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Abstract: Despite the huge advances in digital communications in the last decade, physical documents
are still the most common media for information transfer, especially in the official context. However,
the readily available document processing devices and techniques (printers, scanners, etc.) facilitate
the illegal manipulation or imitation of original documents by forgers. Therefore, verification of
the authenticity and detection of forgery is of paramount importance to all agencies receiving
printed documents. We suggest an unsupervised forgery detection framework that can distinguish
whether a document is forged based on the spectroscopy of the document’s ink. The spectra of
the tested documents inks (original and questioned) were obtained using laser-induced breakdown
spectroscopy (LIBS) technology. Then, a correlation matrix of the spectra was calculated for both
the original and questioned documents together, which were then transformed into an adjacency
matrix aiming at converting it into a weighted network under the concept of graph theory. Clustering
algorithms were then applied to the network to determine the number of clusters. The proposed
approach was tested under a variety of scenarios and different types of printers (e.g., inkjet, laser, and
photocopiers) as well as different kinds of papers. The findings show that the proposed approach
provided a high rate of accuracy in identifying forged documents and a high detection speed. It also
provides a visual output that is easily interpretable to the non-expert, which provides great flexibility
for real-world application.

Keywords: digital forensics; forgery detection; unsupervised clustering; LIBS

1. Introduction

Digital forensics has significantly evolved over recent years to be an essential part
of many investigations conducted by law enforcement agencies, the military, and other
government organizations. This has been mainly driven by the rapid evolution of digital
technology, which has led to the widespread use of digital devices, such as smartphones,
notebooks, printers, scanners, and software applications. Despite the potential benefits that
can be achieved through such digital technologies, some choose to exploit them illegally
to manipulate or imitate official documents, i.e., document forgery. Such actions embrace
many threats, especially when dealing with important formal documents such as identity
documents, bank checks, medical prescriptions, paper currency, or even evidence in a
court of law. “Hundreds of document forgery cases are being reported every day around
the world” [1]. It is therefore of paramount importance that agencies accepting formal
documents be able to verify the authenticity of such documents before accepting or relying
on them. To that end, an efficient, accurate, easy-to-use, automatable, cheap, and non-
destructive method for forgery detection is needed [2]. However, such a method does not
exist yet [3].

Current forgery detection approaches can broadly be categorized into two main cate-
gories. The first relies on image processing techniques to identify potential forgery [4]. Most
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of the image processing techniques include steps that start from image acquisition, image
enhancement, segmentation, feature extraction, and analysis of extracted features [5–8].
This technique, however, is relatively technically complex and has a very high computa-
tional burden [9,10].

On the other hand, the second category of methods relies on analyzing the spectra of
components of the document, e.g., printing ink, writing ink, and printing paper) [11,12]. It
can be argued that spectroscopic methods can have far better accuracy since they deal with
the characteristics of the material used to produce the document [13]. Back in 2006, In [14],
it was proposed a method for the examination of the documents inks by combining several
spectral techniques, namely, micro-Fourier transform infrared spectroscopy (micro-FT-IR),
Raman spectroscopy, and X-ray fluorescence methods. They were able to distinguish
between different types of black and blue inks with an accuracy of up to 95%. However,
the tests were destructive, which greatly limits the practical applicability of this approach.
Alternatively, a non-destructive approach based on the analysis of spectral features in the
UV-VIS-NIR and IR regions was developed by Gál et al. [15]. They aimed to develop a
non-destructive method to differentiate between documents printed by laser versus inkjet
printers. Although their approach was able to differentiate between documents printed
with different types of printers, they were not able to use that approach to differentiate
between individual printers of the same type and suggested that the approach needs to be
optimized through a computational chemical measurement method. Furthermore, Ameh
and Ozovehe [16] used FT-IR for the types of inks extracted from printed documents. The
extracted inks were compared using two different printer cartridge brands. The results
demonstrated that FT-IS may be used to examine inks on papers by picking extremely tiny
regions from irrelevant portions of the document. They also discovered that FT-IS was an
effective, straightforward, and repeatable approach for differentiating printing inks.

“Laser-induced breakdown spectroscopy (LIBS), is one of the most used methods
to obtain the spectra of materials and has a great potential for forgery detection applica-
tions” [17]. It has gained immense interest from forensic scientists as it provides them
with the capabilities for analyzing and identifying various traces from forensic evidence
including but not limited to inks, drugs, hair, bloodstains, and fingerprints [17]. LIBS is
also a non-destructive tool, which makes it useful in enhancing the interpretability of ink
images for the determination of ink age, backdated and forged documents [18], overwritten
scripts [19], and the dating of manuscripts [20].

