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Abstract: In actual scenarios, industrial and cloud computing platforms usually need to monitor
equipment and traffic anomalies through multivariable time series data. However, the existing
anomaly detection methods can not capture the long-distance temporal correlations of data and the
potential relationships between features simultaneously, and only have high detection accuracy for
specific time sequence anomaly detection scenarios without good generalization ability. This paper
proposes a time-series anomaly-detection framework for multiple scenarios, Anomaly-PTG (anomaly
parallel transformer GRU), given the above limitations. The model uses the parallel transformer GRU
as the information extraction module of the model to learn the long-distance correlation between
timestamps and the global feature relationship of multivariate time series, which enhances the ability
to extract hidden information from time series data. After extracting the information, the model
learns the sequential representation of the data, conducts the sequential modeling, and transmits
the data to the full connection layer for prediction. At the same time, it also uses the autoencoder
to learn the potential representation of the data and reconstruct the data. The two are optimally
combined to form an anomaly detection module of the model. The module combines timestamp
prediction with time series data reconstruction, improving the detection rate of rare anomalies and
detection accuracy. By using three public datasets of physical devices and one dataset of network
traffic intrusion detection, the model’s effectiveness was verified, and the model’s generalization
ability and strong robustness were demonstrated. Compared with the most advanced method, the
average F1 value of the Anomaly-PTG model on four datasets was increased by 2.2%, and the F1
value on each dataset was over 94%.

Keywords: anomaly detection; multivariate time-series; transformer; autoencoder

1. Introduction

At present, multivariable-time-series anomaly detection embraces broad applications
in the industry [1,2], network security [3], the Internet of Things [4–6], aerospace, and other
fields [7]. By monitoring time series data, it can avoid resource loss and security risks
caused by equipment failures and network attacks. Anomaly detection of time series data
comprises univariate-time-series anomaly detection and multivariable-time-series anomaly
detection. The former only focuses on data anomaly in a single feature dimension. If a
single variable does not conform to the overall data distribution, it will be detected as an
outlier. The latter is composed of multiple features, including two abnormal detection ways.
The first is to infer the possibility of overall anomaly occurrence through the change of a
single feature and combine all captured univariate anomalies by calculation means of mean
or standard deviation as the evaluation result for multivariable anomaly detection [8,9].
The second method is to extract the correlation information between multiple variables and
perform algorithm analysis by learning the global probability distribution of data and then
directly give the abnormal detection results.
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In recent years, much research based on deep learning has been presented. K Hund-
man et al. [7] raised an LSTM-based spacecraft method. The autoencoder-based time series
method is raised by Salahud et al. [10]. Zhao et al. [11] applied a graph neural network
(GNN) to study the correlation among multiple variables in time series. However, there
are still three limitations caused by these methods. The first is that they do not capture
the long-distance time information well; the second is that they do not pay attention to
the connection between features; the third is that some methods only show certain high
detection accuracy for specific scenes without excellent generalization ability. Therefore,
exploring a high-precision anomaly detection model for a wide range of tasks is essential
in this field.

The transformer [12] serves as a very popular structure for deep learning. It is first put
forward for NLP tasks such as machine translation because of its excellent performance in
capturing remote time information and global representation, and currently, it is extended
to machine vision, time series, and other fields. A novel anomaly detection model, anomaly
parallel transformer GRU (Anomaly-PTG), is proposed in this paper. It can capture the
time correlation of each time point and the potential relationship between each feature
through the attention mechanism models the long-distance time information and the global
relationship, and learns the extracted timing information through GRU to get a better
timing representation. The contributions produced by this paper are listed:

(1) A novel multivariable timing anomaly detection model (Anomaly-PTG) is pro-
posed, which can simultaneously extract feature relations and remote time dependence
from time series through a parallel transformer GRU.

(2) A transformer is improved to make it more suitable for extracting information from
time series data and more widely used for multivariable-time-series anomaly detection
tasks in other scenarios.

(3) The model has been proved by extensive experiments to outperform the current
models on three large public datasets and applied to a network intrusion dataset to obtain
excellent anomaly detection performance. The average F1 value across the four datasets
has improved by 2.2% compared with the most advanced approach currently.

The remaining paper is organized as such: Section 2 refers to related work in the
multivariable-time-series anomaly detection. The structure of the Anomaly-PTG model
and the required techniques have been introduced in Section 3. Then, Section 4 is the
experimental process and experimental results. Section 5 summarizes the full text and
future research.

2. Related Works

This section analyzes and studies the current popular time-series anomaly detection
algorithms. This paper introduces the multivariate-time-series anomaly detection method
and the main techniques used in this paper.

2.1. Multivariable Exception Detection

Multivariable-time-series anomaly detection is always the focus of time-series anomaly
detection. In recent years, many deep learning-based methods have achieved good
performances—for example, based on a long and short-term memory (LSTM) [13] network,
the deep autoencoder Gaussian mixture model (DAGMM) [14], and variational autoen-
coder (VAE) [15]. These models use prediction-based or reconstruction-based ways to
detect anomalies in multivariable time series and are the most popular methods in the field
currently.

The representative model based on the prediction method is RNN, which can improve
the model’s prediction ability by retaining the observed values of past time points. It
is a very suitable structure for modeling time series data. The LSTM-based method is
improved based on RNN, and the gating mechanism is adopted to solve the disappearance
or explosion gradient problem in RNN training. It is a more commonly used anomaly
detection model for time series. These prediction-based models [16] are the basis of
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anomaly detection by predicting the error between the output at the next moment and
the actual observation value. However, the limitation of this method is that the predicted
values are often inaccurate or unpredictable, which will lead to a high rate of abnormal
missed detection.

In addition, the methods based on reconstruction convert the input multivariable
time series to a low-dimensional implicit vector and then reconstruct the low-dimensional
vector to generate reconstruction errors to serve as the basis for anomaly detection. For
example, DAGMM uses the reconstruction network, and the low-dimensional information
representation proceeds with density estimation for reconstruction error reduction.

However, the method cannot capture the feature correlation in time series information,
and there are some limitations, such as slow training speed and abnormal omissions. The
LSTM-VAE [17] uses LSTM as a low-dimensional embedding of the VAE and captures the
sequential patterns. The OmniAnomaly model [18] can obtain the latent space’s probability
distribution by combining VAE and GRU [19] and uses techniques of random variable con-
nectivity and plane normalization to catch the normal patterns for multivariable time series.

