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Abstract: The demand for a large-scale distributed system, such as a smart grid, which includes
real-time interconnection, is rapidly increasing. To provide a seamless connected environment,
real-time communication and optimal resource allocation of cluster microgrid platforms (CMPs) are
essential. In this paper, we propose two techniques for real-time interconnection and optimal resource
allocation for a large-scale distributed system. In particular, to configure a CMP, we analyze the data
transfer rate and utilization rate from the intelligent electronic device (IED), collecting the power
production data to the individual controller. The details provided in this paper are used to design a
sample value, i.e., raw data transfer, on the basis of the IEC 61850 protocol for mapping. The choice
of sampled values is to attain the critical time requirement, data transmission of current transformers,
voltage transformers, and protective relaying of less than 1 s without complicating the real-time
implementation. Furthermore, in this paper, a way to determine the optimal number of physical
resources (i.e., CPU, memory, and network) for a given system is discussed. CPU ranged from 0.9
to 0.98 while each cluster increased from 10 to 1000. With the same condition, memory utilized
almost 100% utilization from 0.98 to 1. Lastly, the network utilization rate was 0.96 and peaked at 1 at
most. Based on the results, we confirm that a large-scale distributed system can provide a seamless
monitoring service to distribute messages for each IED, and this can provide a configuration for CMP
without exceeding 100% utilization.

Keywords: large-scale distributed system; cluster services; real-time; monitoring

1. Introduction

Recent demand for renewable energy such as solar power, wind power, waves, and
geothermal power is coming to a paradigm shift in the face of global warming and energy
efficiency. Therefore, large-scale distributed systems such as smart grid/microgrid systems
are used for this apex [1,2]. Meanwhile, larger-scale energy-distributed systems (e.g., Smart
grids) for bi-directional communication for integrating, analyzing, and servicing the data
produced by the independent microgrids have been studied by IEC 61850 through external
connection networks [1]. Furthermore, a microgrid is an independent network of power
generators with high-speed communication with each other to efficiently supply electrical
power and/or heat in the immediate vicinity and integrates multiple energy sources such
as solar, wind, diesel, and photovoltaic systems. Because the microgrid system needs
to measure and control power in real-time, an efficient large-scale data communication
configuration of a distributed power supply is required [3–10]. Therefore, in the cluster
of the microgrid environment [11,12], real-time processing of the cluster system is an
important issue from the viewpoint of theoretical support and data through the large-scale
data communication of the distributed power supply, especially in the case of a Smart city.

To discuss the advantage of a distributed system, independence between clusters,
which are independent resources, is guaranteed. Meanwhile, the most important point is to
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increase the utilization rate as much as possible because it can become a bigger weakness
if resources between independent clusters are not used efficiently. Moreover, in a small
system, it is not necessary to be efficient, but in a large-scale system such as electricity,
securing the efficiency of resources in real-time has the greatest research value. In this
paper, we propose the Cluster Microgrid Platform (here in after, CMP) as a large-scale
distributed energy system design methodology and standard protocol implementation for
the real-time service of a Korean electricity company, and a cluster service configuration
for an integrated distributed model of independent microgrids. The provision of sufficient
resources for a large-scale distributed energy system (in this case, several thousand host
servers and several hundred thousand virtual machines) necessitates consideration of
the characteristics of CMPs. In a cluster service, a Virtual Machine (here in after, VM)
embodies a comprehensive logical device as a form of metadata. In addition, the VMs for
distributed energy are manually pre-assigned to each server during offline processing by
an administrator.

In this paper, at the same time, we present work that analyzes the utilization of CMP
(i.e., CPU, memory, and network) for distributed energy users by performing a utilization
analysis considering the application workload and the server capacity and subsequently
propose a utilization prediction model based on a polynomial regression model. Because
the performance of a CMP decreases as the number of Virtual clusters of Microgrid (here in
after, VMG) increases, we predict the utilization of each physical server of the CMP with an
increasing number of VMGs by using a polynomial regression model. It should be noted
that the server capacities are determined by three resources of the CMP, such as the CPU,
memory, and network.