Several applications of LIBS around forgery detections have been illustrated. Cicconi
et al. [21] employed LIBS to assess difficulties with commercial inks in their investigation.
The research studied pen inks for one paper type and many paper kinds and determined
the deposition sequence of stacked inks. They also examined signatures and toners from a
disputed paper (DQ). The researchers then detected up to seven distinct metals in the inks
tested, allowing them to fully differentiate all eight black inks on a single type of printing
paper. The validity of the categorization was lowered when the inks were tested on 10
different sheets for a variety of reasons. The existence of the same ingredients in both the
ink and the paper ablated concurrently with ink was one of the causes. Another difference
was the varied uptake of inks into paper. Five out of six times, the testing at three crossing
sites using a pair of black or blue inks was effective.

As could be seen from this literature review, most approaches for forgery detection
have difficulties achieving high detection rates while keeping the computational burden
and complexity levels low. There is a clear need for an easy-to-use approach (ideally fully
automatable) that can achieve a high detection rate with fewer computations and at a low
cost. This study proposes a new approach for forgery detection based on the analysis of
LIBS spectra using concepts of complex networks. Our focus is to address the following
limitations of previous forgery detection methods:

• The level of complexity and computational burden;
• Efficiency and detection rates;
• Ease of use and accessibility by non-experts;
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• Adoption costs.

To the best of our knowledge, the proposed method is one of the very first trials of the
integration of complex networks and digital forensics fields.

The rest of this paper is organized as follows. Section 2 sets the context for the article
by providing a theoretical background about the major technique employed, which was the
LIBS. The proposed research method is presented in Section 3. The results and discussion
of the research are presented in Section 4. Finally, we conclude this paper in Section 5.

2. Laser-Induced Breakdown Spectroscopy

LIBS is an analytical technique of elemental analysis in real-time to identify and
analyze biological and chemical materials in different cases of gases, liquids, and solids.
LIBS provides information on the material’s elemental composition, which is considered
essential information in sample analysis. LIBS technology is based on laser-generated
plasma for elemental analysis where pulses from a laser as the excitation source (e.g.,
Q-switched Nd: YAG) are focused on the surface of the target material to atomize a tiny
amount (in the range of nanograms to picograms) of material under examination resulting
in vaporization, atomization, and formation of the plasma as shown in Figure 1. As a result
of the high temperature of the resultant plasma, the expelled material is disassociated
into excited ionic and atomic types. As excited atoms and ions retreat to lower energy
levels, they generate distinctive optical light. The detecting and spectral analysis of the
optical radiation produced by this technique are used to establish the sample’s elemental
composition dependent on each element’s unique emission spectrum (atomic emission
lines) [22,23].
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Figure 1. The six steps of the LIBS process [24].

The LIBS device consists of several main parts [25], and its components and apparatus
are as follows:

1. Laser source: generates the light pulses used to create the plasma plume;
2. Focusing optics: the optical system used to focus the laser beam on the target material;
3. Target container: place a sample that needs to be hit by the laser;
4. Sample: the sample to be tested (this component relates mostly to the test);
5. Light collection unit: collects and transports the plasma spectrum wavelengths to the

detection system through fiber optical cable;
6. Spectral analysis unit: a detection system (or spectrum analyzer) used to provide the

spectral analysis of the emitted light of the target by spectrally dispersing the light;
7. Detector: collects and records the resulting spectrum records them in terms of intensity

and wavelength;
8. Computer: to control the laser synchronization, detector gating, and other configura-

tions and store the spectrum;
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9. Delay-gate generator: used to provide a specific time delay before the spectrum
analyzer starts to collect the emitted light from the plasma.

LIBS is a simple spectroscopy technique. It is a method of atomic emission spec-
troscopy (AES). The LIBS has significant advantages as the following [26,27]:

1. Materials’ elemental analysis in solids, gases, and liquids;
2. Can detect and analyze all sample elements simultaneously with a single laser pulse;
3. It is low cost compared to other conventional techniques (e.g., LA-ICP-MS);
4. Can be miniaturized and portable to allow the field analysis of evidence to be at or

near a crime scene;
5. Analysis of solid materials directly, without the need to solubilize the material;
6. Because each laser pulse ablates a small quantity of material (in the nanograms

to picograms range) during the LIBS operation, the technology is deemed non-
destructive;

7. LIBS is a speedy technique; the ablation and evaporation processes are executed in
one step;

8. Possible multi-elemental simultaneous analysis;
9. LIBS technique does not require sample preparation as in other spectroscopic

techniques.

