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Abstract: A novel design method of simultaneous beam forming and focusing using a checkerboard
anisotropic surface is proposed and verified in this paper. The proposed multibeam control regardless
of far and near regions can easily be achieved through a rearrangement of the checkerboard structure.
The unit cell of the utilized anisotropic surface consists of two identical metallic structures divided by
a dielectric material. When the EM wave with a circular polarization (CP) is incident on the unit cell,
the maximum transmission phase variation of the unit cell is 360 degrees by half rotation of the unit
cell. A microstrip patch antenna with trimmed corners is used to launch the CP wave and the distance
between the microstrip patch antenna and anisotropic surface is about 2 wavelengths considering the
optimized spillover and taper efficiencies. After designing each anisotropic surface for beam forming
and focusing, the unit cells of the surface are rearranged in the form of a checkerboard. The feasibility
of the proposed method is confirmed by full-wave simulation and measurement for anisotropic
surface with a beam forming angle of 30 degrees and beam focusing point 60 mm away from center
at 5.8 GHz. The forming angle and focal length are simulated and measured to be 28 degrees and
about 65 mm, respectively.

Keywords: beam forming; beam focusing; checkerboard; anisotropic surface

1. Introduction

Wireless power transfer (WPT) is the technology to transmit power without a direct
connection such as cables [1–5]. Thus, the WPT is very useful and applicable technology
in various areas. Since 5G and 6G wireless networks will especially accelerate the growth
of the IoT by providing faster data transfer speeds, the WPT using a microwave, which is
advantageous for long-distance power transmission, will be more needed to charge IoT
devices [6–14]. The beam steering and multi beam forming should be achieved to charge
multi-target simultaneously in the WPT system using a microwave [6,7]. In [11], to obtain
the characteristic of multi beam forming, the incident input amplitudes and phases at the
metasurface are computed by numerical optimization. The WPT to charge the multi-target
at 5.8 GHz is verified using sequential phase ring antenna and inverted class F rectenna
experimentally [13].

In order to transfer power to the multiple IoT devices simultaneously, the WPT system
using a microwave must have a multi-beam control function. In particular, when the
devices that need to charge are located in both far and near field regions, the function to
simultaneously steer and focus the beam is needed to the WPT system. Various studies
have been researched and published in recent years [15–17]. WPT to various devices
using the array antenna can be implemented more efficiently by considering the weights
that have to be applied to the array elements [15]. In [17], the required phase of each
cell of frequency selective surface (FSS) for simultaneous beam forming and focusing are
calculated mathematically by the principle of superposition.

Recently, the beam steering and focusing techniques using the metasurface have been
researched intensively [18–23]. In this paper, a novel design methodology of simultaneous
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beam forming and focusing by a rearrangement of anisotropic surface in the form of a
checkerboard is proposed. Multibeam control regardless of far and near regions easily
can be achieved through a structural rearrangement. A single-layer anisotropic surface is
designed using an electric field coupled resonators (ELCRs) [24]. If a circularly polarized
(CP) wave is incident on the unit cell of the surface, the transmitted phase variation of the
unit cell is twice the rotation angle of the unit cell. In this paper, the source antenna has
the operation frequency of 5.8 GHz and a right-handed (RH) CP characteristic. In the next
section, the operation principle of the unit cell of the anisotropic surface is explained, and
the full-wave simulated results are presented. The design procedure and measured results
of the transmit array antenna for simultaneous beam forming and focusing are discussed
in Section 3. In the final section, the concluding remarks are given.

2. Design of Unit Cell of Anisotropic Surface

Two identical electric field coupled resonators (ELCRs) of Figure 1 are utilized to
design the unit cell of anisotropic surface in this paper. The unit cell consists of two
metallic layers and one dielectric material. The metal structure has a circle ring shape for
an inductance with a gap-coupled line for a shunt capacitance. When CP wave is incident
on the anisotropic surface, the designed surface can control the transmitted wave-front
through the surface by the spin of the unit cell. When the two-metal structure is rotated by
the same θ, the rotated coordinate can be expressed as

x = ucosθ − vsinθ, y = usinθ − vcosθ (1)
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Figure 1. Unit cell of the metasurface (Top view). Figure 1. Unit cell of the metasurface (Top view).

If the two orthogonally polarized transmission coefficients are equal in magnitude
while opposite in phase, the transmitted wave has a characteristic of LHCP with a trans-
mitted phase of 2θ in case of incidence of RHCP wave. The dimensions of the unit cell
for operation frequency of 5.8 GHz are set as p = 20 mm, d = 17.26 mm, a = 11.83 mm,
g = 1 mm, w = 1 mm. The unit cell for anisotropic surface is made of RT/duroid 5880 with a
relative permittivity of 2.2 and a thickness of 3.2 mm. At the frequency of 5.8 GHz, the two
orthogonally polarized transmission coefficients are simulated with the same magnitude of
−1.1 dB and opposite phase by ANSYS Electronics desktop software, as shown in Figure 2.
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(a) Magnitude (b) Phase.

