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Abstract: In this paper, an automatic speech emotion recognition (SER) task of classifying eight
different emotions was experimented using parallel based networks trained using the Ryeson Audio-
Visual Dataset of Speech and Song (RAVDESS) dataset. A combination of a CNN-based network
and attention-based networks, running in parallel, was used to model both spatial features and
temporal feature representations. Multiple Augmentation techniques using Additive White Gaussian
Noise (AWGN), SpecAugment, Room Impulse Response (RIR), and Tanh Distortion techniques were
used to augment the training data to further generalize the model representation. Raw audio data
were transformed into Mel-Spectrograms as the model’s input. Using CNN’s proven capability
in image classification and spatial feature representations, the spectrograms were treated as an
image with the height and width represented by the spectrogram’s time and frequency scales.
Temporal feature representations were represented by attention-based models Transformer, and
BLSTM-Attention modules. Proposed architectures of the parallel CNN-based networks running
along with Transformer and BLSTM-Attention modules were compared with standalone CNN
architectures and attention-based networks, as well as with hybrid architectures with CNN layers
wrapped in time-distributed wrappers stacked on attention-based networks. In these experiments,
the highest accuracy of 89.33% for a Parallel CNN-Transformer network and 85.67% for a Parallel
CNN-BLSTM-Attention Network were achieved on a 10% hold-out test set from the dataset. These
networks showed promising results based on their accuracies, while keeping significantly less training
parameters compared with non-parallel hybrid models.

Keywords: speech emotion recognition; parallel networks; attention-based network; audio data
augmentation; transformer; deep learning

1. Introduction

Human communication relies heavily on emotional cues and is one key aspect in
improving human–computer interactions (HCI) [1]. In line with the increasing trend and
continuing technological development of a Metaverse, enhanced social interactions are
becoming more of a challenge with the need for sound and speech recognition, as well
as emotional recognition to achieve a natural interaction and increased immersion [2].
A person’s emotion influences their vocal characteristics and their linguistic contents,
and thus, with the help the ever-improving computational powers of modern computers,
studies on Speech Emotion Recognition (SER) systems have continuously grown with the
rise in deep neural networks by mapping audio signals into feature maps representing
a speech sample’s vocal characteristics [3]. SER, on a machine learning perspective, is
a classification problem using audio samples as input that are then classified into a set
of pre-defined emotions. Emotional audio datasets are essential to the development and
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evaluation of such SER systems. Labeled audio signals are used to train an SER to recognize
different emotional classes. Because of this, a large number of labeled audio data are
essential in developing a robust SER system.

The impressive progress in computer vision has helped researchers to improve SER by
considering an audio sample’s spectral features as an image input. Convolutional Neural
Networks (CNN) are considered as a gold standard in image processing. This architecture
consists of feature representations derived from the weights of multiple convolutional
layers [4,5]. This technology can be utilized in SERs using mel-spectrograms to transform
audio data into visual audio signals based on its frequency components. These image-like
representations can then be trained on a CNN network as if they were images. However,
traditional CNN networks take only a single frame of input and do not perform computa-
tions on a timestep sequence, which means that they cannot remember past data from the
same sample when processing the next timestamp.

In this study, our goal is to identify underlying emotions in speech using voice-based
feature extraction methods, by utilizing the power of CNNs while addressing the issue of
the small number of available training data using different data augmentation techniques.
To improve on the CNN’s current architecture, we applied a CNN network parallel to
time distributed models of LSTMs with attention-based models, and a transformer-based
architecture to capture spatial information and features, while helping the network learn
and predict frequency distributions of emotions over time. The spectrograms were pro-
cessed as images, with the height and width being represented by the time and frequency
scales of the spectrogram, using CNN’s established strengths in image classification and
spatial feature representations, while temporal feature representations were represented by
attention-based models Transformer and BLSTM-Attention modules.

