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Abstract: In electromagnetic inverse scattering problems, Scattered field commonly needs to be
measured by a large number of receiving antennas to provide enough scattered information for image
reconstruction, which may increase the cost of the experimental system and require a long testing
time. In this paper, a skeletonization-based method was proposed to reduce the number of actual
receiving antennas involved in an inverse scattering system. The skeleton points were obtained by
performing a strong-rank-revealing QR factorization of Green’s function matrix. By measuring the
scattered field only at the skeleton points, the number of receiving antennas could be effectively
reduced, while the scattered field data at other receiving points could be accurately restored from the
skeleton points. The numerical results show that, compared with the frequency domain zero-padding
(FDZP) method, the skeletonization-based method was more accurate for antennas distributed in
an elliptical shape (such as thorax imaging). In addition, the inverse scattering method using the
skeletonization-based method was able to reduce the number of measurements while maintaining an
image quality comparable to that of the actual full measurement system. The proposed method can
serve as a guidance for building an experimental system for inverse scattering problems, especially
for cases when the antennas are elliptically distributed.

Keywords: inverse scattering imaging; skeletonization-based method; frequency domain zero-padding
(FDZP); back-propagation scheme (BPs); QR factorization; number of actual receiving antennas (NARA)

1. Introduction

Electromagnetic inverse scattering problems (ISPs) have been widely studied. In these
problems, the aim is to retrieve the distribution of the constitutive properties of unknown
scatterers embedded in a domain of interest (DOI) by measuring the scattered field outside
the DOI using a certain number of actual receiving antennas (NARA) [1]. Inverse scattering
imaging has found applications in non-destructive evaluation [2–4], geological explo-
ration [5,6], and biomedical imaging [7–9]. In particular, in biomedical imaging, the use of
ISPs is expected to provide strong support for the diagnosis of breast cancer and detection of
stroke due to its super-resolution and quantitative imaging ability [10,11]. The algorithms
of inverse scattering imaging can be classified into linear methods and nonlinear methods.
Linear methods include the Born approximation algorithm (BA) [12], back-propagation
scheme (BPs) [13], and the Rytov approximation method (RA) [14], each of which are
suitable for imaging weak scatterers by neglecting the multiple scattering effect. Nonlinear
methods include the distorted Born iterative method (DBIM) [15], subspace-based DBIM
(S-DBIM) [16], contrast source inversion method (CSI) [17], and subspace-based optimiza-
tion method (SOM) [18]. Iteration steps are involved in these methods to minimize the cost
function constructed by the calculated and measured scattered field.

ISPs are used to determine the constitutive properties of the scatterer by measuring
the scattered field. In order to solve ISPs, the scattered field needs to be measured through

Electronics 2022, 11, 4005. https://doi.org/10.3390/electronics11234005 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics11234005
https://doi.org/10.3390/electronics11234005
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://doi.org/10.3390/electronics11234005
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics11234005?type=check_update&version=1


Electronics 2022, 11, 4005 2 of 11

a large number of receiving antennas, which may lead to high expenses of the experimental
system and may require long testing time. Recently, the compression of near-field sampling
points has been studied [19–21]. In reference [22], by using the spectral decomposition
of the radiation operator and an approximation of the point spread function, when the
field observation domain was on a circular arc, the nonuniform field sampling scheme was
proposed to reduce the number of field sampling points for the application of source recon-
struction. Compared with the uniform field sampling method, the nonuniform sampling
method has a higher source reconstruction accuracy. Furthermore, reference [23] proposed
a sampling method to determine the minimum field sampling point when the observation
domain was an arbitrary curve by introducing a widely investigated spectrum operator,
which can be obtained from evaluating singular values of the radiation/lifting operator.
The numerical results showed that the interpolated field matched well with the exact one.
The above research either determines the minimum number of sampling points or deter-
mines the location of the sampling points, and the field data at other locations need to be
further obtained through interpolation methods. In reference [24], a skeletonization-based
method was proposed to compress the radiated near-field, which makes use of the low
rank characteristics of Green’s function matrix. By applying strong rank QR decomposition
to Green’s function matrix, the skeleton points could be obtained by compressing the rows
of Green’s function matrix, and the scattered field of other positions of interest could be
easily obtained using matrix transformation. Skeletonization-based methods were also
applied to accelerate the calculation of method of moments [25,26].