Similar to other technologies, the LIBS has limitations such as the following [26–28]:

1. Difficult to get suitable standards (semi-quantitative);
2. Precision decreases by (usually 5–10%) as compared with other spectroscopic tech-

niques;
3. It cannot be believed that spectra acquired from the same material using different LIBS

instruments would match perfectly. This is because the strength of emission lines is
determined by the specific system settings and components employed (spectrometer,
detector, laser, optics);

4. Other limitations such as spectral matrix interference, sample heterogeneity, and
differences in physical properties of the sample (e.g., reflectivity and hardness of the
surface).

3. Research Method
3.1. General Workflow and Testing Scenarios

The basic principle of the proposed framework is that documents printed with different
printers can be differentiated through the differences in the LIBS spectra they produce. The
first step in using the proposed framework is, therefore, to obtain the LIBS spectra of the
document(s) to be tested. The LIBS device model type is LIBSLAB. Then, the spectral data
are processed to construct a network. Finally, a clustering algorithm is applied to identify
the number of clusters that the spectra can be grouped into. This is then used to decide
whether the spectra originated from documents printed with the same printer/paper. We
applied these three basic steps to several scenarios expected to be encountered in the context
of the forensic examination of official documents.

3.1.1. Scenario 1: Comparing a Questioned Document with an Original Document

In this scenario, 12 samples were printed using 12 different printers (listed in Table 1),
which were either laser printers, inkjet printers, or photocopiers. For every printer/photocopier
considered, three boxes (5 cm × 5 cm) filled with black ink were printed on white A4 office
paper. The types of papers used in this work are also listed in Table 2.

The printed samples are then compared pairwise, considering one of them an original
document (DO) and the other a questioned document (DQ). The forgery detection strategy
in this work was determined by the number of clusters retrieved from the created network-
ing systems after applying some clustering algorithms. If the ink spectra of the original
and DQ appear in one cluster, the DQ is considered original, as it means they have the
same physical features and were produced using the same printer and materials. On the
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other hand, if they appear in two separate clusters (each document’s spectra in an isolated
cluster), the DQ is considered forged as they were produced using different printers. In
this context, the decision of forgery detection in this research depends on examining the
printing ink in the documents. Algorithm 1 demonstrates the general workflow of the
proposed framework. Various steps of the algorithm are described in more detail in the
following sections.

Table 1. Description of printed samples that represent printers’ references.

Printer Type Brand Model (Reference) Ink Type Paper Brand

Laser Canon i-SENSYS (MF231) AR CRG 737 Copy laser

Laser Canon i-SENSYS (MF4010) AR FX 10 Copy laser

Laser Canon i-SENSYS (LBP6000) AR CRG725 Copy laser

Laser Canon Image CLASS (MF264) CRG 51 Copy laser

Laser Canon i-SENSYS (MF4430) 728 Copy laser

Laser Canon i-SENSYS (MF4730) 128 Golden plus

Laser Ricoh Aficio (MP4001) Toner black mp c4500 Copy laser

Laser Kyocera Aficio (MPC2051) Toner black mp c2051c Copy laser

Inkjet Epson EcoTank (ITSL3070) Any color ink refill Copy laser

Inkjet Canon Pixma (TS6020) Vivid ink refill Copy laser

Inkjet HP Page Wide Pro (577dw) YOUSIF UV dye ink Copy laser

Table 2. Paper types used in the preparation of test samples.

Paper Brand Origin

Copy laser Indonesia

Ballet Universal China

PAPEROne India

Paperline Indonesia

local China

Algorithm 1: General workflow of the proposed approach.

Input: two documents: Original (DO) and Questioned (DQ)
Output: Whether the DQ is forged
START
Step1: SET LIBS configurations
Step2: ACQUIRE 5 LIBS spectra for each DO and DQ
Step3: CREATE the Correlation Matrix (CM) among the acquired spectra
Step4: CONVERT the CM into Adjacency Matrix (AM)
Step5: FORMALIZE AM into a dataset of nodes and edges and create the network in
Cytoscape software
Step6: APPLY Clustering algorithms
Step7: IF # of Clusters =1
THEN DQ is Original
ELSE DQ is Forged
END

3.1.2. Scenario 2: Detecting Partially Forged Documents

In this scenario, a document was assumed to be original; however, some part(s) of
the document is of questioned originality. A very similar approach to the above can be
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applied to a single document and detect whether it was forged in some parts. However,
the LIBS spectra in this scenario were obtained from the original as well as the questioned
parts of the same document. If all spectra appeared in one cluster, the whole document
was considered original. Otherwise, the document was considered partially forged.