Two main models (Parallel CNN-BLSTM-Attention, and Parallel CNN-Transformer
models) are proposed in this paper. These network models were then trained on the Ryeson
Audio-Visual Database of Emotional Speech and Song (RAVDESS) [6] dataset, with some of
their audio signals augmented to increase the training samples using multi-fold audio data
augmentation techniques such as Additive White Gaussian Noise (AGWN), SpecAugment,
Room Impulse Response (RIR), and Tanh Distortion.

2. Related Works
2.1. Speech Emotion Recognition

Emotion recognition from speech has been studied to an extent as it plays an important
role in improving human–computer interactions. Speech Emotion Recognition (SER) has
been developed as a system that can identify the multiple emotional states from different
audio samples. Traditionally, emotion recognition has been developed using classical
machine learning techniques such as Hidden Markov Models (HMM) [7], Gaussian Mixture
Models (GMM) [8,9], Support Vector Machines (SVM) [10], and k-nearest Neighborhood
Classifiers (kNN) [9,11]. In recent years, deep learning-based classifiers have become the
common approach to SER systems such as Deep Neural Networks (DNN) [12,13], Deep
Boltzmann Machine (DBM) [14], Convolutional Neural Network (CNN) [15], Recurrent
Neural Networks (RNN) [16], and Long Short-Term Memory (LSTM) [17,18].

2.2. Ryeson Audio-Visual Database of Emotional Speech and Song

The Ryeson Audio-Visual Database of Emotional Speech and Song (RAVDESS) [6] was
utilized in this study. In the RAVDESS dataset, 12 actors and 12 actresses each performed
eight different emotions, namely neutral, calm, happy, sad, angry, fearful, disgusted, and
surprised. These emotions are performed twice, in two different forms, by singing and
speaking sentences for each emotion. However, for this study only recordings that were
performed by speaking are used. Table 1 shows the speech sample count for each of the said
emotions. Each speech sample has a length of 4 s, each with a 1 s silence at the beginning
and at the end of each recording.



Electronics 2022, 11, 3935 3 of 14

Table 1. RAVDESS Dataset Speech Samples.

Emotion Speech Samples

Neutral 96
Calm 192

Happy 192
Sad 192

Angry 192
Fearful 192
Disgust 192

Surprised 192

Total 1440

2.3. Neural Network Approach for SER Based on RAVDESS

There were neural network-based implementations of SER for the RAVDESS dataset
in recent years. Zeng et al. [19] implemented a deep neural network based on spectrograms
extracted from songs and speech utterances from the RAVDESS dataset. The spectrogram
inputs were used on a multi-task gated residual network and achieved an accuracy of
65.97% on the test data. Similarly, Popova et al. [20] used a spectrogram extracted only
from speech utterances from the dataset and used a VGG-16 convolutional neural network
to achieve an accuracy of 71% on the test data. To improve on the models of such CNN
based SER systems, Issa et al. [21] used a deep convolutional neural network (DCNN)
to perform the SER task. By utilizing combined transformed audio signals of different
methods such as MFCC, Chromagram, Mel-spectrogram, Spectral contrast, and Tonnetz
representation as a concatenated input for their network, the researchers obtained a 71.61%
accuracy on all eight emotional classes. However, one disadvantage of these models is
that latent space weights of a CNN model represent and focus on the spatial properties of
the audio signals. Since speech depends on sequences over time, spatial features should
also be considered. To address this, Li et al. [22] experimented using the speech utterances
from the dataset and implemented a multimodal deep learning approach to perform a
fine-grained emotion recognition which uses temporal alignment mechanism to capture
fine-grain emotions. They obtained an accuracy of 64% on a combined CNN and LSTM
network, and 66.5% on an LSTM with Attention Network using acoustic information alone,
and 70.8% whilst using semantic embeddings. In recent years, pre-trained models such
as Wav2Vec encoders were introduced as a self-supervised approach, which was found
to be helpful for the speech emotion recognition tasks [23–25]. This method for speech
emotion recognition utilizes an end-to-end model using raw signals, which is a pre-trained
model using large-scale voice data with their encoder used as a feature extraction model.
Although end-to-end based deep learning models have advantages on calculating features,
pre-training on large scale data is usually time consuming and is more complex for the
initial model weight values. Application of hybrid models in SER has been adapted in
the past. There were previous papers that proposed the use of LSTM and Transformer
networks with CNN [26]. Han et al. [27] utilized a network of ResNet18 combined with
CNN and Transformer in a parallel architecture using MFCC features on the RADVESS
dataset. Recently, Slimi et al. [27] applied a hybrid time-distributed CNN-Transformer
for the SER task, which reported an accuracy of 82.72% on 8:1:1 hold out test. These
architectures maximized the benefits of CNN’s capability of learning from small quantities
of data and Transformer’s superior learning capabilities. However, such architectures could
be more resource intensive as they have huge trainable parameters compared to ensemble
networks running in parallel.