In inverse scattering imaging, the distribution of receiving antennas is commonly
distributed in a circle (human brain imaging), while in some specific applications they are
distributed conformally into an ellipse, such as in thoracic structure imaging [10]. Therefore,
it is necessary to propose a flexible and effective method to reduce the NARA that is suitable
for the different distribution shapes of receiving antennas. Inspired by [24], in this article, a
skeletonization-based method was proposed to reduce the NARA by setting the receiving
antenna at the skeleton points, and the scattered field data at other positions were obtained
by using the transformation matrix linked with the scattered field on the skeleton points.
This could effectively reduce the NARA required in the inverse scattering imaging system.
The main contributions of this paper are as follows:

Firstly, through numerical experiments, we found that increasing the NARA was helpful
in improving the imaging results, especially when the scattered field data contained noise.

Secondly, the two interpolation methods used to reduce the NARA, the frequency
domain zero-padding (FDZP) method and the skeletonization-based method, were com-
pared in different distribution shapes of the receiving antennas (circular and elliptical). The
numerical results showed that compared with FDZP method, the skeletonization-based
method achieved a higher interpolation accuracy, especially for the elliptical distribution.

Finally, the skeletonization-based method was applied to reduce the NARA in in-
verse scattering imaging system with elliptical distribution. The numerical experiments
showed that compared with directly increasing the NARA to improve the imaging results,
the skeletonization-based method could not only reduce the NARA but also maintain a
comparable imaging reconstruction quality under different noise levels.

The structure of this article is as follows. In Section 2, the forward problem theory
and skeletonization process are derived. In Section 3, the numerical results are given to
verify the effectiveness of the skeletonization-based method to reduce the NARA. Finally,
the conclusions are outlined in Section 4.

2. Formulation of Forward and Inverse Scattering Problems
2.1. Forward Scattering Problem

As shown in Figure 1, we focused on the 2D ISPs under a transverse magnetic wave
illumination. The whole system was invariant along the z-axis. The time–harmonic factor
exp(−iωt) was adopted. The unknown scatterers were located inside the DOI, D, within
a free space background with permittivity ε0, and permeability µ0. Depending on the
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different imaging application requirements, the transmitting and receiving antennas were
located around a circle or an ellipse outside the DOI. There were Ni transmitting antennas
located at rp, p = 1, 2, . . . , Ni, generating an incident electric field. For each incidence, the
scattered field data was collected by Nr receiving antennas located at rq, q = 1, 2, . . . , Nr.
The collected scattered field data was stored in matrix Esca with dimensions Nr × Ni. To
calculate the scattered field, the DOI was discretized into M uniform rectangular grids
centered at rm, m = 1, 2, . . . , M. Through the Lippmann–Schwinger equation [27], the total
electric field Etot

(r) in DOI can be written as:

Etot
(r) = Einc

(r) + iωµ0

∫
D

g(r, r
′
)
{
−iωε0

[
εr(r

′
)− 1

]
Etot

(r
′
)
}

dr
′

f or r ∈ D (1)

where Einc
(r) and g(r, r

′
) are the incident electric field in DOI and Green’s function in

free space, respectively, and εr and ω are the relative permittivity in the DOI and angular
frequency, respectively. Using the pulse basis function and point matching, the Lippmann–
Schwinger equation can be discretized into the following matrix equation:

Etot
= Einc

+ GD · ξ · E
tot (2)

where GD represents the internal interaction in the scatter, elements in GD can be obtained
by discretizing the integral operator, and ξ(m, m) = ξ(rm), m = 1, 2, . . . , M is the contrast
of scatter, where ξ(rm) is written as:

ξ(rm) = −iωε0[εr(rm)− 1] (3)
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Figure 1. Schematic diagram of ISPs and the different distribution shapes: (a) elliptical shape;
(b) circular shape.

The scattered field Esca on Nr receiving antennas is written as:

Esca
= GS · J (4)

where GS is Green’s function matrix denoting the interaction between the induced current

J = ξ · (I − GD · ξ)
−1
· Einc in the DOI and the receiving antennas, and I is the identity

matrix. CG-FFT-MOM is used to generate the synthetic measured scattered field data for
ISPs [28]. The details of the above process of calculating the scattered field can be found
in [1].
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2.2. Skeletonization Process

In order to reduce the NARA, the positions of the skeleton points need to be obtained.
According to the strong-rank-revealing QR factorization [29]:

P
H

GS = R
H

Q
H

(5)

where H represents conjugate transpose of a matrix, P(P
H

P = I) is the permutation matrix,
and Q and R are the orthogonal matrix containing orthogonal column vectors and the
upper triangular matrix (where the value of its main diagonal elements decreases from
top to bottom), respectively. The dimensions of matrix GS and matrix P are Nr ×M and
Nr × Nr, while the dimensions of matrix Q and R are M× L (L = min(M, Nr)) and L× Nr.

