacking 0.84148 1.18
weighted average 0.83896 1.64

0.5 stacking 0.83972 2.54
unweighted average 0.8382667 2.79

stacking 0.8386933 4.18
0.75 weighted average 0.8398267 1.88

stacking 0.8400133 3.29
unweighted average 0.8380933 1.79

stacking 0.8411867 2.35
original weighted average 0.8392667 2.97

stacking 0.839184 2.90
unweighted average 0.8390667 2.88

To fully test the influence of increasing or reducing data sources on the algorithm,
one data source (four data sources) was added for training in the t4 period, and the global
model h3 updated during the t3 period was used as the initial global model H3 in the t4
period. Training on the data generated in the t4 period is carried out. The initial global
model H3 is used to train on each data source, and the number L of the tree, the number of
pre-test samples X, and the pre-pruning parameter l are optimized, to obtain the model of
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the optimal parameter in the t4 period. Detailed parameter optimization is shown in the
Supplementary Material.

The accuracy of random forest in the t4 period can be expressed as the average value
of training accuracy of 20 iterations on incremental data generated by each data source,
which can ensure the accuracy of each data and, at the same time, the four local models hin
were generated each time. To test the performance of local models, the average value and
variance were used to measure. Tables 9 and 10 show the performance of the initial global
model H3 in the t4 period of the updated global model obtained by the stacking ensemble
algorithm and the federated average algorithm for each data source in the t3 period.

Table 9. The stacking ensemble performance of the initial global model H3 for the t4 period.

Privacy Budget Weighted or Unweighted Data Source Means Variance

k = 1 0.844331822 6.71
weighted k = 2 0.846293333 1.17

0.25 k = 3 0.838826667 2.99
k = 4 0.8424 2.15
k = 1 0.843798346 3.76

unweighted k = 2 0.841333333 1.28
k = 3 0.839253333 6.41
k = 4 0.839306667 2.18
k = 1 0.843478261 6.84

weighted k = 2 0.840426667 5.54
k = 3 0.839306667 2.03
k = 4 0.840746667 2.98

0.5 k = 1 0.84502534 1.09
unweighted k = 2 0.84416 1.32

k = 3 0.842506667 1.01
k = 4 0.842506667 3.13
k = 1 0.841291011 1.73

weighted k = 2 0.841813333 5.64
k = 3 0.84528 1.20
k = 4 0.836266667 5.24

0.75 k = 1 0.842197919 1.54
unweighted k = 2 0.84224 1.58

k = 3 0.84592 1.88
k = 4 0.842666667 3.52
k = 1 0.842998133 1.76

weighted k = 2 0.844053334 4.70
original k = 3 0.840746667 3.48

k = 4 0.842133333 2.37
k = 1 0.844118432 1.50

unweighted k = 2 0.846186667 6.41
k = 3 0.839146667 5.61
k = 4 0.837813333 1.20

From Table 9, it can be seen that the initial global model is the updated global model
of the stacking ensemble. The accuracy rate of most of the models trained on the data
generated in the t4 period is more than 84%, and the variance is very small, indicating that
the performance of several local models is good and has good stability.

From Table 10, it can be clearly seen that the initial global model H3 is the updated
global model of the federated average algorithm, and the accuracy rate of most of the
models trained on the data generated in the t4 period is more than 84%, and the variance is
very small, indicating that the performance of several local models is good and has good
stability.

It is obvious from Table 8 that when the initial global model H3 is a federated average
algorithm, the accuracy of the model trained on the data generated in the t4 period is all
above 80%, and the variance is very small, indicating multiple local models compared with
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the period t3, and the accuracy of the differential privacy protection model with different
privacy protection budgets increased by about 5%, indicating that the model has strong
generalization.

Table 10. The performance table of the initial global H3 model for the federated average algorithm in
the t4 period.