3.1.3. Scenario 3: Identification of Printer Type

Identification of the type of printer used in printing a DQ can provide important
forensic evidence. The proposed approach was tested for its ability to distinguish laser
printers from inkjet printers. This was done by clustering the spectra of inks for several
laser and inkjet printers and then adding the spectra of the DQ the re-clustering again. The
cluster within which the spectra of the DQ appears then identifies the type of printer used
to print it. That is to say, if the spectra of the DQ appear in the cluster of the laser printers,
then the DQ was printed using a laser printer, and vice versa. This scenario has been tested
on the whole DQ, as well as parts of the DQ, for detecting the printer type used for printing
partially forged documents.

3.1.4. Scenario 4: Identification of Paper Types

Identification of the type of paper on which a DQ was printed can provide important
forensic evidence. The proposed approach was tested for its ability to differentiate plain
papers (no printing) from different brands. This was done by clustering the spectra obtained
from different paper brands in the same way as scenario 3, however, with plain papers
instead. Ten different combinations of paper brands listed in Table 2 were used to test the
ability of the proposed approach to differentiate between them.

3.1.5. Scenario 5: Comparing Different Clustering Algorithms

The proposed approach under our framework was compared in terms of accuracy on
various select cases against other clustering algorithms, namely, Louvain, K-Medoids, and
farthest first traversal (FFT) algorithm. The benchmarking algorithms were adjusted to fit
the purpose of this work.

3.2. LIBS Setup and Spectroscopy of Samples

Before starting to collect the spectroscopy of the samples, the LIBS system has to be
calibrated. The LIBS system’s calibration process was carried out to be suitable and fit
the proposed approach in terms of the documents’ spectrum’s physical properties. To this
end, copper (Cu) metal was tested, and the emission spectrum lines were extracted for
it and compared with the emission lines of the standard ranges of the National Institute
of Standards and Technology database (NIST). The emission lines were identical, which
confirmed the accuracy of the LIBS system used.

A series of experiments were performed to determine the optimal settings and config-
urations for our intended purpose. The optimal settings determined were as follows:

• The plasma was produced using a Q-switch Nd: YAG laser generating 1064 nm with a
pulse length of 10 ns;

• The measurements were made using a laser pulse energy of 120 mJ;
• The laser beam was focused onto the sample surface using a converging lens with a

focal length of 100 mm;
• The target was put in the sampling stand, with a separation of 10 cm between the

focusing lens and the sample;
• The optical fiber was set at a 45◦ angle, with the beam axis 5 cm away from the sample;
• The light emitted from the laser-induced plasma was gathered and focused on the

optical fiber apertures, diameter (200 m/0.22 NA) by a collimator lens (perfectly
matched with the optical fiber entry);

• A spectrum analyzer (Model Spectra View 2100) with a grating and charge-coupled
device (CCD) was used to receive and disperse the emitted spectrum of the target by
fiber optical cable and record it in terms of intensity against wavelength;
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• For recording the spectrum in the PC, the LIBS was supplemented by Visual Spectra
2.1 software. The wavelength was captured between the wavelengths of 173.0 and
956.0 nm.

It should be mentioned that the LIBS configurations were accurately determined
after several experiments. Therefore, changing these configurations may not work in the
proposed approach. More precisely, the characteristics of the documents’ network in terms
of the correlations among nodes are based on the physical features of the retrieved spectra.
Any change in the LIBS configurations may reflect different values of the spectra and
eventually lead to different correlations. This work makes it easier for future considerations
of the other investigators in this field.

Five independent LIBS spectra were acquired for each sample. Each independent
spectrum represented a fresh spot in the sample and was composed of 2048 spectral points,
corresponding to absorbances at various wavelengths between 173 and 956 nm

The LIBS device that was used in acquiring the spectra of the samples was kindly pro-
vided by the University of Babylon/Department of Laser Physics, for which the principal
investigator had obtained authorization to use.

3.3. Data Processing and Network Construction
Calculating the Correlation Matrix

A correlation matrix is a table that shows the correlation coefficients between the
various LIBS spectra acquired in an experiment.

The correlation coefficients (r) were calculated using the following equation:

r =
∑n

i=1 aibi√
∑n

i=1 a2
i ∑n

i=1 b2
i

(1)

where a and b are n-dimensional vectors representing two LIBS spectra, n is the number of
spectral points per spectrum (2048 in our experiments), ai and bi are the ith spectral points
in a and b.