If the rank of matrix GS is K, R
H

and Q
H

can be expressed as:

Q
H
=

Q
H
11 Q

H
12

Q
H
21 Q

H
22

 (6)

R
H
=

R
H
11 0

R
H
21 R

H
22

 (7)

where the dimensions of Q
H
11, Q

H
12, Q

H
21, and Q

H
22 are K × K, K × (M − K), (L − K) × K

and (L − K) × (M − K), respectively. The dimensions of R
H
11, R

H
12, and R

H
22 are K × K,

(Nr − K)× K, and (Nr − K)× (L− K), respectively. Substituting Equations (6) and (7) into
Equation (5), we obtain:

P
H

GS =

[
IK

S

]
GRS + P

H
X (8)

where GRS, S, and X can be written as:

GRS =

[
R

H
11Q

H
11R

H
11Q

H
12

]
(9)

S = R
H
21(R

H
11)
−1

(10)

X = P

[
0 0

R
H
22Q

H
21 R

H
22Q

H
22

]
(11)

The left and right sides of Equation (8) can be multiplied by the matrix P at the same
time. We can obtain:

GS = P

[
IK

S

]
GRS + X (12)

The K + 1 to Nr singular values of the matrix GS are ignored because its values are too
small, that is, the contribution of X can be ignored. Then, we can obtain:

GS = P

[
IK

S

]
GRS (13)
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GRS is the row compressed matrix of GS. The left and right sides of Equation (13) can
be multiplied by the matrix J at the same time. We then can obtain:

Esca
= P

[
IK

S

]
GRS J = P

[
IK

S

]
ESKI

S (14)

where ESKI
S is the scattered field on the skeleton points. It can be seen from Equation

(14) that the scattered field in the other positions can be recovered by testing only on the
skeleton points.

3. Numerical Results

In this section, the numerical results are given to verify the effectiveness of the pro-
posed method. The backpropagation scheme (BPs) was chosen as the inversion algorithm,
and the details of which can be found in [1].

As shown in Figure 2, the “Austria” profile was used in the validation of the inverse
scattering imaging algorithm, and all the following numerical examples used this model.
The “Austria” profile included a ring and two discs, and the relative permittivity of all of
its components was 1.1. The ring with an inner diameter of 0.3 m and outer diameter of
0.6 m was centered at (0, −0.2) m, and the centers of the two discs with radii of 0.2 m were
located at (−0.3, 0.6) m and (0.3, 0.6) m, respectively. The frequency of the incident waves
was 400 MHz. To employ CG-FFT-MOM to calculate the scattering field of the “Austria”
profile, the DOI region was discretized into 100 × 100 uniform rectangular grids. In the
ISPs, the DOI region was discretized into 60 × 60 uniform rectangular grids, which was to
prevent the inverse crime. Next, we solved the inverse scattering imaging under different
noise levels to verify the effectiveness of the proposed method. To show effect of the NARA
more clearly, BPs was used for the inversion in all the following examples because there
are no parameters involved in this inversion algorithm that are related to noise.
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To quantitatively evaluate the quality of the reconstructed images, mean-square error
(MSE) and structural similarity (SSIM) were adopted. MSE describes the average error of
the reconstructed relative permittivity and the original relative permittivity at each grid.
SSIM describes the geometric contour similarity between the reconstructed model and the
original model.
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3.1. Two Methods to Reduce the NARA for Distribution Shape

The uniform plane wave illuminated the “Austria” profile, the incident direction of
which was the negative x-axis direction. A total of 360 receiving antennas, which were
equiangularly arranged on a circle (with a radius of 3 m) or an ellipse (with a major axis
radius of 3 m, and a minor axis radius of 2.5 m), were used to record the scattered field
as a reference to the interpolated ones. Two interpolation schemes to reduce the NARA
were adopted:

1. The linear interpolation method based on frequency domain zero-padding (FDZP) [30].
NFDZP (NFDZP � 360) receiving antennas were equiangularly placed on a circle, and
the scattered field on the 360 receiving antennas could be recovered through the
scattered field on the NFDZP receiving antennas using FDZP.