In reconstruction-based or forecast methods, Hang Zhao et al. [11] and Guan S et al. [20]
proved that prediction-based and reconstruction-based methods are complementary. The
former proposed the MTAD-GAT model to input the time series data into the model in the
form of a graph. The latter comes up with GTAD combines graph attention mechanism and
temporal convolution to capture data information in more detail. The graph bias network
GDN was prepared by Ailin Deng et al. [21], who regarded each sensor as a node of the
graph and obtained the correlation between each sensor to explain the deviation of the
learning mode.

The graph neural network can directly obtain the relationship between features and
improve the training speed, but it is insufficient to capture the long-range temporal depen-
dence of time series data. At present, adversarial generative networks (GAN) welcome a
more extensive scope of application for time-series anomaly detection [22,23]. For example,
Dan Li et al. proposed the MAD-GAN [24] model, which is a method to detect multivariable
time-series anomalies in an unsupervised way. It will capture the potential interaction infor-
mation between variables in the whole data and learn the correlation of time series from an
overall perspective. Unsupervised anomaly detection methods based on the antagonistic
generative network also include USAD proposed by Julien Audibert et al. [25].

In this method, the reconstruction ability of the automatic encoder is continuously
improved by means of confrontation training so as to reduce the reconstruction error.
However, the limitation of these models is that they do not explicitly learn the relationship
between the features and the lack of use of long-distance time information.

2.2. Transformer Models for Time Series

For the last few years, transformers have been employed in a wide variety of profes-
sions. The attention mechanism it proposes breaks the limitations of traditional recurrent
neural networks. Depending on the advantages of capturing long-distance information, in
natural language processing (NLP) [26,27], computer vision and other fields [28,29] have
shown strong performance, breaking away from the limitations of the original method and
becoming the mainstream deep learning method.

The transformer is a prevalent method in time series prediction [30,31] and anomaly
detection [32,33] because its characteristics are very suitable for modeling time series data.
For example, the informer [34] prediction model proposed by Haoyi Zhou et al. improves
the prediction effect of the model by capturing the long-distance time information of the
input and output data through the transformer and improves the traditional transformer
structure, reducing the complexity of the model and breaking the limitations of the original
structure. The TranAD [35] model proposed by Shreshth Tuli et al. is an anomaly detection
method that combines the transformer and meta-learning. The model adopts adaptive and
antagonistic training methods so that its architecture can be quickly trained and tested
while maintaining the stability of the model.
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The GTA [36] model proposed by Chen et al. puts forward a strategy of using con-
nection learning to learn graph structure, which can model the time dependence of the
architecture based on the transformer. It is a new framework for anomaly detection of
multivariate time series applied in the Internet of Things. The above methods are aimed at
improving the structure of the transformer.

In contrast, the anomaly transformer proposed by Jiehui Xu et al. [37] innovatively put
forward the anomaly attention mechanism. It used series association and prior association
to capture the correlation difference between each time point and defined a new criterion
for anomaly discrimination. These methods prove the effectiveness of the transformer
in this field. Based on the research and analysis of the above methods, we improved the
structure of the transformer and decoded the time-dependent long-distance information
and feature relationship captured by the transformer through GRU, which reduced the
number of parameters of the model, enhanced the stability of the training model, and
did not need to input data to the decoding end. It is a more suitable structure for timing
anomaly detection.

3. Methodology
3.1. Problem Statement

A multivariable time series is composed of multiple univariate time series containing
dependencies between multiple features. The time series is usually observed under contin-
uous equidistant timestamps, where the input multivariable time series data are x ∈ RT,
x = {X1, X2 · · ·XT}, T is the maximum length of the input timestamp, d is the number of
variables for each timestamp, and x =

{
X1

t , X2
t , · · ·Xd

t

}
, x ∈ RT×d. See Figure 1.

Figure 1. A representation of multivariate time series data captured by the sensor, with each column
representing a different targets observed and each row representing test data at a continuous timestamp.

The tasks of anomaly detection are to obtain the corresponding output vector y by
learning the relationship between time series and determine whether the observation value
yt when t is abnormal data through the set threshold, where yt ∈ {0, 1} (1 represents point
of abnormal data).
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3.2. Data Preprocessing

To avoid the model being affected by extreme values of data, enhance the stability of
model training and improve the speed of model learning, we normalize the data in the
following ways:

x̃m,n =
xm,n −min(xn)

max(xn)−min(xn) + a
n ∈ [1, d], m ∈ [1, T] (1)

where xm,n represents the data to be normalized; min(xn) and max(xn) are the minimum
and maximum values in each column of data, respectively; and then a is the fixed value
that prevents the denominator from being 0. All the train and test data are classified into
the range of [0, 1], and the processed data are scaled to the specified space, and finally, the
data are restored by inverse normalization after the test.

All data are divided into multiple sliding windows as the standard length of data input:
ωt = {Xt, · · · · · · , Xt+h−1}. Instead of focusing on the relationship between individual
timestamps, the information in the entire sliding window is used to analyze the value of the
next timestamp, as shown in Figure 1. Such data input methods can better grasp the time
correlation between long time series and avoid the mutation of independent data affecting
the detection effect. Anomaly detection results will be obtained from anomaly scores, and
the effect of anomaly detection can be evaluated by selecting an appropriate threshold.

3.3. Anomaly-PTG Network

The Anomaly-PTG model first divides the preprocessed data into multiple data mod-
ules in the form of sliding windows and inputs them to the encoding ends of the two
transformers. F-transformer GRU utilizes the attention mechanism to conclude the weight
of each feature (see Figure 2), extracting the relationship between the current feature and
other features.

Figure 2. The relational model diagram of feature dimensions was obtained.

T-transformer GRU takes each sliding window as an overall input, wields the attention
mechanism, and captures the long-distance information dependencies of time series data to
conclude information in the time dimension. The GRU, as the decoder of the transformer, is
used to update the information and further learn the hidden associations between variables.
To aggregate multi-scale information and obtain a better representation of time series, the
model concatenates the extracted temporal and feature dimensions to form a new data
dimension. The GRU is applied to model the novel time series, and through an autoencoder
reduces the dimensions of high-dimensional features and outputs the last hidden layer
containing all the previous information. The hidden layer information is passed into
the reconstruction and the prediction networks to detect anomalies, respectively; and
related detection results are optimized and combined to obtain the total anomaly detection
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score. Then, through comparison with the threshold, the abnormal detection result is
acquired finally.