We can ensure the provision of sufficient cluster services to the large-scale distributed
energy system by increasing the capacity of the cluster system by extending the number of
servers or improving the server architectures. However, this approach may be costly; thus,
it is essential to efficiently configure the CMP in the given large-scale distributed energy
environment. Therefore, we propose a greedy approach to find the optimal configurations
of CMP (i.e., the number of servers and cores, the CPU speed, the memory size, and
the network bandwidth) with a utilization analysis for the given large-scale distributed
environment. To the best of our knowledge, this is the first report on the exploitation of
utilization analysis, taking into account the server capacity degradation with increased
VMGs, of a CMP for large-scale distributed energy. Based on the results, we confirm that
the proposed approach can provide a configuration for a CMP for large-scale distributed
energy without exceeding 100% utilization.

The following are the key contributions of this paper:

• We proposed a real-time communication system for a large-scale distributed energy
system that contains raw data called sample values, which are more specifically
available in terms of system design.

• Experimental tests have been set up with a Physical VM Server (here in after, PVS)
configuration and validated through the CMP.

• Simultaneously, the theoretical and practical correlations and impact of large-scale
cluster microgrid services were made in terms of software and platform perspectives.

• We established a large-scale microgrid service test environment and simulation for the
Smart city domain.

The remainder of the paper is organized as follows: Section 2 describes the background,
as well as the large-scale distributed system and its service, for massively distributed energy
management. Section 3 presents the system architecture and communication model for
sampled values. Section 4 describes the simulation results, Section 5 discusses the optimal
value with results, and Section 6 concludes the paper.

2. Distributed System and Its Service

Large-scale distributed services, smart grid, and microgrids have been studied for
bi-directional communication, real-time control, and monitoring technology to optimize en-
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ergy efficiency by exchanging information between electric power suppliers and consumers
by combining information communication technology with existing power grids [1–12].
Smart grids are conceptualized as a combination of electrical networks and communication
infrastructure. With the implementation of bi-directional communication and power flow,
the smart grid can provide electricity. More efficient and reliable than the existing grid,
the smart grid consists of a power network with intelligent entities that can autonomously
operate, communicate and interact to supply electricity efficiently to customers. The
heterogeneity of the smart grid architecture fosters the use of advanced technologies to
overcome various technical challenges at various levels. All smart grid infrastructures
must support real-time bidirectional communication between utilities and consumers, and
software systems from both producers and consumers must be able to control and manage
power usage [3–10]. In order to manage hundreds of smart meters in a secure, reliable, and
scalable manner, utilities must extend this communications network management system
to a distributed data center. In this regard, cluster service is expected to play a key role
in the following motivation for future smart grid design. These computing resources can
be quickly provisioned and deployed cost-effectively to service providers [1–5]. With this
large-scale energy infrastructure, customers can access their applications from anywhere,
anytime, through devices connected to the network.

A standard that can be applied to establish the automated system of the substation
has been enacted by IEC TC57, which arranged necessary matters for the interoperability
between the substation automation system and Intelligent Electronic Devices (IEDs) [1].
IEC61850 standard supports strong object modeling, which is easy to distribute and process
the function according to the level of Station/Bay/Process. In particular, the International
Electro-technical Commission’s IEC 61850 is a standard designed for substation automation.
IEC 61850 defines abstract data models that can be modeled on a number of protocols [13].
These protocols can be mapped over TCP/IP networks and/or substation LANs using
high-speed switched Ethernet. The high-speed requirement for the standard is to achieve
a response time of fewer than 4 milliseconds of protective relaying. In addition, Open
Automatic Demand and Response (i.e., OpenADR) can communicate collective power
information through external networks [14,15]. The intelligent electronic device (i.e., IED)
is the basic unit for producing data, and thus, the configuration of the IED and the efficient
application of the protocol are important factors in the construction of the individual
microgrid system [16–18].

Furthermore, based on a distributed system, real-time processing of big data analysis
and mobile service is possible [19–23]. Many researchers have investigated different aspects
of microgrids, including their penetration into electric power systems, integration issues of
distributed energy resources, the role of power electronics, and the stability and reliability
of microgrids [1,2]. Although all of these investigations and their associated models are very
useful in understanding the performance and operation of the large-scale distributed energy
system, little or no effort has been spent on efficient system configuration with consideration
of physical resources. Therefore, real-time communication and resource allocation for large-
scale cluster microgrid services by applying to the platform and environment that service in
the real unit and cluster method from the production of raw data using standard protocol
method is required.