2.4. Improving Networks Using Data Augmentation

One problem for training neural networks is the limited number of data available for
training and evaluation. Networks that are trained on a very small number of data are at
risk of over-fitting. When networks are over-fit, their task to classify other unseen datasets
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could not be met and could generally impair their robustness. To tackle this problem data
augmentations are used to artificially add replicas of the training data, whilst preserving
the labels from the dataset. This technique has been used in other audio-based classifica-
tion tasks. Data augmentation methods can be classified into traditional methods which
augment on raw audio signal, and augmentation on the spectral representation [28,29].
Audio augmentation techniques have also been used on SER systems and have been shown
to improve the models’ robustness and classification accuracies [30]. A summary of the
reviewed literature of SER systems trained on the RAVDESS dataset is shown in Table 2.

Table 2. Comparison of reviewed literatures of SER system trained on RAVDESS dataset.

Year Related Works Input Features Accuracy (%)

2017 VGG-16, Popova et al. [20] Mel-Spectrogram 71.00

2020 Multi-gated Residual Network, Zeng. et.al [19] Mel-Spectrogram 65.97

2020 DCNN, Issa et al. [21]

MFCC, Chromagram,
Mel-spectrogram, Spectral

contrast, and Tonnetz
representation

71.61

2020 Fine Grained Model with Temporal Alignment, Li et.al [22] Multimodal

64.00 (CNN + LSTM)
66.50 (LSTM + Attention)

70.80 (with Semantic
Embeddings)

2020 Wav2Vec 2.0 embeddings, Pepino et al. [24] Raw Audio 84.30 (Pre-trained)
68.70 (Fined-tined)

2021 Resnet Transformer-Encoder CNN Han et al. [26] MFCC 80.89

2022 Time Distributed CNN-Transformer Slimi et al. [27] Mel-Spectrogram
82.13 (TDCNN + Vision

Transformer)
82.72 (TDCNN + Transformer)

3. Proposed Work

This section contains two main parts: (A) Parallel CNN-Based Classification Models,
and (B) Data augmentation.

3.1. Parallel CNN-Based Classification Models

CNN based models are widely used in image processing tasks and have proven their
power in capturing spatial features from speech by considering a spectrogram as a single
grayscale image with the time features as the width and frequencies as the height. Attention-
based models, on the other hand, are widely used in speech, video, and other tasks
requiring temporal features. Two main attention-based models are focused on this paper:
LSTM with Attention (BLSTM-Attention-CNN), and Transformer-Encoder (Transformer-
CNN). An LSTM with attention is a model composed of a bidirectional LSTM as an
encoder and decoder that utilizes attention weights within sequences, with the idea of
freeing the encoder-decoder architecture from the fixed-length internal representation.
The Transformer network, on the other hand, is designed for the network to learn to
predict frequency distributions of different classes according to the global structure of the
spectrogram of each training emotion. In contrast with LSTM, transformers would not only
learn to predict variations according to time steps, but also look at multiple previous time
steps through their multi-head self-attention layers. The model architectures of the parallel
models are shown in Figure 1.