In addition, because the predicted value is often inaccurate or unpredictable, the
reconstruction-based method has a more stable detection effect than the prediction-based
method. However, prediction-based methods can also detect anomalies that cannot be
captured by reconstruction, so we take the reconstruction method as the main task of our
anomaly detection and predict the timestamp anomaly detection of the next stage as a
side task. The two steps are performed simultaneously, and the loss function means the
weighted sum of the two. The formula of the loss function is as follows:

Losstotal = λLossrecon + (1− λ)Losspre (2)

where Losstotal is the total loss function of the Anomaly-PTG model, Lossrecon is the Loss
function based on the reconstruction method, Losspre is the loss function based on the
prediction method, and λ is a pre-set hyperparameter. The final output includes the
abnormal scores s{Sr1, Sr2 · · · , SrT} obtained from the reconstruction errors, the abnor-
mal scores

{
Sp1, Sp2 · · · , SpT

}
from the prediction errors, and the total abnormal scores

{S1, S2 · · · , ST}.
According to the description of the above model, we give the pseudo-code for training

and testing the Anomaly-PTG model in Algorithm 1:

Algorithm 1 Anomaly-PTG model training algorithm:

Input: Train Datasets;
W =

{
ω1 · · · · · · , ω T

h

}
, parameter λ and β;

Output: Trained Anomaly-PTG model;
EPOCH← 1; Labels y = {y1, y2 . . . yt . . . yt+k};
for t in range (t + k) do:

prediction ŷt+1,i ← Anomaly-PTG (ŷti);
recons x̂t+L,i ← Anomaly-PTG (xt,i);
losstotal = λ lossrecon +(1− λ) losspre;
Anomaly-PTG ← update weight using loss;

end for
epoch ← epoch + 1;
UNTIL epoch = end;
Test Anomaly-PTG model;
Threshold bf = Brute-force Algorithm;
for j = (t + k + 1) in range T

Sj = ∑feats
i

(√
(ŷt,i − xt,i)

2 + β

√
(x̂t,i − xt,i)

2
)

;

If Sj > bf then
yj = 1;

else
yj = 0;

end if
end for

3.4. Information Extraction Module
Transformer-GRU

Encoder: The transformer relies on the attention mechanism to catch the relationship
between contexts well and can preferably model sequence data. The training speed of the
model is improved by this method. In this part, the structure of the transformer is enhanced
and applied to anomaly detection tasks on multivariable time series. As shown in Figure 3,
the T-transformer GRU and F-transformer GRU capture the time correlation and feature
correlation of multivariate time series data, respectively. Through the multi-head attention
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mechanism, it obtains the relationship between each feature and the long-distance time
hiding information between time series data. Next is the formula explanation of this part.
Firstly, the established three matrices, MQ, MK, and MV, are denoted as query matrix Q,
key matrix K, and value matrix V, respectively. The calculation formula for self-attention is

At
(
MQ, MK, MV

)
= σ

(
MQMK

T
√

a

)
MV (3)

where σ denotes the softmax activation function, which maps the weights we obtain into
[0, 1], and

√
a is used to scale the weights to enhance the stability of training.
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Figure 3. The Anomaly-PTG model extracts the long-distance time dependence and feature relations
of time series data at the same time through the parallel transformer GRU and re-models the time
series data. The timing sequence information is fed into the prediction network and reconstruction
network, and the anomaly scores of the two are combined as the total anomaly scores of the model
by the way of optimal combination to infer the occurrence of the anomaly.

In the F-transformer GRU, we regard the features of each timestamp as our word
vector and calculate the weight between the various features in the input xi (i ∈ feats, the
input has been added to the position encoding), and the calculation formula is

K =
feats

∑
i=1

ki =
feats

∑
i=1

xi ∗MK

ai = σ
(

KTqi

) (4)

where ai is the weight between the current feature and other features. We obtain the
relationship between each feature in each input timestamp. σ denotes the softmax activation
function; ki and qi, respectively, represent the key vector and query vector representation
obtained after the current feature is multiplied by its key matrix MK and query matrix MQ.

feats

∑
i=1

Zi = ai ∗ v1 + ai ∗ v2 + · · ·+ ai ∗ vfeats (5)

where vi represents the value vector representation obtained by multiplying the current
characteristic by its value matrix MV, and Zi is the final output of the current feature
calculated by the self-attention mechanism.

As for this model, we utilize the multi-head attention mechanism:

MultiAt (Q, K, V) = Concat(At1, At2, · · · , Atfeats ) (6)
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Turning a set of original MQ, MK, and MV into multiple sets of such matrices means
that we can focus on the information of the input matrix from multiple spaces, and graph
the feature relationship of the data from multiple perspectives. The obtained Zi and Xi are
residually connected into a variable Xattention with attention and are normalized. We use
batch normalization x̂attention = BatchNorm (Xattention ), which can reduce the interference
of outliers and become more suitable for time-series-anomaly detection tasks [38]. Pass the
normalized data through a feedforward neural network for linear activation.

x̂′attention = ReLU(Linear(x̂attention )), ReLU = max(0, x)

XFeedForward = Linear
(
x̂′attention

)
Z = BatchNorm (x̂attention + XFeedForward )

(7)

We combine the full connection layer and the relu activation function in the feedfor-
ward network. RelU activation function is a nonlinear function, which can learn complex
relationships in data, so it can better map the nonlinear layer. The idea is that if the input is
greater than zero, it is directly the return value. If the input is 0 or less, the return value is 0.
The advantage of this is that the network training can be faster and effectively prevent the
gradient’s disappearance. In this network, two linear layers are used. The function of these
two linear layers is a process of first mapping data to a higher dimensional space and then
to a lower dimensional space so that more abstract features can be learned.

Finally, the output of the feedforward neural network is connected with x̂attention and
batch normalized again as the final output result Z. BatchNorm is a data-normalization
method that can standardize the input and hidden layer data to reduce the differences
between samples. He normalized the data by first asking for the mean and variance of
each batch of data, and then subtracting the mean from the data and dividing it by the
variance. In the past, the transformer LayerNorm was used, which is generally suitable
for NLP tasks. After applying a transformer to time-series anomaly detection, we found
that BatchNorm has a better effect than LayerNorm because it can effectively avoid the
influence of outliers in time series data, which is different from that used in NLP tasks to
deal with the relationship between sentences. Therefore, BatchNorm is a more suitable
normalization processing method for time series data.