Privacy Budget Weighted or Unweighted Data Source Means Variance

k = 1 0.844118432 1.83
weighted k = 2 0.843706667 1.57

0.25 k = 3 0.841866667 1.88
k = 4 0.841066667 2.55
k = 1 0.842331288 2.46

unweighted k = 2 0.843653333 2.98
k = 3 0.843813333 2.11
k = 4 0.842053333 1.51
k = 1 0.843158176 1.28

weighted k = 2 0.841226667 4.22
k = 3 0.841386667 3.76
k = 4 0.839466667 1.95

0.5 k = 1 0.842864764 3.36
unweighted k = 2 0.841813333 3.37

k = 3 0.84312 1.26
k = 4 0.8376 1.85
k = 1 0.840944252 1.80

weighted k = 2 0.841973333 2.96
k = 3 0.84456 1.86
k = 4 0.8408 1.31

0.75 k = 1 0.840917578 3.03
unweighted k = 2 0.839626667 7.41

k = 3 0.843013333 1.03
k = 4 0.83864 2.19
k = 1 0.842731395 2.79

weighted k = 2 0.8412 2.11
original k = 3 0.84312 2.79

k = 4 0.83856 2.93
k = 1 0.84001067 3.06

unweighted k = 2 0.844026667 3.04
k = 3 0.843466667 1.00
k = 4 0.83712 2.22

It can be seen from Table 11 that the accuracy of the weighted model is greater than
that of the unweighted model, and the variance of the weighted model is greater than that
of the non-weighted model, but the variances in the table are less than 10−4, which meets
the experimental requirements. For the model with differential privacy, the accuracy of the
model is almost equal when the privacy protection budget is 0.25, 0.5, and 0.75. Compared
with the federated average algorithm, the accuracy of the updated global model obtained
by the stacking ensemble algorithm is almost the same as that obtained by the federated
averaging algorithm, but the security of the model is improved.

In the model storage phase, the trusted third party uses the ECC encryption algorithm
to generate the key pair with a length of 512. The public key is broadcast to the correspond-
ing block, and the private key is transmitted to each data source separately, and at the same
time, one reservation is maintained.

The Raybaas platform can quickly and efficiently build blockchain-based services
and applications. The hardware devices have an Intel(R) Core i5-4200 m CPU 2.50 GHz
processor. The underlying blockchain is deployed based on a CentOS 7.6 operating system.
The stored data include initial global model parameters, local model parameters, and
updated global model parameters in the t1 period.
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Table 11. The change table of updated global model h4 was calculated by different methods in
t4 period.

Privacy Budget Weighted or Unweighted Methods Means Variance

0.25
weighted stacking 0.83850667 1.12

average 0.83501333 1.71

unweighted stacking 0.83770667 1.37
average 0.83776000 8.38

0.5
weighted stacking 0.83930667 7.70

average 0.83933333 2.00

unweighted stacking 0.83450667 8.75
average 0.83914667 2.17

weighted stacking 0.83824000 5.93
0.75 average 0.83981333 1.92

stacking 0.84314667 2.23
unweighted average 0.83760000 3.51

stacking 0.83930667 7.70
original weighted average 0.83725333 1.02

stacking 0.83829333 1.08
unweighted average 0.83946667 2.02

For storing the initial global model parameters, the trusted third party encrypts the
initial global model in the ti period by using the private key retained in the period and
transfers it to the block i. The verification nodes in the blockchain are decrypted using
the corresponding public key and verified by the consensus mechanism based on the
training parameter quality. If 2/3 verification nodes consider that the initial global model
parameters in the period are the same as the updated global model parameters in the
previous period, namely, the formula wHi = whi−1

, then the initial global model parameters
wHi in the period will be stored in the corresponding data block 1 in the generated block i.

For storing local model parameters, the private key within the ti time of each data
source encrypts the local model in the period and uploads it to the corresponding block
i. The verification nodes in the blockchain are encrypted using the corresponding public
key and the consensus mechanism based on the training parameter quality is used for
verification. The verification node in the blockchain uses the corresponding public key to
decrypt, and uses a consensus mechanism based on the quality of training parameters for
verification. If the accuracy rate of the local model trained in this period cannot reach the
minimum accuracy rate determined by the node, the data source needs to further optimize
the local model to improve the accuracy of the local model until the accuracy of the local
model of the data source meets the requirements, that is, the formula scorelocal_model ≥ α
(α is the minimum accuracy rate determined by 2/3 nodes) can be met, and the local model
parameters can be stored in data block 2 to n− 1.