In addition, microgrid research has been carried out with a small-scale grid system,
which is self-sufficient in small areas [1,2]. Unlike conventional power systems in one-way
systems, which transfer electricity generated from a power plant to consumers, a microgrid
is equipped with a local power supply and storage system centered on independent
distributed power sources so that individuals can produce, store, or consume power. In
other words, it is a next-generation power system in which a small independent power
grid is formed by combining renewable energy sources, such as solar and wind power, and
an energy storage system (i.e., ESS) [1,2]. The community microgrid, which is constructed
in this way, can be expanded nationwide, and if it is linked to the power grid in the future,
it can eventually build a nationwide smart grid. In this process, the combined growth of
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each unit industry-constituting microgrid, such as ESS, wind power, solar power, energy
management systems, and ICT, will follow.

In general, the stated scope of IEC 61850 was communications within the substation;
discussions are underway to look at defining IEC 61850 for the substation to master
communication protocol. With the introduction of IEC 61850 standardization, the Abstract
Communication Service Interface (ACSI) models enable all IEDs to behave in an identical
manner from the network perspective. The standardized high-speed communications
between IEDs allow the utility engineer to eliminate many expensive stand-alone devices
and use the sophisticated functionality and the available data to their full extent [16–18].

Furthermore, virtualization technologies can provide cost reduction, resource opti-
mization, and server management [2]. CMP could be implemented in a variety of microgrid
strategies. Rajeev and Ashok [2] proposed a framework for integrating communication
applications for microgrid management in the form of different modules, such as infrastruc-
ture, power management, and services. Infrastructure and power management modules are
used for job scheduling and microgrid power management, respectively. Other operators
publish service descriptions using service modules. By implementing internal/external
computing devices can be integrated with internal computing devices. In this way, vir-
tual energy sources can be integrated with existing energy storage devices, and energy
exchange mechanisms can be achieved between microgrids to meet consumer energy needs.
Large-scale distributed energy systems, smart grids, and infrastructure must be deployed
globally. CMP, a scalable software platform, is needed to quickly integrate and analyze
information that is streamed simultaneously from multiple smart meters to balance the
real-time demand and supply curves. Therefore, a real-time monitoring system based on
CMP for MGs and IEDs is needed for such demand analysis.

Although all of these investigations and their associated models are very useful in
understanding the performance and operation of the system, little or no effort has been
spent on efficient system configuration with consideration of physical resources. Although
these simulation tools can analyze the performance of CMP toward resource allocation (i.e.,
VMG allocation) [24–27], they do not consider the characteristics of an energy platform
that considers system availability based on physical resource analysis, an important factor
in large-scale distributed energy cluster service environments as shown in Figure 1. The
provision of sufficient resources for cluster services to large-scale distributed energy (i.e.,
several thousand host servers and several hundred thousand virtual machines) necessitates
consideration of the characteristics of CMP, such as Smart city.
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3. System Design
3.1. Overall System Design

In general, microgrids (MGs) require communications and large-scale distributed
systems that can effectively integrate advanced intelligent equipment. Powerful tools are
required for documenting and specifying complex advanced automation and consumer
communication systems. The algorithmic and mathematical underpinnings and look-ahead
capability of an intelligent MG are needed to result in a self-healing grid. Initially, the goal
is to design a small-scale MG by utilizing five distributed energy sources, e.g., photovoltaic
solar energy, wind turbine, diesel generator, fuel cell, and thermal power generation at
a local level. Since then, we will gradually increase the target and connect several grids
to connect to more large-scale. Eventually, in the end, you will monitor the distributed
energy at a large scale, such as in a Smart city. It uses IEDs and controllers, which have
interconnection connectivity along with the internal network for real-time communication
in the MG. Therefore, it is necessary to analyze the raw data generated by the IED (in this
case, the relationship between the sample value and the internal network).