We catch the potential correlation of features in the multivariable time series through
the encoder end of the F-transformer GRU. Similarly, in T-transformer GRU, referring to
time series data, we take the time dimension of the sliding window as input to capture
long-range temporal dependencies.

Decoder: Anomaly-PTG decodes the correlation information extracted by the encoder
side through the GRU to conclude a better time series representation, which is a more
suitable structure for exception detection tasks.

RNN is a common method in time-series anomaly detection. However, its disad-
vantage is that it cannot capture the long-distance sequence information and is prone to
gradient disappearance and gradient explosion. Therefore, LSTM and GRU models are
proposed based on RNN. By using the gating mechanism, the defects of RNN are well
solved. Since GRU reduces the number of parameters by 1/4 compared with LSTM, it is
more efficient and more straightforward in light of structure than LSTM in the model train-
ing process. Thus, instead of LSTM, GRU is applied in our model to obtain the information
in the input data and the sequential representation (see Figure 4).
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Figure 4. Based on the information extraction structure of GRU, the feature relationship Zt obtained
through the attention mechanism is used as input and decodes through various gated structures to
get a new data representation.

GRU comprises two parts: the reset gate rt and update gate ft. As Figure 4 shows, we
take the output Zt of the encoder as the input of GRU at the current moment. By using
the update gate, the irrelevant features at the previous time are ignored while important
features are retained, and the formula is as follows:

ft = σ(Wf · [ht−1,Zt]),

rt = σ
(

Wr ·
[
ht−1,Zt]

)
,

h′t = tanh(W · [rt ∗ ht−1, ztt]),

ht = (1− ft) ∗ ht−1 + ft ∗ h′t

(8)

where [ ] denotes cancat, · denotes matrix multiplication, and σ denotes the sigmoid
activation function. The update gate ft is used to control the influence of the hidden layer
information ht−1 retained at the previous moment on the input Zt at the current moment,
and the reset gate rt is used to forget the irrelevant information of the previous moment
and the current moment according to the current input; h′t records the state learned at the
current moment, and finally the hidden layer state h at the current moment.

3.5. Anomaly Detection Module
3.5.1. Reconstruction Network

We concatenate the output of the parallel transformer GRU, then input it into a GRU.
An autoencoder network based on GRU is built for reconstruction. In this part, we first
re-encode its hidden layer ht into the same shape as the original data and then input it into
the GRU model. The GRU learns the information representation of the hidden vector at the
encoding end and then decodes it. The decoded latent vector h1 · · · hwindos size is used as
the output x of the GRU, and finally, the output is passed to the fully connected layer as the
output x̂ of the reconstructed model. The loss function of reconstruction is the root mean
square error (RMSE), i.e.,

lossrecon =

√√√√feats

∑
i=1

(x̂t,i − xt,i)
2 (9)

where x̂t,i denotes the reconstructed value of the feature of i for the current timestamp t,
and xt,i denotes the real value corresponding to the current timestamp t.

3.5.2. Threshold Selection

To testify the best anomaly detection effect of the Anomaly-PTG model, we use brute-
force, which is a threshold selection method mentioned in the OmniAnomaly model, to
find the best F1 value of the model and return the most appropriate threshold.
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The specific steps are as follows. We start by setting a threshold range; the threshold is
updated through iteration to calculate the F1 values in light of different thresholds, find the
best F1 value, and return to get the threshold of this result. The pseudocode is shown in
Algorithm 2:

Algorithm 2 Brute-force Algorithm:

Input:
anomaly_scores, true_anomalies, start = 0.01, end = 2, step_num = 100;

Output:
Finding best f1=bf;
search_step, search_range, search_lower_bound = step_num, end-start, start;
threshold = search_lower_bound;
m = (0.0, 0.0), m_t = 0.0;
for i in range (search_step):

threshold += search_range / float(search_step);
target←Calculate the F1 of the current threshold;

if target[0] > m[0]: ← Compares whether the current F1 is the highest;
m_t = threshold;
m = target;

end for
gain threshold = bf;

3.5.3. Prediction Network

The loss function used by our prediction network is the root-mean square error (RMSE),
and its formula is listed as follows:

losspre =

√√√√feats

∑
i=1

(ŷt,i − xt,i)
2 (10)

where feats is the number of features in the dataset, ŷt,i represents the predicted value of the
i-th feature at the current timestamp t, and xt,i represents the actual value corresponding
to the expected value. We pass the output of the GRU into a fully connected layer as a
prediction network to predict the value for the next timestamp.

3.5.4. Anomaly Scores

Finally, we combine the above reconstruction error with the prediction error to get the
final anomaly scores for the current timestamp t, whose formula is as follows:

anomaly scores =
∑feats

i si

feats
=

∑feats
i

(√
(ŷt,i − xt,i)

2 + β

√
(x̂t,i − xt,i)

2
)

feats
(11)

Among them, we set β as a hyperparameter to optimize the combined effect of the
prediction task and the reconstruction task, and the optimal combination ratio will be
obtained through experiments. In Section 4.7, we present the analysis results of the effect
of different β values on the model.

4. Experiment and Analysis
4.1. Datasets

Four public datasets were employed in our experiments. We describe the dataset
information in detail in Table 1, where the first column represents the attributes for each
dataset. Entity represents the number of entities observed in the dataset, and Dimension is
the number of dimensions contained in each entity. The remainder includes the training
and test data and the proportion of abnormal data in the test dataset.
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Table 1. Summary of dataset information.

Attributes SMAP MSL SMD KDDCUP99

Entity 55 27 28 -
Dimension 25 55 38 41
Train data 135,183 58,317 708,405 311,028
Test data 427,617 73,729 708,420 494,020

Abnormal rate 13.13% 10.72% 4.16% 19.69%

We included SMAP (Soil Moisture Active Passive) [7], MSL (Mars Science Labora-
tory) [7], and SMD (Server Machine Dataset) [18] for comparative experiments. Our model
was used for the KDDCUP99 [39], a network intrusion detection dataset, to prove the
generalization ability.