2. The skeletonization-based method. Implementing the strongrank-revealing QR factor-
ization of Green’s function matrix, NSKI (NSKI � 360) skeleton points were obtained
among the 360 position points, which were usually not equiangularly distributed on
a circle. The scattered field on the 360 receiving antennas and NSKI skeleton receiving
antennas were connected by a transformation matrix. Therefore, it was only necessary
to collect the scattered field at NSKI skeleton points.

Here, NFDZP (or NSKI) was the NARA. The measured scattered field on the 360 receiv-
ing antennas were stored in matrix EM

S , while the scattered field on the actual receiving
antenna were stored in matrix EA

S . In addition, the scattered field EV
S on the 360 virtual

receiving antennas could be obtained through matrix EA
S using the two interpolation meth-

ods, respectively. To estimate the interpolation error of the two interpolation methods, the
following relative error was defined:

Err =
‖EM

S − EV
S ‖2

‖EM
S ‖2

where ‖‖2 represents the l-2 norm.
As shown in Figure 3, the interpolation errors of the two methods were given by

changing with the NARA under different distribution shapes of the receiving antennas.
From Figure 3, the interpolation error decreased with the increase in the NARA. At the same
NARA, the FDZP method had a smaller interpolation error for the circular distribution
shape, while the skeletonization-based method had a smaller interpolation error for the
elliptical distribution shape. Table 1 shows the required minimum NARA when the
interpolation error was less than 1%. The NARA of the skeletonization-based method was
24 for both the circular and elliptical distribution of the receiving antennas. On the contrary,
for the FDZP method, the circular distribution required 17 actual receiving antennas,
while the elliptical distribution required 28 actual receiving antennas. The FDZP method
required a different NARA for the different distribution shapes of receiving antennas,
which indicated that the FDZP method was greatly affected by the shape distribution of
the receiving antennas.

Table 1. The minimum NARA required by FDZP method and skeletonization-based method when
the interpolation error was less than 1%.

Circular Distribution Elliptical Distribution

Method FDZP SKI FDZP SKI
Number 17 24 28 24

From the above discussions, to reduce the NARA in the experimental system, different
interpolation methods could be selected for the different distribution shapes to sufficiently
minimize the NARA. Under the conditions of ensuring the interpolation accuracy, the
FDZP method can be adopted for a circular distribution while the skeletonization-based
method can be adopted for an elliptical distribution.
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In the inverse scattering imaging system used for a human thorax structure [10], to
ensure conformality, the receiving antennas are commonly pasted around the human thorax
structure. Since the structure of the human thorax can be approximated by an ellipse, the
distribution shape of the receiving antennas is also elliptical. According to the analysis
above, in order to reduce the NARA in the imaging system with an elliptical distribution,
the skeletonization-based method should be adopted.

3.2. Effect of the NARA on the Reconstructed Image

In this section, the effect of the NARA on the inverse scattering imaging with elliptically
distributed antennas was studied. All the following numerical examples used an elliptical
distribution shape (with a major axis radius of 3 m and a minor axis radius of 2.5 m) of the
receiving antennas. Here, the number of transmitting antennas was the same as that of
the receiving antennas. The scattered field matrix ES was of dimensions NARA× NARA.
The scattered field matrix ES with additive white Gaussian noise was used for the inverse
scattering imaging. The additive Gaussian noise level was defined as:

nl =
‖Enoi‖F
‖ES‖F

× 100% (15)

where Enoi and ‖‖F are the additive Gaussian noise matrix and Frobenius norm, respectively.
Figure 4 shows the changing curves of the MSE and SSIM with the NARA under

different noise levels. From Figure 4, we can draw the following conclusions:
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Firstly, in the noise-free case, when the NARA was greater than or equal to 20, the
MSE and SSIM did not improve with the increase in the NARA. This showed that in the
noise-free case, 20 receiving antennas were already adequate for the inversion.

Secondly, in the noisy cases, the SSIM became larger with the increase in the NARA
under same noise level, which showed that increasing the NARA was beneficial for im-
proving the imaging quality when the scattered field contained noise. The larger the noise
level was, the more significant the improvement was. For example, when the noise level
was 30%, the SSIM was 0.675 for NARA equal to 16, while the SSIM was 0.706 for NARA
equal to 90. In addition, when the noise level was 50%, the SSIM was 0.657 for NARA equal
to 16, while the SSIM was 0.705 for NARA equal to 90. On the contrary, the increase in the
NARA had little effect on the MSE.