The main motivation of this paper is to be able to use both the power of a CNN network
to capture spatial features, and attention-based networks LSTM-Attention and Transformer
to capture the temporal features using a spectrogram in a speech emotion recognition task
by training on an expanded RAVDESS dataset using only simple augmentation techniques,
and compared to a VGG-16 model as its baseline along with other CNN based architectures.
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Figure 1. Model Architectures for VGG-16 as a baseline (a), proposed BLSTM-Attention-CNN
network (b), and proposed Transformer-CNN network (c).

3.2. Data Augmentation Techniques

Data augmentation is a technique used for improving the performance of most ma-
chine learning models by artificially increasing data used in training. Because of the small
size of the dataset, the model becomes prone to overfitting. This problem could be eased
by generating more samples for the training data. In this paper, we used different data
augmentation techniques such as Additive White Gaussian Noise (AWGN), SpecAug-
ment [1], Room Impulse Response (RIR) based augmentation, and Tanh Distortion to
augment the RAVDESS dataset’s training data. Although some of these data augmentation
techniques such as AWGN and RIR are already considered as data augmentation standards,
we introduce a multi-fold augmentation practice on the experiments by applying these
augmentation techniques which have shown increased accuracy during evaluation.

3.2.1. Additive White Gaussian Noise

In AWGN, a gaussian noise vector sampled from a normal distribution with a zero-
mean time average is added uniformly across the frequency distribution. Implementation
of noise addition only requires the summation of two signals, and the signal-to-noise ratio
(SNR) of the output can be manipulated through scaling the signal. This SNR is randomized
and selected uniformly in the decibel scale, which fits a more logarithmic scale rather than
linear, similar to the human hearing. The use of Additive White Noise has shown positive
impact on the accuracy of different speech and audio-based classification tasks [31]. A
comparison of the original audio signal’s waveform and mel-spectrogram compared with
the AWGN augmented signal is shown on Figure 2.
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Figure 2. Comparison of the original audio signal’s waveform and mel-spectrogram compared with
an Additive White Gaussian Noise augmented signal.

3.2.2. SpecAugment

SpecAugment applies time masking and frequency masking on a log-mel spectrogram.
This reduces overfitting during training and improves the model’s generalization, as
models trained with SpecAugment become more invariant to small variations in acoustic
features [32]. The following masking is implemented as follows:

1. Frequency masking: a parameter value F where a masking size f belongs to a uniform
distribution from 0 to F is selected. These consecutive frequencies are masked with
values of 0

2. Time masking: a parameter value T where the masking size t belongs to a uniform
distribution from 0 to T is selected. These consecutive time steps are masked with
values of 0.

Although considered to be a simple technique, adaptation of SpecAugment has been
reported to provide relative improvements in the domains of speech recognition [33],
speaker verification systems [34], and speech emotion recognition [35]. However, it there
were different experiments done using SpecAugment, they would show that time masking
has minimum-to-no benefits on speech related classification tasks, while frequency masking
provides better results in augmenting the training data for such tasks. A comparison of the
original audio signal’s waveform and mel-spectrogram compared with the SpecAugment
augmented signal is shown on Figure 3.

Figure 3. Waveform and Spectrogram representations of an SpecAugment augmented sample.
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3.2.3. Room Impulse Response

Room Impulse Response (RIR) is the transfer function between the sound source and
microphone. An impulse response of a dynamic system describes how it reacts when
presented with a brief input signal called response. The reaction of the system can be
influenced by the room’s surroundings. The impulse signal contains the frequencies which
capture a microphone’s position and reverberations. Samples recorded on a studio such as
that of RAVDESS dataset can be convoluted with an impulse response to simulate the audio
files as if it was recorded in different scenarios. In this paper, the dataset was randomly
convoluted with random IR samples from the EchoThief Impulse Response Library [36]. A
comparison of the original audio signal’s waveform and mel-spectrogram compared with
the RIR augmented signal is shown on Figure 4.