(1) SMAP and MSL
These two datasets are from observation satellite data collected by NASA, and SMAP

transmits observation data through active and passive sensors. MSL contains the data sent
back by the Mars probe, similar to SMAP data. Their data are divided into training set and
test sets, in which the abnormality of the test set has been marked.

(2) SMD
SMD contains the server data provided by a large Internet company for five weeks.

The main observation is the resource utilization of each machine in the computer cluster.
At present, the dataset has been released on GitHub.

(3) KDDCUP99
The KDDCUP99 dataset is a network intrusion detection dataset captured by the

DARPA ’98 IDS evaluation program, which is classified as normal data or attacks. The
test dataset consists of 24 training attack types and 14 attack types, and the abnormal data
are labeled.

4.2. Evaluation Metrics

This section introduces the evaluation index of the model and regards the F1 and area
under the ROC curve (AUC) as the standards for anomaly detection performance. Precision
(P), recall (R), F1-score (F1), AUC, and recall at 90% precision(R*) are used for reporting in
the evaluation of this work, and the calculation formula is as follows:

Precision =
TP

TP+FP

Recall =
TP

TP+FN

F1-score =
2× Precision × Recall

Precision + Recall

AUC =
1
2

m−1

∑
i=1

(xi+1 − xi)(yi + yi+1)

(12)

TP means true positives, that is, normal data in the data are judged as normal; FP is
false positives, that is, abnormal data in the data are judged as normal; FN is false negatives,
which means normal data in the data are judged as abnormal; TN is true negatives. Note
that y is the true positive rate (TPR = TP

TP+FN ) and x is the false positive rate (FPR = FP
FP+TN ).

In some factual situations, anomaly omissions may lead to irreparable losses. There-
fore, in the design of some anomaly detection models, it is allowed to sacrifice some
precision to improve the recall rate to meet the requirement of not letting go of any anomaly.
Given this actual demand, we adjusted the threshold to make the precision of all baseline
methods consistent. Verify the model’s recall rate under the condition of meeting the high
precision required by anomaly detection. We must ensure the model’s precision to avoid
interference with normal data. In our study, a precision of over 90% was necessary to
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deploy the model. Therefore, we fixed the precision at 90% and verified the recall rate (R*)
of all models on this basis to prove the practical value of the models.

4.3. Experimental Parameters and Baseline Methods

Our proposal is compared with some advanced methods, including DAGMM [14],
USAD [25], OmniAnomaly [18], MAD-GAN [24], GDN [21], TranAD [35], and MTAD-
GAT [11]. The implementation environment was Pytorch version 1.10.2, CUDA 11.4,
NVIDIA Tesla A100 GPUs × 1, and Xeon 2.59 GHz CPU × 1. Each dataset was trained
for 100 epochs. The specific parameters are shown in Table 2. The optimal values of
hyperparameters β and λ were 1.2 and 0.7, respectively. The learning rates of the SMAP
and MSL were 1 × 10−4; SMD was 1 × 10−3; KDDCUP99 was 1 × 10−5.

Table 2. Parameter configuration.

Parameters Value

window size 100
batch_size 128

Number of layers in GRU 1
Number of layers in Recon network 1

Fully-connected layers 4
Number of layers in transformer GRU 1

GRU hidden dimension 300
Forecast hidden dimension 300

Recon network hidden dimension 300
β 1.2
λ 0.7

epochs 100

4.4. Results and Analysis

The comparison results between Anomaly-PTG and the baseline model are shown
in Table 3. The highest score is shown in bold. We regard the F1 value and AUC as the
criterion for judging the model’s performance. According to the table, our model obtains
excellent results on all three datasets. Anomaly-PTG is better than the baseline methods of
all datasets except MSL (in terms of F1 scores and AUC). As the time series data in MSL
dataset contain more features, the recognition ability of each method is very different. For
this dataset, Anomaly-PTG’s F1 score was 0.11% higher than that of the next best baseline
method, and the AUC value (0.9846) was only 0.28% lower than that of the best MTAD-GAT
model. The other five indicators reached more than 90%. It can be seen that DAGMM only
pays attention to the relationship with each variable, but does not consider the relationship
in the time dimension, because it adopts the method of inputting single data item by item.
Hence, it has a poor performance in identifying anomalies. It can be seen that the effect of
capturing remote time dependency by T-transformer GRU can be well reflected in the data.

The limitation of OmniAnomaly is that it does not capture the relationships between
variables. In the multivariate-time-series anomaly detection task, the potential influence
between variables is the key to anomaly detection. Two methods based on the graph
structure, GDN and mad-gat, showed good results in various tasks. It can be seen that
the graph structure can effectively extract the relationship between features in time series
data. However, because GDN is sensitive to the model’s data and is limited by the sliding
window, it cannot get the information of the remote timestamp, which leads to the poor
performance of GDN on SMD and SMAP datasets. For the SMAP dataset, Anomaly-PTG,
except for the recall indicator, achieved the best results of all baseline methods. From the
AUC (0.9894) and F1 (0.9443) values, it can be seen that Anomaly-PTG has shown strong
performance for this huge unbalanced dataset of positive and negative samples, increasing
the AUC by 0.52% and F1 by 4.22% compared with the best baseline model. For the SMD
dataset, MAD-GAN has the best P value (0.9994), and Anomaly-PTG is slightly behind
this method. However, for its AUC (0.9907) and F1 value (0.9781), we can see that it still
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showed the best detection performance of all methods. This is because Anomaly-PTG can
simultaneously consider the correlation between features and the remote time dependence
of time series data.

Table 3. Anomaly-PTG comparison with baseline method.