Each entry in the correlation matrix reflected the correlation value of two spectra. The
correlation matrix that resulted was symmetric. This signifies that the correlation values
above and below the diagonal are the same (i.e., the correlation between two spectra a and
b is the same as the one between b and a). In addition, the diagonal values for the resulting
correlation matrix are always equal to one (as those represent the correlation between a
spectrum and itself, which leads to a value of 1). The dimensions of the resulting matrix in
this work were m × m, where m is the number of spectra acquired through the experiment.

3.4. Network Construction

The correlation matrix of the acquired LIBS spectra was then transformed into a
weighted adjacency matrix based on the concepts of graph theory. Individual LIBS spectra
indicated the graph’s vertices (V), while the correlation between the two spectra indicated
the weight (w) of the edge (E) connecting the two corresponding vertices. Computation of
the correlation and adjacency matrices were both done in MATLAB (MATLAB (R2019b).
The MathWorks Inc., Natick, MA, USA). The adjacency matrix was then converted into
two “.csv” files in a format that can be easily imported by Cytoscape® software, which was
used to cluster and visualize the networks.

After being imported into Cytoscape, the spectra were represented as nodes and edges
to generate the network, as shown in Figure 2.
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3.5. Network Clustering

This work proposes an unsupervised clustering algorithm and is benchmarked using
three different unsupervised clustering algorithms. We describe them here and refer to
literature for those who are interested in delving deeper into these algorithms.

3.6. Louvain Algorithm

It is an unsupervised clustering algorithm that was described in detail elsewhere [29,30].
The algorithm uses a greedy multi-level approach for detecting communities in a weighted
network based on the optimization of modularity. The Louvain algorithm has the significant
advantage of being simple, fast, intuitive, and easy to implement. However, the original
algorithm has issues that are “related to the resolution limit of the modularity, which
may lead to gathering the smaller groups in one big community” [31]. Alternatively, the
algorithm can be used to optimize quality functions other than the modularity, for example,
the constant Potts model (CPM) function [32,33]. CPM is a resolution limit-free method,
which can overcome the limitations in modularity and can be defined as follows:

H = −∑
c

[
ec − γ

(
n2

c

)]
(2)
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where c denotes a community with nC nodes. γ is the resolution parameter, which is pretty
simple. The density of communities has to be at a minimum, but the density between
communities has to be less than y. Lower resolutions lead to fewer communities and vice
versa. In this work, the updated version of the Louvain (with CPM) was used as the sole
clustering algorithm in all the scenarios mentioned above.

However, the updated version of the Louvain clustering algorithm struggled with the
issue of the resolution parameter. We performed preliminary experiments to test different
values for the resolution parameter. The value of the resolution parameter that provided
the optimal results in clustering the spectra can be formalized by dividing the sum of the
weights of the edges by the number of edges, as follows:

resolution =
∑

i=n,j=m
i=j=1 Wij

N
− k (3)

where Wij is the weight between the nodes i and j, N is the total number of edges in the
network, and k is a constant number equal to 0.005.

3.7. K-Medoids Algorithm

K-medoids is an unsupervised clustering algorithm that splits the data set of n objects
into k clusters by “first arbitrarily finding a representative object (the Medoids) for each
cluster” [34]. “The basis of the approach of the k-medoids algorithm is to implement the
partition operation within the principle of minimizing the differences between each object
and its corresponding reference point. Rather than using the mean value of the items in
each cluster, the K-Medoids method employs sample objects as reference points. K-medoid
considers more robust to outliers and noise as compared to k-means” and can be applied
using the following steps [34,35].

1. Initialization: select k random points from n data as medoids m;
2. Correspond each data point to the nearest medoid using one of the distance metric

methods;
3. For each medoid m, while the cost is reduced for each data point p:

i. Swap p and m, then correspond each data point to the nearest medoid and
recalculate the cost;

ii. If the cost is higher than the previous step, undo the swap.

3.8. Farthest First Traversal Algorithm (FFT)

The farthest first traversal algorithm is a greedy and fast algorithm introduced by
Hochbaum and Shmoys in 1985, and it follows the same procedure as k-Means. In the
FFT algorithm, k points are first selected as cluster centers. “The first center is selected at
random. The second center is greedily selected as the point furthest from the first. Each
remaining center is determined by greedily selecting the point farthest from the set of
already chosen centers, and the remaining points are added to the cluster whose center is
the closest” [36,37].

The input of the FFT algorithms is a set of P of N points from a metric space (M, d).
The output is k-clustering C = (C1, C2, Ck) of P. Then, the steps are as shown in Algorithm 2:
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Algorithm 2: The steps of FTT algorithm.