The IEDs, which specifically produce and collect data, are used to monitor and control
each distributed energy source. In this case, the IEDs are intelligent transformers, switches,
circuit breakers, protection devices, meters, etc. Thousands of analog and digital data
points can be available in a single IED. Controllers are used to establish control loops,
acquire data, and perform some actuation processes in the IEDs. Additionally, controllers
establish communication with multiple controllers. Web and EMS interfaces are for the
operators to monitor and control the status of the system. Cluster MGs require a high
degree of coordination and knowledge of each macro-grid attribute and the capability
of energy exchange among various domains in real-time. Web-based agents can provide
coordination through the Internet. Power generation, supply, storage, and conversion units
are managed centrally by the EMS controller. EMS ensures all-time power availability by
coordinating multiple generation sources and dispatching power according to demand and
fuel availability.

CMP belongs to the Software-as-a-Service (SaaS) category of computing services.
The most significant advantage of virtualization is that it enables the efficient use of
resources such as CPU and memory. Moreover, it allows idle resources to be minimized
and management costs (i.e., the application of patches and upgrades) to be reduced by
offering centralized administration. In addition, the security level can be enhanced, and the
energy consumption of servers can be reduced. Figure 2 shows a real-time cluster service
architecture that can monitor and control a distributed microgrid system. The proposed
microgrid system is connected by the interconnected network to an IED. In particular, the
IED performs the role of periodically collecting the amount of electricity generated and has
the characteristic that it can be controlled by the manager. At this time, a real-time data
acquisition/control function is required. In this study, a standard protocol using sample
value is applied. The large-scale cluster energy service environment utilizes a centrally
managed computing environment for large users. In particular, the collection and control
of large-scale MG data are through the external network between the controller of one
microgrid system and one VM of the system environment. In other words, it is possible to
acquire/control MG data through the web and EMS interface. In addition, the proposed
design of large-scale MGs is designed through a hierarchical structure: Cluster Microgrid
Center (i.e., CMC), Cluster PMC Management Center (i.e., CPMC), PVS Management
Center (i.e., PMC), Physical VMG Server (i.e., PVS), and VM for MG (i.e., VMG), and shares
data between centers using the internal network.

As shown in Figure 2, the proposed connection networks, such as the control network,
internal network, and microgrid service network, are shown. It can be seen that the CMP,
including the Web/EMS interface, has each blue microgrid service network and is tied to
the green internal network at the same time. In this state, it can be seen that the CMPs
associated with each other form several microgrid services (i.e., MG1, MG2 . . . MG6 in this
case) in the WAN protocol again.
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Furthermore, we use an OpenADR for authorization purposes: an XML-based data
format [15] for communication between a controller of MG and VMG. Thus, an underlying
service capability must be added, most of which do not handle some of the powerful
services like datasets. This implies that existing technologies must be modified for real-time
implementation of the IEC protocol and communication. The communication between a
controller of MG and VMG exploits EiReport data with OpenADR-based XML data format.
EiRegisterParty is required for the registration process to verify the MC’s information
and occurs when the MG information is changed. EiReport consists of data for periodic
monitoring of MG and IED power production and includes information of (i.e., MC_id,
MC_resgion, MC_date, IED_id, IED_type) of MG and IED. EiEvent is a one-time event
request, which is composed of data for MG status information. Finally, EiOpt can handle
short-term changes using the opt-in and opt-out information on the availability of MG
and IED.

Figure 3a shows an illustration of each network required for the IED, Controller, and
VMG. Each IED periodically sends sample value data to the controller through the inter-
nal network, and MGs send/receive cluster MG data to each VMG through the external
network (i.e., WAN). Additionally, the user monitoring and control service remotely com-
municates with the web protocols. In reference to the standardized protocol defined by
IEC 61850 and the inevitable need for it, one of the most special mapping technologies
and logical implementations is to implement an infrastructure. The details provided in
this paper are used to design a sample value (raw data) based on IEC 61850 for mapping,
considering six logical nodes (i.e., LNs). The choice of sampled values is to attain the
critical time requirement of data transmission for current transformers (CTs), voltage trans-
formers (VTs), and protective relaying of less than 1 s without complicating the real-time
implementation, processing power, and data transmission requirement. Also, Figure 3b
shows a sample value data. The abstract models need to be operated over a real set of
protocols, into bits and bytes, that are practical to implement. IEC 61850 can be mapped
to any protocol. When trying to map objects and services to a protocol that only provides
read/write/report services for simple variables that are accessed by register numbers or
index numbers, this mapping can get very complex and cumbersome [13]. Time constraint
is one of the critical issues for the transmission of sampled values. The proposed design