Datasets Methods P R F1 AUC R*

SMD

DAGAMM 0.8872 0.9752 0.9291 0.9838 0.9602
USAD 0.9059 0.9814 0.9421 0.9857 0.9842

OmniAnomaly 0.8784 0.9485 0.9120 0.9780 0.9138
MAD−GAN 0.9994 0.7270 0.8417 0.9843 0.8279

GDN 0.7469 0.9618 0.8408 0.9799 0.9063
TranAD 0.9072 0.9973 0.9501 0.9862 0.9978

MTAD−GAT 0.8412 0.9417 0.8886 0.9831 0.8947

Anomaly−PTG 0.9692 0.9873 0.9781 0.9907 0.9988

MSL

DAGAMM 0.7363 0.9648 0.8352 0.9618 0.7883
USAD 0.8048 0.9810 0.8842 0.9736 0.8965

OmniAnomaly 0.7942 0.9897 0.8825 0.9697 0.9076
MAD−GAN 0.8516 0.9921 0.9164 0.9733 0.9412

GDN 0.8908 0.9917 0.9385 0.9789 0.9846
TranAD 0.9037 0.9999 0.9494 0.9807 0.9995

MTAD−GAT 0.8189 0.9888 0.8958 0.9874 0.9243

Anomaly−PTG 0.9599 0.9412 0.9505 0.9846 0.9909

SMAP

DAGAMM 0.8069 0.9912 0.8896 0.9722 0.9172
USAD 0.7998 0.9627 0.8737 0.9796 0.8779

OmniAnomaly 0.8008 0.9638 0.8747 0.9748 0.8934
MAD−GAN 0.8257 0.9579 0.8869 0.9807 0.8846

GDN 0.8192 0.9452 0.8777 0.9812 0.8667
TranAD 0.8043 0.9999 0.8915 0.9842 0.9265

MTAD−GAT 0.8666 0.9406 0.9021 0.9776 0.9138

Anomaly−PTG 0.9210 0.9690 0.9443 0.9894 0.9743

Our model captures the correlation between features through an F-transformer GRU
and uses the T-transformer GRU that captures long-range temporal dependencies to achieve
the most comprehensive information extraction. The results of TranAD and Anomaly-PTG
show that the improved transformer’s feature extraction ability is helpful in time-series
anomaly detection. Anomaly-PTG combines the associations and long-range temporal
dependencies between the extracted features, inputs them into GRU to learn the sequential
representation of time series data, and then comprehensively detects anomalies by com-
bining reconstruction and prediction. The result is more stable than TranAD because it is
easy to ignore an anomaly with minimal reconstruction error only by the reconstruction
method, and the combination of the prediction method will make up for this defect and
improve the detection accuracy. As shown in Figure 5, three dataset detection effects of the
Anomaly-PTG model is listed. Green represents the actual data; yellow and blue represent
the predicted data, and the reconstructed information, respectively. It can be seen that both
prediction and reconstruction simulate the data distribution well and complement each
other to a certain extent. By optimizing the combination of the two, anomalies can be better
detected.
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Figure 5. Detection effect of the Anomaly-PTG model.

In this experiment, we also considered the problems with applying the model to
real scenes. From the experimental results, we can see that the F1-scores of some models
perform are good, but the recall rate is poor. For example, see the results of MAD-GAN
and GDN. This is because these models focus more on accuracy but are less effective at
catching exceptions. Many outliers are mistaken for normal values, leading to abnormal
omissions. In some practical application scenarios, the failure to detect exceptions will
lead to significant losses. Therefore, many models focus more on improving the recall rate
during design. In this regard, we fixed all baseline methods to the same accuracy (90%
accuracy) and evaluated each model’s ability to identify anomalies through the recall rate
(R*). This is a metric that assesses the utility performance of the model. It can be seen from
Tables 3 and 4 that the R* of Anomaly-PTG was the highest for all three datasets except
the MSL dataset. TranAD performed best on the MSL dataset, and Anomaly-PTG slightly
lagged behind with this indicator. The R* of Anomaly-PTG proposed in this paper can
reach more than 95% on four datasets, which meets the requirement for exception capturing
in practical application scenarios and proves that the model has good practicability.

Table 4. The anomaly-PTG model was compared with baseline method on the KDDCUP99 dataset.

Datasets Methods P R F1 AUC R*

KDDCUP99

DAGAMM 0.8872 0.9973 0.9390 0.8790 0.9780
USAD 0.9845 0.9465 0.9651 0.8846 0.9927

OmniAnomaly 0.9015 0.8329 0.8658 0.8613 0.8554
MAD−GAN 0.8963 0.7465 0.8145 0.8778 0.7368

GDN 0.9124 0.9673 0.9345 0.8565 0.9781
TranAD 0.9518 0.9814 0.9664 0.9068 0.9999

MTAD−GAT 0.9109 0.9862 0.9471 0.8779 0.9974

Anomaly−PTG 0.9869 0.9590 0.9727 0.9112 0.9999
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4.5. Generalization Ability Test

We also used the model for the KDDCUP99 dataset and tested the above baseline
methods on this dataset. Referring to Table 4, the F1 value (0.9727) and AUC (0.9112) of the
Anomaly-PTG are the highest among all baseline models. The characteristics of KDDCUP99
include the port number, the number of visits, the login information, connection time, and
so on, which are more closely correlated. Anomaly-PTG also performed very well on
KDDCUP99, demonstrating that the model can detect time-series anomalies in different
scenes with more extraordinary generalization ability.

4.6. Ablation Study

This paper considers the correlation between variables in time series data and the rela-
tionship between long-distance time information and improves the transformer’s structure
to enhance the information extraction ability and make it more suitable for the time-series
anomaly detection task. We verify the validity of each part of the Anomaly-PTG model.
Ablation results on different datasets were obtained (Table 5), where “—” and “w/o” in-
dicate using or not using the technique. Time and feats denote structures for extracting
time information and feature relationships. Technology means the technology we used
in this study. That is to say, parallel transformer GRU is our improved structure for the
transformer.

Table 5. The ablation results (F1) of each part of the model on different datasets.

Technology Time Feats SMD MSL SMAP KDDCUP99 AVGF1

Transformer
— w/o 0.9189 0.8742 0.8727 0.8923 0.8895

w/o — 0.8812 0.9031 0.8881 0.9299 0.9005
— — 0.9578 0.9253 0.9163 0.9518 0.9378

Parallel
Transformer-GRU — — 0.9781 0.9505 0.9443 0.9727 0.9614

The values in the table represent F1 values. “—” represents the use of this structure. “w/o” represents the not

use of this structure.

We replace the structure of extracting global information of the Anomaly-PTG model
with the transformer as the model’s basic structure. It can be concluded from the table that
extracting only temporal information or extracting only relations between features has a
different performance on the dataset. For example, each feature contains a large amount
of continuous time series data in the SMD dataset. In anomaly detection, it is essential to
extract long-distance time information. Therefore, as can be seen in the second row of the
table, the F1 value of the model is reduced by 7.6% in the SMD dataset without considering
the time information.