For the updated global model parameters, the trusted third party encrypts the up-
dated global model in the ti period by using the private key retained in the period and
transfers it to the block i. The verification nodes in the blockchain are decrypted using the
corresponding public key and verified by the consensus mechanism based on the training
parameter quality. If 2/3 nodes believe that the updated global model parameters in this
period are comparable with the updated global model in the previous period, the accuracy
fluctuates within an acceptable range, that is,

∣∣∣scorehi
− scorehi−1

∣∣∣≤ β (β is the acceptable
fluctuation range of 2/3 nodes), then the global model parameters updated in the period
can be stored in the data block n corresponding to the block.

3.4. Summary of the Experiment

The algorithm distributes the differentially weighted optimization random forest
to each data source and performs training, and uses the stacking ensemble algorithm
to integrate multiple local models. The updated global model h1 has an accuracy of
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84.3797333%, 84.3813333%, and 84.3925333% on the incremental data in the t1 period. As
the data source of the t2 period is consistent with that of the t1 period, the updated global
model is distributed to the data source as the initial global model of the t2 period and
trained, and the accuracy of using the stacking ensemble is 84.3301333%, 84.2176%, and
84.2784%, respectively, indicating that the updated global model has strong generalization.
To reduce one data source in the t3 period, the updated global model h2 was distributed to
the data source and trained as the initial global model in the t3 period, and the accuracy of
using the stacking ensemble is 83.8853333%, 84.148%, and 83.8693333%. To add one data
source in the t4 period, the updated global model h3 is distributed to the data source and
trained as the initial global model in the t4 period, and the accuracy of using the stacking
ensemble is 83.8506667%, 83.9306667%, and 83.824%. Compared with the federated average
algorithm, the accuracy of the differential weighted optimization random forest is increased
by up to 5%, and the average period is increased by 1%. At the same time, the security of
the model and data during the training process has been greatly improved.

The comparative experiment in this paper is to compare the stacking integration
algorithm with the benchmark algorithm FedAvg algorithm in federated learning under
different privacy protection budgets. Under the influence of different privacy protection
budgets and weights, the experimental results of the federal average algorithm and stack
integral algorithm in stream data are shown in the tables.

4. Conclusions

This paper proposes a differential optimization federated incremental learning al-
gorithm based on blockchain. Applying differential privacy and incremental learning to
the framework of federated learning can enhance the security and timeliness of data and
models. The accuracy of the model is affected by the differential privacy adding model. To
mitigate the influence of adding differential privacy to the model, the model is weighted.
The initial global model parameters, local model parameters, and updated global models
of each period are uploaded to the blockchain. The verification nodes in the blockchain are
validated by a consensus mechanism based on training parameter quality. The required
parameters are stored in the corresponding data blocks according to rules and quickly syn-
chronized, reducing the transport cost data and at the same time guaranteeing the safety of
the model parameters. When optimizing model parameters, this paper adopts the idea of a
set, that is, the method of selecting the best among the best to select the optimal parameters.
However, in the case of high dimensions, the relatively excellent parameters are obtained,
which cannot achieve the effect of optimal parameters. Later, optimization algorithms will
be used to optimize. In the following work, we will try to apply this algorithm to other
privacy protection technologies to further improve the security of data and models based
on ensuring model accuracy.

Supplementary Materials: The data set of this experiment comes from https://www.heywhale.com/
mw/dataset/5e61c03ab8dfce002d80191d/file (accessed on 1 June 2022). There are 200,000 samples
in this data set, of about 15.6 Mb, where: caseid represents the case number, which has no practical
significance; Q1 represents the information of the first question. The information is encoded into
numbers, and the size of the numbers does not represent the real relationship. Qk represents the
information of the k-th question. There are a total of 36 questions. Evaluation represents the final
audit result; 0 means the claim is granted and 1 means the claim is not approved.
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