Electronics 2022, 11, 4037 7 of 21

model provides transmission of sampled values in an organized and time-controlled way
so that the combined jitter of sampling and transmission is reduced to the degree that an
unambiguous allocation of the samples, times, and sequence is provided. The proposed
model applies to the exchange of values received from multiple IEDs after A/D conversion.
In this case, IED is a cluster-type power device composed of LN (Logical Node) that shows
the information of the power device, such as DGEN (Generator LN), MMXU (Alternating
Current LN), and YPTR (Transformer LN). In particular, XCBR (Circuit Breaker LN) for
IED modeling needs to look at how efficient communication and resource utilization are
in different Windows or Linux through simulation. At this time, as mentioned above, the
IED is derived based on IEC61850-6. However, since each of these devices is used as an
independent resource, a cluster service in units of 1 s through a large-capacity distributed
communication model. This IED device is the main product of a substation model that
utilizes actual data transformation through simulation in electricity supply companies in
Korea. In addition, when IED devices are connected to each other, a power device (Logical
Device) is configured, and connection information between these LNs is expressed as a
connectivity node and a terminal. A transmission–reception buffer structure is defined for
the transmission of the sampled values.
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Figure 3 shows that cluster microgrid data configuration from OpenADR which
includes EiRegisterParty, EiReport, EiEvent, EiOpt, and Payload. The communication
procedure is based on a publisher/subscriber mechanism. First, the publisher shall use
the time stamp mechanism to attach a time-stamp for data synchronization. After that,
the publisher will send the time-stamped data to transmit the buffer. The sampled value
control block in the publisher is used to control the overall communication procedure. The
sampled values from the transmit buffer are sent via high-speed Ethernet to the subscriber.
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The subscriber will receive the sampled values in a receive buffer. After that, sampled value
data are sent to the time stamp check mechanism to confirm the time synchronization of
the received data.

3.2. Platform Design

Figure 4 shows a diagrammatic representation of SaaS [28–33], which is the proposed
system based on the cluster MGs platform. At the same time, we are demonstrating the
fundamental architecture of our proposed architecture. Here, SaaS consists of the CMC (i.e.,
Cluster Microgrid Center), CPMC, PMC, PVS, and VMG and shares data between centers
using the internal network for CMP. The CMC manages user access for users wanting to
use the remote services and connects several CPMCs. The CPMC manages the states of the
CPMC and connects the PMC and several PVS. The PVS has the VMGs for running user
applications. It should be noted that, in the CMP, a VMG is provided per a controller of MG.
The VMG s for users are manually pre-assigned to each server during offline processing
by an administrator and managed in the standby mode instead of in the shutdown mode
when users terminate cluster microgrids services. In addition, the networks are managed
by network separation to ensure stable services [19]. For example, the proposed platform
divides the network into an acquisition/control network, cluster management network, and
microgrid service network. The massive data acquisition/control is transmitted through
the acquisition/control network by using cluster microgrid data. The VMG states are
managed through the management network [19,34]. Finally, the web and EMS services are
used through the microgrid service network. Our work involved the design of the capacity
plan, which focuses on the resources of cluster servers (i.e., PVS) based on CMP.
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To determine optimal PVS resources, we first analyzed the utilization of cluster mi-
crogrids platform services by defining the workload, the capacity of PVS resources, and
the utilization as W, C, and U, respectively, using Equation (1), and this means that the
applications (i.e., monitoring and controlling) are running on the PVS for 1 (one) s.