MSL dataset has the most features, so it is necessary to extract the potential correlations
between the features of this dataset for anomaly detection. In the first row of the table,
we can see that the F1 value of the model on the MSL dataset decreases by 3.9% due to
not using the structure that captures the feature relationship. For the third row, we extract
temporal information and feature relationships to improve the stability and accuracy of the
model in different scenarios, and the average F1 value on the three datasets was improved
by 3.7% and 4.8%, respectively. It had good performance on each dataset, proving the
two-part connection’s effectiveness. Subsequently, we replaced the transformer’s structure
with a parallel transformer GRU structure. It can be seen that the improved transformer is
more suitable for extracting information from time series data and achieves the best results,
including an average F1 improvement of 2.3% over the previous transformer. The validity
of this method is further proved.

In Table 6, Recon and Predict represent reconstruction and prediction networks in the
model, respectively. We prove the effectiveness of combining prediction and reconstruction
by controlling variables. In light of the ablation results, we know that both the prediction-
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based anomaly detection and the reconstruction-based anomaly detection alone are not as
good as the combined detection methods, and the F1 score decreased by 6.8% and 2.69% on
average, respectively. This is because prediction-based anomaly detection becomes more
sensitive to the detection data, and the performance of predicting anomalies in different
scenarios varied greatly, resulting in unstable detection performance of the model. The
method based on reconstruction is to study the probability distribution of the data, which
has lower requirements on the data type. Therefore, the way based on reconstruction
is often more stable than the method based on prediction. Still, the technique based on
reconstruction easily ignores abnormal data of minor reconstruction errors. Therefore,
according to the importance of the task, the reconstruction is used as the main task of the
model to detect abnormal data, and the prediction-based method is applied to assist the
reconstruction of the anomalies that cannot be captured. The specific analysis is shown in
Figure 6.

Table 6. Ablation results (F1) on different datasets based on reconstruction and prediction methods.

Technology Recon Predicet SMD MSL SMAP KDDCUP99 AVGF1

— w/o 0.9553 t 0.8961 0.9284 0.9583 0.9345
Parallel

Transformer-GRU w/o — 0.9665 0.8366 0.8657 0.9023 0.8927

— — 0.9781 0.9505 0.9443 0.9727 0.9614

Figure 6. Periodic changes of test set data.

The figure shows data fluctuations between different features in the test set. The three
lines are the predicted value, the reconstructed value, and the actual value, respectively. The
prediction-based model can directly indicate the data of the following timestamp by using
the time series data’s time dependence. The reconstruction-based model helps capture the
global data distribution and can more accurately judge the abnormality according to the
normal distribution of the data. Still, it is not easy to identify sudden data fluctuations
because these fluctuant data may also conform to the normal data distribution, leading to
missed abnormal detection. As marked by the red box in Figure 6, the prediction model
can capture this mutation data, and the reconstruction-based approach does not capture
this anomaly.

4.7. Parametric Analysis

β analysis:β is the parameter that regulates the optimal combination of prediction and
reconstruction methods. We combined the two methods to assign weights based on the
sensitivity of abnormal data and found that different values will have a particular impact
on the detection effect. Therefore, we conducted extensive experiments to evaluate the F1
value, recall, and precision of other β on four datasets. The results are shown in Figure 7.
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When the β value is 1.2, the F1 value shows the best results on the four datasets. When the
β value is less than 1, the detection accuracy of the model decreases significantly. When the
value of β is greater than 2, the model’s index gradually decreases and tends to be stable.

Figure 7. Detection effect of Anomaly-PTG model.

4.8. Model Evaluation

We evaluate the advantages and disadvantages of the methods mentioned in this paper.
The benefits of the Anomaly-PTG model have the following four aspects. First, we use the
attention mechanism to extract the feature correlation and long-distance time dependence
of multivariate time series data more profoundly and comprehensively and improve the
transformer’s structure to avoid redundant data input and reduce the parameter quantity
of the model. Second, the model is trained in a self-supervised manner, which does not
require manual data labeling, which can improve detection efficiency and avoid waste
of human resources. Third, differently from other anomaly detection methods, we use
the optimal combination of reconstruction and prediction to discriminate anomalies and
obtain the optimal combination ratio through a large number of experimental analyses,
which can make it more reasonable to use the two methods for joint detection. Fourth, the
model showed good stability in several datasets of different scenarios, respectively, and we
demonstrated this advantage of the model experimentally in Section 4.5.

However, to a certain extent, this method also has certain limitations. One of them is
that the anomaly cannot be explained, and the source of the anomaly cannot be accurately
located. Currently, some methods (MTAD-GAT, TranAD, and GDN) can already locate and
analyze the root cause of the anomaly. This can quickly help people find the locations of
machine failures. The other is that the threshold selection method needs to be improved.
The mentioned threshold selection method needs to iterate to find the optimal threshold.
Although the best performance of the model can be found, it needs to consume a certain
amount of computing resources. LSTM-VAE and OmniAnomaly use non-parametric
threshold selection and POT extremum theory to automatically determine thresholds,
respectively. These methods have been tested to approximate optimal threshold settings.



Electronics 2022, 11, 3955 18 of 20

5. Conclusions

This paper proposes a new anomaly detection model, Anomaly-PTG, for multivariable
time series, which is divided into two parts: an information extraction module and an
anomaly detection module. The information extraction module uses a parallel transformer
GRU to capture the feature relationship and long-distance time information simultaneously,
which breaks the problem of low detection accuracy caused by the existing methods not
considering the two kinds of information simultaneously. This comprehensive information
extraction method effectively improves the accuracy of anomaly detection. In this module,
we creatively use a transformer GRU structure that can use the transformer’s powerful
global feature extraction function to solve the shortcomings of existing methods that cannot
capture remote time information. To make the transformer more suitable for time-series
anomaly detection scenarios, we improved its structure. We use the GRU as its decoder to
capture sequential patterns of the model. In this way, there is no need to input data to the
decoding end, and the GRU’s good data modeling ability can analyze and process different
data types, effectively reduce the interference of outliers, and improve the training speed
of the model.

In the anomaly detection module, the anomaly can be detected more comprehensively
through the optimal combination of the prediction model and the reconstruction model.
Experiments showed that the F1 values of Anomaly-PTG on three public datasets are
superior to those of many popular multivariate anomaly detection methods. We also
applied this model to the network traffic intrusion detection dataset. The results show that
this model can also be well used for the network intrusion detection task, showing good
generalization ability. In the future, we plan to use the extracted time series information
to provide a reasonable anomaly interpretation method to help people find the anomaly
source quickly and accurately and eliminate the anomaly in time.
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Time Series; Tetko, I.V., Kůrková, V., Karpov, P., Theis, F., Eds.; Springer: Berlin/Heidelberg, Germany, 2019; pp. 703–716.