START
INPUT: P and N points ∈ (M, d)
OUTPUT: k-clustering (C)
Step 1: SET S←Φ
Step 2: For i from 1 to k

Find ci∈ P-S that maximizes d(ci,S)
SET S←S ∪ {ci}

Step 3: Return Partition(P,S); where d(ci,S) represents the minimum distance of ci from a point of S:
SET D(ci,S) = min {c∈S: d(ci,c)}; The assignment of points to clusters is achieved by

detecting the center in the first loop.
END

3.9. The Proposed Clustering Algorithm

In this work, an unsupervised clustering algorithm is suggested. The proposed
algorithm is inspired by the DBSCAN algorithm [38]. The same steps were followed but
with a different approach. Therefore, the algorithm proposed is considered a mutated
DBSCAN that fits the nature of the generated network. Because for each test, there is
a network model, the distance between every two nodes in the network is fixed that is
because the network is fully connected, and there is an edge between every pair of nodes,
which leads to fixed distances among nodes. In addition, the network model used is
weighted and undirected. Network weights represent the base of the proposed algorithms.
This means the network models do not have variable distances among nodes. Therefore, we
propose that the weights of network pairs are collected and then converted into distances.
In the collected dataset, network weights are listed in a table for each pair. Now, to convert
the weights to distances, we suggest the following formula:

Distanceij = −
((

Weightij × f
)
+ f

)
(4)

where Distanceij is the distance between nodes i and j, Weightij is the edge weight of the
pair (i, j), and f is a constant factor that equals 10,000. The reason behind this exact value is
that the weights have a range that is below 1, and network weights have very close values.
For instance, if the weight between A and B is 0.99607, then the distance is equal to 39.3.
As another example, assume the weight between C and D is 0.99059; then, the distance
equals 94.1. This means the higher the weight between two nodes, the shorter the distance
between the two nodes. This procedure helps us in defining the distances among network
nodes.

The next step is to use the mutated dbscan to cluster our network models. It should be
mentioned that one of the main purposes of this work is to distinguish between original
and questioned documents. This means we either have one or two clusters. If the result
of the clustering process distinguishes one cluster, that means the document is original;
otherwise, the tested document is forged. Now, we have to define the parameters of the
clustering algorithm. The first parameter is called NP, which is tuned using the k-distance
graph. The reason behind this tuning process is that when selecting NP, it might generate
one giant cluster if the NP is very large, while most of the nodes might be considered
outliers if the NP is selected too small. Therefore, the tuning process is crucial at this stage
of the clustering process. The other parameter used is called MP, which represents the
minimum number of neighbors within the NP radius. The next step is to define two types
of nodes based on the two mentioned parameters (NP and MP). The first type of node is
called the core node; its value is higher than the MP within the NP radius. The other type
of node is called a border node, and its neighbor nodes are core nodes.

According to the aforementioned preparations, the following steps clarify the proce-
dure for creating the clusters are as follows:

Step 1: Find all the neighbor nodes within NP and identify the core points (core node).
Step 2: Assign the core node to a new cluster if it does not belong to one.
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Step 3: Recursively find connected nodes and assign them to clusters.
Step 4: Repeat the process for the unvisited nodes and assign them to clusters using

the same as the previous core nodes.
The result of this process is a network that is visualized and then analyzed and

evaluated visually. The network model has created gradually node by node. It should be
mentioned that our approach is supposed to be easy and does not consume time as well as
the results can be distinguished by a non-professional user. This means we do not have to
involve experts to evaluate the result. The visualization can tell users how many clusters
are generated. The number of clusters determines whether a document is forged.

4. Results and Discussions

Based on the mentioned scenarios, we performed our tests using the proposed algo-
rithm under the proposed framework. We then benchmark the total performance of the
proposed algorithm against the benchmarking ones.

4.1. Laser vs. Laser Printers

The proposed approach was successful in distinguishing samples printed as a DQ from
those printed as original ones using pairs of samples printed with different printer/paper
types. To illustrate the interpretation of the output of the algorithm, an example of the
outputs of an experiment comparing two samples is given here. The experiment compared
the spectra of a sample printed with the laser printer Canon mf264 with those of a sample
printed with a laser printer Canon 4430. The visualization of the clustering results of the
spectra of the two samples is shown in Figure 3. Here, we can see that the spectra of the
two samples were clustered into two groups (red and yellow), which means that the DQ
was printed with a different printer than the original document, i.e., forged. Figure 4 also
shows that our approach can distinguish between different printers (red nodes of the Ricoh
printer and the Kyocera printer of yellow nodes).

Electronics 2022, 11, x FOR PEER REVIEW 11 of 17 
 

 

According to the aforementioned preparations, the following steps clarify the pro-

cedure for creating the clusters are as follows: 

Step 1: Find all the neighbor nodes within NP and identify the core points (core 

node). 