Figure 4. Waveform and Spectrogram representations of a Room Impulse Response augmented sample.

3.2.4. Tanh Distortion

Tanh distortion technique involves using a mathematical function that directly modi-
fies the values of the audio signal. This provides a rounded soft clipping kind of distortion
amount that is proportional to the loudness of the input and the pre-gain. Since the tanh
function is symmetric, the positive and negative parts of the signal are squashed the same
way. This distortion technique generally adds harmonics to the signal, changing the timbre
of the sound. A comparison of the original audio signal’s waveform and mel-spectrogram
compared with the tan distorted signal is shown on Figure 5.

Figure 5. Waveform and Spectrogram representations of a Tan Distorted sample.

4. Experiments
4.1. Pre Processing Details

First, the speech utterances from the RAVDESS dataset were used in the experiments.
A total of 1440 speech data are used prior to augmentation. The dataset is divided into
training, validation, and testing subsets with the ratio of 8:1:1. All of the speech data
were transformed into mel spectrograms with a sample rate of 48,000. Mel spectrogram is
produced from STFT frames with a mean on each column resulting in a matrix that produces
a feature array. The python library Librosa [37] was used to extract mel spectrogram features
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with an FFT window length of 1024, hamming window of length 512, hop size of 256, and
128 mel bins as its parameters.

The training dataset is then augmented using different augmentation techniques for
multi folds of N. In this experiment, and N sizes of 1 and 2 are used to augment the training
signals with the same augmentation technique by a single (increases training data twice) or
a two-fold (increases training data thrice) augmentation.

On the AGWN augmentation, a minimum sound-to-noise (SNR) ratio of 15, and
maximum of 30 before performing a mel spectrogram transform. During the SpecAugment
augmentation, the signal is transformed with the masking parameter of 40 on the frequency
parameter f after a mel spectrogram transformation. Signals augmented with an RIR are
convoluted with random IR signals from the EchoThief Impulse Response Library. Finally,
a Tanh Distortion with a randomized amount of distortion from a uniform distribution
between 0.01 and 0.5 is applied on the signal. Augmentations were performed using
Audiomentations.

4.2. Model Implementation

Two main models (Parallel CNN-BLSTM-Attention, and Parallel CNN-Transformer
models) used in this paper were both inspired by the 2D convolutional blocks of the
LeNet [38] architecture and implemented using PyTorch. The LeNet’s 2D convolutional
blocks were selected because of their plain architecture that could be further improved
by implementing additional techniques such as cross connections, inceptions modules, or
residuals connections.

In the Parallel CNN-BLSTM-Attention model, a bidirectional LSTM layer is designed
with an attention layer, paralleled to a 4-layer deep 2D convolutional block. The convolution
layers take an input with the format of batch size, channel, height, and width. The mel
spectrogram input feature has a shape of (N, 1, 128, 563), where the N is the number of
training data. A single channel is used mainly because a mel spectrogram feature can be
considered a black-and-white image instead of the usual 3-channeled RGB image. The
channel consists of the intensities for the 128 mel frequency bands at 563 timesteps. The
training of this model has an epoch of 500.

In the Parallel CNN- Transformer model, a transformer encoder is designed parallel
with it as a 3-layer deep 2D convolutional block. The input feature also takes the shape of
(N, 1, 128, 563) similar with the Paralleled CNN-BLSTM- Attention model. The first layer
takes a 1 × 3 × 3 filter producing an output of 16 channels, with a batch normalization
applied to the output feature map before using an ReLU activation. A max-pooling layer
is applied after the activation, followed by a drop-out layer with the probability of 0.3
on all subsequent layers. The second layer expands the output feature map to a depth of
32 channels, while increasing the max pool kernel size. Finally, the third convolutional
block bottlenecks the output back into a feature map volume of 16. Two 3-layered CNN
blocks are implemented parallel with a Transformer Encoder layer. The Transformer-
Encoder layer is inspired by [39], with the goal to help predict frequency distributions of
the emotion based on the global structure of the mel spectrogram per emotion. Using the
multi-head self-attention layer of the transformer, the network takes into consideration
multiple previous time steps when predicting the next. The training on this model has
an epoch of 100. The overall specifications of the Parallel CNN-Transformer and Parallel
CNN-BLSTM+Attention network are shown in Tables 3 and 4, respectively.