Finally, in the noisy case, there were slight changes in the MSE and SSIM curves when
the NARA was larger than or equal to 70, which showed that the imaging results could be
improved by increasing the NARA with limitations.

According to the above discussions, we can conclude that for a real experimental
system with noise, the NARA should be greater than 20. However, in real imaging applica-
tions with a limited space (such as thorax imaging), only a limited number of antennas can
be arranged, and a large number of antennas will inevitably increase the expense of the
experimental system and require a longed testing time. Therefore, one can first measure
the scattered field with a small NARA and then interpolate the scattered field to a higher
dimension by using the skeletonization-based method.

3.3. Reducing NARA by Skeletonization-Based Method

In this session, we proposed an inverse scattering method in cooperation with the
skeletonization-based method. Here, we considered the inverse scattering imaging case
when the actual receiving antennas were located at the skeleton points on the ellipse.
The number of skeleton points was set to 16. That is, the number of actual transmit-
ting antennas and receiving antennas were both 16. The scattered field on the actual
receiving antennas was stored in the matrix ES (16×16). ES (16×16) can be converted to

ESKI
S(NVRA×16) (NVRA > 16) (the number of virtual receiving antennas is abbreviated as

NVRA) using the skeletonization-based method. In other words, increasing the number
of virtual receiving antennas can allow the obtaining of more scattered field information
while keeping the transmitting antenna unchanged. ESKI

S(NVRA×16) was used as the input of

the inverse problem algorithm for the imaging. Since ESKI
S(NVRA×16) contains more scattered

field information, the results of the inverse scattering imaging were improved.
Figure 5 shows the changing curves of the MSE and SSIM versus the NVRA. We

can conclude that, in the same noise level, compared with the direct use of ES (16×16) for

inversion imaging, using ESKI
S(NVRA×16) could effectively improve the imaging quality. The

larger the NVRA value was, the better the imaging quality was (especially the SSIM).
Table 2 exhibits the statistical results of the MSE and SSIM using different scattered field
matrices for the inversion under different noise levels. Compared with the direct use of
ES (16×16) for the inverse imaging, the use of matrix ESKI

S(90×16) could effectively improve
the results of the inverse scattering imaging, and the accuracy of the inversion imaging
using ESKI

S(NVRA×16) was comparable to that using EDirect
S(NVRA×16), which showed that the

skeletonization-based method could not only reduce the required NARA but also maintain
a high imaging accuracy compared with the direct increase in NARA.

Finally, Figure 6 also shows the results of the inversion imaging using different matrices
with 50% noise, which was consistent with the above conclusions. The skeletonization-
based method could reduce the NARA for the elliptical antenna distribution while ensuring
the imaging accuracy.
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Table 2. Statistical results of MSE and SSIM using different scattered field matrices for inversion
under different noise levels.

Noise Level 0% 30% 50%

Index MSE SSIM MSE SSIM MSE SSIM
1 ES(16×16) 0.025 0.686 0.025 0.672 0.025 0.658
2 EDirect

S(90×16) 0.025 0.709 0.024 0.697 0.024 0.690
3 ESKI

S(90×16) 0.024 0.716 0.024 0.698 0.024 0.682

1 ES(16×16): The number of actual transmitting and receiving antennas was 16. 2 EDirect
S(90×16): The number of

actual transmitting antennas was 16, and the number of actual receiving antennas was 90. 3 ESKI
S(90×16): The

number of actual transmitting and receiving antennas was 16, and ES(16×16) was transformed to ESKI
S(90×16) by the

skeletonization-based method.
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4. Conclusions

In this paper, a skeletonization-based method was proposed to reduce the NARA in an
inverse scattering imaging system. Through the strong rank-revealing QR decomposition
of Green’s function matrix, GS, skeleton points could be obtained, and the scattered field of
other positions of interest could be obtained by the scattered field on the skeleton points,
which effectively reduced the NARA. Therefore, more scattered field data on the virtual
receiving antenna could be obtained from the scattering field at the skeleton points, which
could be used to improve the imaging quality. The numerical results showed that compared
with the FDZP method, the skeletonization-based method was more accurate for antennas
distributed in an elliptical shape (such as in thorax imaging). The inverse scattering method
using the skeletonization-based method could reduce the NARA for an elliptical antenna
distribution while ensuring the imaging accuracy. The proposed method can provide
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guidance for the layout of receiving antennas in an inverse scattering imaging system,
especially for cases when the antennas are elliptically distributed.
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