Step 2: Assign the core node to a new cluster if it does not belong to one. 

Step 3: Recursively find connected nodes and assign them to clusters. 

Step 4: Repeat the process for the unvisited nodes and assign them to clusters using 

the same as the previous core nodes. 

The result of this process is a network that is visualized and then analyzed and 

evaluated visually. The network model has created gradually node by node. It should be 

mentioned that our approach is supposed to be easy and does not consume time as well 

as the results can be distinguished by a non-professional user. This means we do not have 

to involve experts to evaluate the result. The visualization can tell users how many clus-

ters are generated. The number of clusters determines whether a document is forged. 

4. Results and Discussions 

Based on the mentioned scenarios, we performed our tests using the proposed al-

gorithm under the proposed framework. We then benchmark the total performance of 

the proposed algorithm against the benchmarking ones. 

4.1. Laser vs. Laser Printers 

The proposed approach was successful in distinguishing samples printed as a DQ 

from those printed as original ones using pairs of samples printed with different print-

er/paper types. To illustrate the interpretation of the output of the algorithm, an example 

of the outputs of an experiment comparing two samples is given here. The experiment 

compared the spectra of a sample printed with the laser printer Canon mf264 with those 

of a sample printed with a laser printer Canon 4430. The visualization of the clustering 

results of the spectra of the two samples is shown in Figure 3. Here, we can see that the 

spectra of the two samples were clustered into two groups (red and yellow), which 

means that the DQ was printed with a different printer than the original document, i.e., 

forged. Figure 4 also shows that our approach can distinguish between different printers 

(red nodes of the Ricoh printer and the Kyocera printer of yellow nodes). 

 

Figure 3. Visualization of the ink spectrum of the source and questioned papers printed on two 

separate printers: the Canon mf264 laser printer (red nodes) and the Canon 4430 laser printer 

(yellow nodes). 

Figure 3. Visualization of the ink spectrum of the source and questioned papers printed on two
separate printers: the Canon mf264 laser printer (red nodes) and the Canon 4430 laser printer (yellow
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nodes).

4.2. Partially Forged Documents

The proposed approach has shown the ability to identify documents that were partially
manipulated by printing additional parts to the document using a different printer. An
example is shown in Figure 5, where a document was printed using a laser printer Canon
mf264 (red nodes), and a questioned part was printed using an inkjet printer HP 577 (yellow
node), representing the forged part of the document. We can see that the forged part of the
same document appeared in a separate cluster, i.e., forged.
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Electronics 2022, 11, 4036 13 of 17

4.3. Different Paper Types

The proposed approach successfully distinguished 9 out of 10 combinations of brands
of papers tested in this work. The only combination that appeared in a single cluster was
Copy laser and PaperLine brands. This indicates that the initial composition of these two
brands of paper is probably quite similar, resulting in very highly correlated LIBS spectra
that cannot be distinguished using our approach. Figure 6 shows an example of the output
of the proposed approach to differentiate between PaperONe (red nodes) and Ballet brands
(yellow nodes).
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Figure 6. The proposed approach distinguished between two types of papers: PaperOne (red nodes)
and Ballet (yellow nodes), which appeared in two separate clusters.

4.4. Laser vs. Inkjet Printers

The proposed approach showed the ability to correctly identify the printer type used
to print different parts of a partially forged DQ. This experiment was done using spectra of
two DQ that were comprised of spectra from a laser printer Canon 231 (representing the
original part of the document) and spectra from an inkjet printer Epson 3070 (representing
the questioned part of the document) as shown in Figure 7. The figure shows red nodes
that represent the spectra of Canon 231 and the yellow color of Epson 3070. This result
indicates that our approach was able to correctly classify each of the spectra of a partially
forged document into the respective cluster (laser vs. inkjet clusters).
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4.5. Benchmarking

Considering all the cases tested in this work that include 40 cases of 10 nodes and
11 cases of 5 nodes, the total number of nodes tested was 455 representing all the spectra
obtained from the tested documents. We benchmark the performance of the proposed
algorithm against the benchmarking under our proposed framework. The results in terms
of the number of successfully distinguished nodes that failed to distinguish nodes and
accuracy are presented in Table 3. We found that our proposed algorithm outperformed
the other algorithms. However, the difference between our proposed algorithm and the
Louvain algorithm is not too significant, but the difference with the other algorithms was
significant. In addition, the execution time of the proposed algorithm outperformed the
benchmarking with less difference with Louvain and a significant difference with the other
two algorithms.

Table 3. The performance of the proposed algorithm against the benchmarking.