The parallel model trained on non-augmented audio from the RAVDESS dataset
is compared with CNN based models such as VGG-16 and ResNet50, as well as with
standalone LSTM-Attention and Transformer models. We have also experimented on a
network of time-distributed CNN layers stacked on a transformer.

Both the proposed parallel models are compared with a standard VGG-16 model as
a baseline. These parallel models effectively improve performance without additional
auxiliary networks that use complex architectures, while keeping a relatively smaller
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number of training parameters compared with traditional CNN based networks and time-
distributed CNN ensemble networks.

Table 3. Overall specification of Parallel-CNN-Transformer network with set of layer sizes, output
sizes, and number of units.

Layer Output Channels No. of Units

Conv2d_1_1 16

[3 × 3, stride 1, padding 1]
[batch normalization]

[2 × 2 max pooling, stride 2]
[dropout 0.3]

Conv2d_1_2 32

[3 × 3, stride 1, padding 1]
[batch normalization]

[4 × 4 max pooling, stride 4]
[dropout 0.3]

Conv2d_1_2 64

[3 × 3, stride 1, padding 1]
[batch normalization]

[4 × 4 max pooling, stride 4]
[dropout 0.3]

Conv2d_2_1 16

[3 × 3, stride 1, padding 1]
[batch normalization]

[2 × 2 max pooling, stride 2]
[dropout 0.3]

Conv2d_2_2 32

[3 × 3, stride 1, padding 1]
[batch normalization]

[4 × 4 max pooling, stride 4]
[dropout 0.3]

Conv2d_2_2 64

[3 × 3, stride 1, padding 1]
[batch normalization]

[4 × 4 max pooling, stride 4]
[dropout 0.3]

Transformer Encoder 192
[encoder_layers, attention_heads 4, FC 512]

× 4 layers
[dropout 0.4]

Output 8 [2 * 128 + 256 FC layers]
softmax

Table 4. Overall specification of Parallel-CNN-BLSTM-Attention network with set of layer sizes,
output sizes, and number of units.

Layer Output Channels No. of Units

Conv2d_1 16

[3 × 3, stride 1, padding 1]
[batch normalization]

[2 × 2 max pooling, stride 2]
[dropout 0.3]

Conv2d_2 32

[3 × 3, stride 1, padding 1]
[batch normalization]

[4 × 4 max pooling, stride 4]
[dropout 0.3]

Conv2d_3 64

[3 × 3, stride 1, padding 1]
[batch normalization]

[4 × 4 max pooling, stride 4]
[dropout 0.3]

Conv2d_4 64

[3 × 3, stride 1, padding 1]
[batch normalization]

[4 × 4 max pooling, stride 4]
[dropout 0.3]

BLSTM Block 256

[2 × 4 maxpooling, stride 2 × 4]
[128 bi-directional lstm]

[dropout 0.1]
[2 * 128, attention layer]

Output 8 [256 + 256 FC layers]
softmax
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5. Results and Discussion

The experiments were performed on a desktop computer with the following config-
urations: Intel Core i7-10900K@3.70 Ghz, 64 GB RAM, and NVIDIA Quadro M6000 with
24 GB RAM. The Baseline model of VGG-16 was trained with an epoch of 100, having
an accuracy score of 61.54 without any augmentation techniques applied. Applying an
Additive White Gaussian Noise technique achieved the highest accuracy score of 76.92 on
the said model with a single-fold augmentation. This is followed by the Tanh Distortion
at 71.68, SpecAugment at 67.13, and Room Impulse Response at 62.94. For the two-fold
augmentation experiment, the AWGN technique also achieved the highest accuracy score
of 80.77, followed by Tanh Distortion at 78.32, SpecAugment at 71.33, and RIR at 68.53.
With these as our baseline accuracy scores, we compared them with the proposed parallel
models: Parallel LSTM-Attention-CNN model, and Parallel Transformer-CNN network
trained on the RAVDESS dataset.