25. Audibert, J.; Michiardi, P.; Guyard, F.; Marti, S.; Zuluaga, M.A. USAD: UnSupervised Anomaly Detection on Multivariate Time
Series. In Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery (KDD ’20), Data Mining,
Virtual Event, 6–10 July 2020; Association for Computing Machinery: New York, NY, USA, 2020; pp. 3395–3404.

26. Devlin, J.; Chang, M.; Lee, K.; Toutanova, K. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding.
In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, 2–7 June 2019; (Long and Short Papers); Association for
Computational Linguistics: Stroudsburg, PA, USA, 2019; Volume 1, pp. 4171–4186.

27. Brown, T.B.; Mann, B.; Ryder, N.; Subbiah, M.; Kaplan, J.; Dhariwal, P.; Neelakantan, A.; Shyam, P.; Sastry, G.; Askell, A.; et al.
Language Models are Few-Shot Learners. In Proceedings of the Advances in Neural Information Processing Systems 33: Annual
Conference on Neural Information Processing Systems 2020, NeurIPS 2020, Online, 6–12 December 2020.

28. Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.; Heigold,
G.; Gelly, S.; et al. An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale. In Proceedings of the 9th
International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, 3–7 May 2021.

http://dx.doi.org/10.1109/COMST.2018.2844341
http://dx.doi.org/10.1145/3292500.3330680
http://dx.doi.org/10.1145/3444690
http://dx.doi.org/10.1109/ICDM50108.2020.00093
http://dx.doi.org/10.1109/LRA.2018.2801475
http://dx.doi.org/10.3390/e24060759
http://www.ncbi.nlm.nih.gov/pubmed/35741480


Electronics 2022, 11, 3955 20 of 20

29. Liu, Z.; Lin, Y.; Cao, Y.; Hu, H.; Wei, Y.; Zhang, Z.; Lin, S.; Guo, B. Swin Transformer: Hierarchical Vision Transformer using
Shifted Windows. In Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision (ICCV), Montreal, QC,
Canada, 11–17 October 2021; pp. 9992–10002. [CrossRef]

30. Li, M.; Chen, Q.; Li, G.; Han, D. Umformer: A Transformer Dedicated to Univariate Multistep Prediction. IEEE Access 2022,
10, 101347–101361. [CrossRef]

31. Kitaev, N.; Kaiser, L.; Levskaya, A. Reformer: The Efficient Transformer. In Proceedings of the 8th International Conference on
Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, 26–30 April 2020.

32. Li, S.; Jin, X.; Xuan, Y.; Zhou, X.; Chen, W.; Wang, Y.; Yan, X. Enhancing the Locality and Breaking the Memory Bottleneck
of Transformer on Time Series Forecasting. In Proceedings of the Advances in Neural Information Processing Systems 32:
Annual Conference on Neural Information Processing Systems 2019, NeurIPS 2019, Vancouver, BC, Canada, 8–14 December 2019;
pp. 5244–5254.

33. Xu, L.; Xu, K.; Qin, Y.; Li, Y.; Huang, X.; Lin, Z.; Ye, N.; Ji, X. TGAN-AD: Transformer-Based GAN for Anomaly Detection of Time
Series Data. Appl. Sci. 2022, 12, 8085. [CrossRef]

34. Zhou, H.; Zhang, S.; Peng, J.; Zhang, S.; Li, J.; Xiong, H.; Zhang, W. Informer: Beyond Efficient Transformer for Long Sequence
Time-Series Forecasting. Natl. Conf. Artif. Intell. 2020, 35, 11106–11115. [CrossRef]

35. Tuli, S.; Casale, G.; Jennings, N.R. TranAD: Deep Transformer Networks for Anomaly Detection in Multivariate Time Series Data.
CoRR 2022. Available online: http://xxx.lanl.gov/abs/2201.07284 (accessed on 1 November 2022). [CrossRef]

36. Chen, Z.; Chen, D.; Yuan, Z.; Cheng, X.; Zhang, X. Learning Graph Structures with Transformer for Multivariate Time Series
Anomaly Detection in IoT. CoRR 2021. Available online: http://xxx.lanl.gov/abs/2104.03466 (accessed on 1 November 2022).

37. Xu, J.; Wu, H.; Wang, J.; Long, M. Anomaly Transformer: Time Series Anomaly Detection with Association Discrepancy. In
Proceedings of the International Conference on Learning Representations, Online, 25–29 April 2022.

38. Zerveas, G.; Jayaraman, S.; Patel, D.; Bhamidipaty, A.; Eickhoff, C. A Transformer-Based Framework for Multivariate Time
Series Representation Learning. In Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining,
KDD ’21, Singapore, 14–18 August 2021; Association for Computing Machinery: New York, NY, USA, 2021; pp. 2114–2124.

39. Dua, D.; Graff, C. UCI Machine Learning Repository. 2017. Available online: https://archive.ics.uci.edu/ml/index.php (accessed
on 1 November 2022).

http://dx.doi.org/10.1109/ICCV48922.2021.00986
http://dx.doi.org/10.1109/ACCESS.2022.3208139
http://dx.doi.org/10.3390/app12168085
http://dx.doi.org/10.1609/aaai.v35i12.17325
http://xxx.lanl.gov/abs/2201.07284
http://dx.doi.org/10.14778/3514061.3514067
http://xxx.lanl.gov/abs/2104.03466
https://archive.ics.uci.edu/ml/index.php

	Introduction
	Related Works
	Multivariable Exception Detection
	Transformer Models for Time Series

	Methodology 
	Problem Statement
	Data Preprocessing
	Anomaly-PTG Network
	Information Extraction Module
	Anomaly Detection Module
	Reconstruction Network
	Threshold Selection
	Prediction Network
	Anomaly Scores


	Experiment and Analysis 
	Datasets
	Evaluation Metrics
	Experimental Parameters and Baseline Methods
	Results and Analysis
	Generalization Ability Test 
	Ablation Study
	Parametric Analysis 
	Model Evaluation

	Conclusions 
	References