Algorithm Total Nodes
Tested

Successfully
Distinguished

Failed to
Distinguish Accuracy

Average Time
Execution for

Every 10 Nodes (s)

Proposed 455 419 36 92.08% 0.039

Louvain 455 413 42 90.7% 0.043

FFT 455 364 91 80% 0.7

K-Medoid 455 348 107 76.48% 0.1

4.6. Discussion

The results of testing the proposed framework under different algorithms, including a
newly proposed one, have shown that it was able to reliably detect forged as well as partially
forged documents. In addition, the proposed algorithm can be used to identify printer type
and even the printer’s brand by comparing its spectra to a database of spectra obtained
from different brands and models. The proposed algorithm is naturally cheap, easy to
implement, non-destructive, and visually interpretable. Being non-destructive means that
samples used in this approach are kept intact, which can be used again and again as forensic
evidence, which is a very valuable feature to have for any forensic investigation technique.
Additionally, visual interpretability makes it easy for human non-experts to interpret the
results giving them more credibility and value when used as evidence in courts of law.

Feature selection chooses the optimum group of features to maximize classification.
Continuous and stable bands with the highest discriminating data are chosen and used
for ink combination categorization. Figure 8a,b illustrate the significant improvement in
accuracy after using feature selection. FCM achieved an overall accuracy of 67%, which
is higher than the prior approaches proposed in earlier research on the same dataset.
Following the incorporation of feature selection into the suggested approach, an accuracy
level of 77% was observed, demonstrating the usefulness of the proposed method for
ink incompatibility detection. Blue inks performed better than black inks because their
spectrum responses are easily separated in the dataset. We can see that the bulk of the
ink pixels is successfully grouped, and feature selection has been demonstrated to be a
highly useful stage in ink pixel clustering. In comparison to previous approaches, the
suggested method provides superior differentiation between inks in questioned papers.
The experiments were carried out using a system with an Intel Core i5 @ 2.50 GHz processor
and 8.00 GB RAM. Each hyperspectral document image took 3.9 s to execute.
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The technique described in this paper was motivated by complex network principles.
A network based on the ink spectra of each sample test evaluated in this paper was
constructed. The nodes in all of the produced networks were the spectra of the documents
retrieved using LIBS tech. The edges indicated the spectral associations. The strategy was
determined by the number of clusters produced inside the networking system using the
suggested unsupervised method and other clustering algorithms. The results indicated
that the proposed approach provides 92.08% of accuracy in distinguishing samples using
the proposed clustering algorithm.

However, despite the excellent performance of the proposed approach in detecting
forged documents, there are a few limitations that should be taken into consideration by
digital forensics when adopting such an approach. These limitations include:

• The configuration of the LIBS device should be as described in the methods section.
Changing these settings, according to the experiments, will alter the accuracy of the
suggested technique;

• The laser used in the LIBS system must have high stability so that it must have an
even distribution of energy in each pulse.

According to the limitations of the forgery detection literature presented in Section 1,
we successfully overcome these limitations in the proposed algorithm since it shows the
following:

- Low level of complexity compared to the benchmarking (see the execution times in
Table 3);

- High efficiency and detection rates, which was 92.08%;
- Easy to use, and the results can be interpreted by non-experts through visualization;
- Low adoption costs since it needs only LIBS scans and some semi-automated steps.

5. Conclusions

The approach proposed in this work provides a novel but simple tool for forgery
detection in printed official documents. Additionally, the results can be visually interpreted
since the output of the proposed approach is visually represented as clustered networks
that are easily interpretable by forensic investigators. The following are potential future
work that can be done to enhance and improve the capabilities of our proposed approach:

• To test the proposed approach in detecting forgery on writing inks, signatures, seals,
and banknotes;

• To test the proposed approach in cases of overlaying different inks;
• To build a large database for various printer types, brands, and models that allows

conducting analyses and clustering operations on future questioned documents to
identify the printer used to print them.
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We anticipate that the results of this work will stimulate the use of multispectral
image analysis in conjunction with cutting-edge clustering and classification algorithms in
document analysis, especially for automated questioned document examination. As for the
limitations of this paper, we had limited access to the newest resources about this topic,
so we had to utilize some of the older ones. Nevertheless, advanced drawing tools were
extremely costly, which resulted in a bit of unclearness in the figures that show the visual-
ization processes. The other limitation of this work is the LIBS configuration that should
be mentioned in this article; otherwise, the accuracy of the method will be inconsistent.
Therefore, the method seems to work more consistently with the configurations used. It
should be mentioned that the optimal configurations of this work came after a series of
experiments. Finally, the other limitation can be the cost of the LIBS device.
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