On the Parallel LSTM-Attention-CNN model, experiments have shown that applying
no augmentation on the training data achieved an accuracy of 65.94, which is at least
4.4% higher than the baseline. However, application of SpecAugment on the training data
achieved the highest accuracy score on a single fold augmentation experiment with a score
of 81.33, in contrast of AWGN on the baseline model. These are followed by the Tanh
Distortion at 74.33, RIR at 71.33, and AWGN at 69.00. On the two-fold augmentation experi-
ment, SpecAugment also achieved the highest accuracy score of 85.67, followed by AWGN,
Tanh Distortion, and RIR at 85.27, 84.89, and 70.22, respectively. It is quite interesting to see
that the frequency based SpecAugment technique has significantly increased the accuracy
of the model on both single and two-fold augmentation experiments.

On the Parallel Transformer-CNN model, an accuracy of 81.33 is achieved without
using any data augmentation techniques. This is significantly higher than the accuracy
scores from the baseline and the LSTM-Attention-CNN networks. During the single fold
augmentation experiment the model achieved an accuracy of 84.80 using an AWGN data
augmentation technique, followed by SpecAugment and Tanh Distortion, both at 82.85,
which are also quite similar with RIR augmentation at 82.80. On the two-fold augmentation
experiment, the highest accuracy score of 89.33 was attained using a Tanh Distortion
augmentation; these are followed by AWGN with 88.89, SpecAugment with 84.86, and RIR
at 83.22

Comparing the parallel models on training data without additional augmentation,
smaller standalone LSTM+Attention and Transformer networks of the similar architecture
of our parallel network achieved an accuracy of 60.00 and 70.67, respectively. These are
much more efficient compared with traditional CNN networks, as they have significantly
smaller numbers of training parameters compared with as VGG-16 and ResNet50 which
achieved an accuracy of 61.54 and 69.33, respectively.

Networks with a time-distributed CNN, stacked with BLSTM+Attention and Trans-
former layers instead of running on parallel, were also experimented, with accuracies of
64.67 and 77.33. Although these networks have accuracies similar to our proposed network,
they suffer from a large number of training parameters making them more computation-
ally intensive when deployed on systems. A summary of experiments of all the model
architectures’ metrics and parameter sizes is shown in Table 5.
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Table 5. Weighted average precision, sensitivity, F1 score, and accuracy of different models compared
with parallel networks.

Model Architecture Trainable Parameters
Metrics

Precision Sensitivity F1 Accuracy

VGG-16 (baseline) 57,092,000 0.58 0.62 0.59 61.54

ResNet50 23,524,424 0.70 0.69 0.69 69.33

LSTM + Attention 200,969 0.62 0.60 0.60 60.00

Transformer 268,816 0.71 0.71 0.71 70.67

Time-distributed CNN + BLSTM + Attention 582,761 0.65 0.65 0.65 64.67

Time-Distributed CNN + Transformer 10,312,984 0.78 0.77 0.77 77.33

Parallel CNN + BLSTM + Attention (ours) 261,288 0.62 0.71 0.71 65.94

Parallel CNN + Transformer (ours) 395,176 0.80 0.82 0.80 81.33

The summary of all accuracy scores is shown in Table 6, while the confusion matrix
for the proposed models is shown on Figure 6.

Table 6. Weighted average precision, sensitivity, F1 score, and accuracy of each model augmented
with different augmentation techniques on test data.