3. Design and Results of Simultaneous Beam Forming and Focusing

The beam forming angle can be decided if the phase differences (φ) are equal to the
propagation induced phase delays, namely φ = βp × sinθf. Additionally, the beam focusing
can be implemented using parabola formula. In order to realize the focal length (f ), the
phase of the transmitted wave should satisfy the following equation

ϕ(x, y) =
2π

λ

(√
x2 + y2 + f 2 − f

)
(2)

where λ is wavelength of the operating frequency. x and y are the horizontal and vertical
axes of anisotropic surface, respectively. Figure 3 shows the relation between beam and
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transmitted phase through anisotropic surface. The designed anisotropic surface can
manipulate the wave-front of the source antenna with CP characteristic. The simultaneous
beam forming and focusing can be achieved by a checkerboard anisotropic surface, as
shown in Figure 3. The wave-front and anisotropic surface for beam forming are plotted by
a blue line. Similarly, the wave-front and anisotropic surface for beam focusing are plotted
by a red line. In this paper, the total area of the anisotropic surface having unit cells of 20
× 20 is 400 mm × 400 mm. The feasibility of the proposed methodology is confirmed by
simulated and measured results of the transmitarray antenna with beam forming angle of
30 degrees and beam focusing point 60 mm away from center at 5.8 GHz. To achieve beam
forming and focusing at the desired direction, the shape of the transmission phase using an
active metasurface should be controlled. First, we have calculated the transmission phase
of the unit cell of the anisotropic surface for beam forming by φ = βp × sinθf. Next, we
have decided the transmission phase of unit cell of anisotropic surface for beam focusing
by Equation (2). By the design principle of the anisotropic surface that can have twice
the transmission phase of the rotation angle of unit cell, the unit cell corresponding to
the calculated phase for beamforming and beam focusing is arranged. After designing
each anisotropic surface for beam forming and focusing, the unit cells of the surface
are rearranged in the form of checkerboard. Figure 4 shows the full-wave simulated
transmission phases of anisotropic surface for each beam forming and beam focusing, and
simultaneous beam forming and focusing. As the number of unit cells is an even number,
the 4 × 4 cells in the center are arranged as unit cells for beam focusing to obtain the
symmetric shape of beam focusing, as shown in Figure 4c. Figure 5 shows the photographs
of fabricated transmitarray antenna consists of source antenna and anisotropic surface. To
launch an RHCP wave, a CP microstrip patch antenna with trimmed corners is utilized,
as shown in Figure 5a. The dimensions of the patch antenna are 16.5 mm (Length) and 16
mm (Width). Truncation of 2.8 mm in length and 2.8 mm in width of rectangular patch has
been implemented at two opposite corners. A coaxial cable feeding is employed and is
located 3.25 mm from the center. In addition, the thickness and the relative permittivity of
the substrate (RT/duroid 5880) for source antenna are 1.6 mm and 2.2, respectively.
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The distance between source antenna and anisotropic surface is considered to be
100 mm (≈2λ0 at 5.8 GHz) considering optimized spillover and taper efficiencies. Thus,
the overall dimension of the fabricated transmitarray antenna is 400 mm (Length) ×
400 mm (Width) × 104.8 mm (Height). The forming angle and focal length are simulated
to be 28 degrees and 64.8 mm having errors of about 7% and 8% by FEM simulator (ANSYS
Electronics desktop software), respectively. The simulated electric field intensity is obtained
along the x-axis at focal length of 64.8 mm, as shown in Figure 6a. Additionally, to measure
the electric field intensity, the receiving LHCP patch antenna is placed on the Styrofoam
and S21 is measured on the x-axis (z = 64 mm) at intervals of 10 mm, as shown in Figure 6b.
Additionally, the measured far-field radiation pattern is obtained using the semi-anechoic
chamber system. The semi-anechoic chamber can suppress the multiple reflections using
three 18-inch pyramidal absorbers and the time gating process of the vector network
analyzer. As shown in Figure 7, the measured results agree well with the analytic and the
full-wave simulated results. A slight difference between analytic and measured results
is caused by the finite dimension of anisotropic surface and relatively large unit cell for
the wavelength.
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4. Conclusions

In this paper, simultaneous beam forming and focusing is implemented through
a checkerboard anisotropic surface. After designing each anisotropic surface for beam
forming and focusing, the unit cells of surface are rearranged in the checkerboard pattern.
Therefore, multibeam control regardless of far and near regions can easily be achieved
through a structural rearrangement. The feasibility of the proposed method is confirmed
by a full-wave simulation and measurements for an anisotropic surface with beam form-
ing angle of 30 degrees and beam focusing point 60 mm away from center at 5.8 GHz.
The measurement results are in good agreement with the analytic and simulation results.
The forming angle and focal length are simulated and measured to be about 30 degrees
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and about 65 mm having errors of about 7% and 8%, respectively. This study success-
fully demonstrates that the designed transmitarray antenna generates simultaneous beam
forming and focusing.
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