Augmentation Technique VGG-16
(Baseline)

Parallel
BLSTM-Attention-CNN

Parallel
Transformer CNN

Precision Sensitivity F1 Acc Precision Sensitivity F1 Acc Precision Sensitivity F1 Acc

No Augmentation 0.58 0.62 0.59 61.54 0.62 0.71 0.59 65.94 0.80 0.82 0.80 81.33

Single
Fold Aug-
mentation

AWGN 0.72 0.78 0.71 76.92 0.67 0.81 0.67 69 0.82 0.84 0.81 84.80
RIR 0.60 0.63 0.61 62.94 0.72 0.73 0.71 71.33 0.75 0.78 0.75 82.80
SpecAugment 0.62 0.68 0.63 67.13 0.82 0.86 0.82 81.33 0.76 0.8 0.76 82.85
Tanh
Distortion 0.72 0.82 0.71 71.68 0.74 0.82 0.74 74.33 0.68 0.77 0.68 82.85

Two-Fold
Augmen-
tation

AWGN 0.78 0.82 0.78 80.77 0.84 0.88 0.83 85.27 0.88 0.89 0.88 88.89
RIR 0.69 0.71 0.69 68.53 0.69 0.80 0.71 70.22 0.73 0.78 0.71 83.22
SpecAugment 0.72 0.74 0.71 71.33 0.87 0.86 0.86 85.67 0.8 0.86 0.81 84.86
Tanh
Distortion 0.74 0.82 0.75 78.32 0.69 0.81 0.71 84.89 0.89 0.91 0.96 89.33

It can also be noted through the confusion matrices on Figure 6 that generally the
models often get confused with classifying the emotion category sad, by misclassifying
it as either neutral or calm, as it had the most number of false positives which is evident
on the Parallel CNN-Transformer networks with two-fold AWGN and SpecAugment, as
well as on the Parallel CNN-BLSTM-Attention networks with the RIR augmentation on
both the single and two-fold augmentation experiments. The models also have a little bit
of difficulty identifying the category calm with neutral, which can be observed from the
confusion matrices. This might be due to the two categories being closely related with
each other.

Comparing all the accuracy scores, simple traditional augmentation techniques that
are not computationally expensive seemed to provide more improvement to the model, as
compared with a more computationally expensive approach such as RIR augmentation.
Although RIR augmentation has provided improved accuracy scores on all models, due
to the complexity of different IR samples on the dataset doubling the augmentations with
such technique does not provide any significant increase in the performance.
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Figure 6. Normalized Confusion Matrix for the Parallel CNN-Based Networks.

6. Conclusions

Overall, using CNN networks parallel with time-sequence models such as Trans-
formers and LSTM with attention has shown good improvement on an SER task using
the RAVDESS dataset. As time and sequence are quite important for tasks involving
speech, these techniques provide better feature representation of audio data compared to
deep stacked layers of models such as VGG-16 and ResNet, as well as with standalone
LSTM+Attention and Transformer networks. Further, experiments showed that training
CNN layers along with LSTM+Attention and Transformers in parallel is more efficient
than stacked CNN layers with a time-distributed wrapper, as they performed better with
accuracies higher than stacked networks while using a significantly smaller number of
trainable parameters. The experiments on multi-fold data augmentations also showed
great improvement on the SER classification task by increasing the training data, making
them less prone to overfitting and thus making it more robust. For the types of data
augmentation, simple augmentation techniques such as AWGN and Tanh Distortion could
provide a simple, yet quite significant, increase in the performance of the models, rather
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than that of RIR based augmentation techniques which cost more in computational power
to augment data but do not significantly provide a better performance compared with
models trained without applying augmentation.

Future research can be directed on larger N fold augmentations, more complex spectral
based augmentations, and much more advanced augmentation techniques using deep
learning approach such as Autoencoders, and Generative Adversarial Networks (GANS).
The parallel models can be further developed by experimenting on additional residual skip
connections, or adding auxiliary networks such as Wav2Vec and feature mapping networks
for a completely end-to-end network architecture. Further research is also expected on
different emotional speech datasets and on mixed augmentation techniques.
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