U =
W
C

(1)

In this work, we focus on the CPU, memory, and network utilizations in PVS utilization
and represent these utilizations as UCPU, UMEM, and UNET, respectively. Additionally, the
workloads and capacities are represented as WCPU, WMEM, WNET, CCPU, CMEM, and CNET,
respectively, by using Equation (2). Note that U represents the utilization of a number of
applications running on the PVS for 1 s, and thus the capacity planning should be designed
to ensure that U is less than 1 (i.e., U ≤ 1) to provide sufficient resources to large-scale users.
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U = [UCPU , UMEM, UNET ] =

[
WCPU
CCPU

,
WMEM
CMEM

,
WNET
CNET

]
(2)

where, W and C affect U. W depends on the software specifications (i.e., the application
workload of the CPU, network bandwidth, and the number of users), and thus we denote
the software specifications (i.e., the workload of the CPU and the applications, and the
number of applications and users) as APPCPU, APPNET, NAPP, and NUSER, respectively.
Both W and C depend on the VMG specifications (i.e.„ the CPU speed, the number of cores,
the memory size, the network bandwidth of a VMG, and the number of VMGs) and are
represented as VMCPU, VMMEM, VMNET, NVMG, and NMG, respectively, where the number
of MGs is equal to the number of VMGs because cluster microgrids services are being used.
Finally, C depends on the CMP specifications (i.e.„ the CPU speed, the number of cores,
the memory size, the network bandwidth of the servers, and the number of servers); thus,
the CMP specifications are represented as PVSCLOCK, PVSCORES, PVSMEM, PVSNET, and
NPVS. Figure 5 shows the mapping of the impacts among W, C, and U of the software
specifications, VMGs, and CMP.
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Prediction of the CPU utilization required us to first analyze the CPU utilization,
UCPU, with WCPU, CCPU, and software specifications, VMGs, and the platform, as shown
in Figure 5. APPCPU, which executes applications on the PVS and NUSER, affects WCPU.
For example, if APPCPU and NMG were to increase, UCPU would also increase. It should
be noted that some applications require network resources (e.g., a web browser, video
streaming) with the network address translation (NAT) technique [1–4]. In this case, as
the NAT software should be executed for each VMG, these applications require more CPU
resources. Therefore, APPNET affects not only WNET, but also WCPU. It should be noted
that the CPU impact by APPNET can be neglected by using direct network assignment
techniques, for example, Input-Output Virtualization (IOV)) [34], because IOV does not
require the CPU workload.

In this mapping of impacts, we can obtain WCPU by using Equation (3) as follows.
NAPP denotes the number of applications per user. Note that I(APPij

CPU) is an indicator
function that has either 0 or 1 as its value. For example, if an application is executed,
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I(APPij
CPU) is 1, otherwise 0. In addition, the CPU impact of APPNET can be neglected by

using direct network assignment techniques.

WCPU = ∑NMG
i=1 ∑NAPP

j=1 APPij
CPU ·I

(
APPij

CPU

)
+ APPNET ·NVMG (3)

The utilization prediction model for CPU with direct network assignment techniques
was constructed by deriving Equation (4) from Equation (3) by using the probability
density function (PDF), where fi,j(·), and Pi,j[·] are the probability that user i is active
and an application j and a CPU. Maxi,j and Mini,j denote the maximum and minimum
amounts of instructions for an application j and a user i in the CPU. These probability
density functions depend on a given cluster microgrids environment, and we can use
another probability density function according to the cluster microgrids services.

WCPU =
NVMG

∑
i=1

{
NAPP

∑
j=1

(
∫ Maxi,j

Mini,j

1

∑
b=0

(
ai,j·bi, j

)
× Pi,j

[
bi,j
]
× fi,j

(
ai,j
)

daij )

}
(4)

In this study, we assume that the density function is uniformly distributed between
Mini,j and Maxi,j, and thus (WCPU) is derived as in Equation (5).

WCPU = ∑NVMG
i=1 ∑NAPP

j=1

{
Pi j
(

Maxi j + Mini j)
2

}
(5)

The random variable x is covered more than the cumulative distribution function
in real situations or problems. For the probability density function f(x) and the interval
[a, b], since the random variable X is the slide P(a ≤ X ≤ b) to be included in the interval,
it is assumed that the two conditions are satisfied and f(x) 0 for all real values of x, and
integral of f(x) dx = 1. Therefore, since these two conditions are satisfied, assuming that the
probability distribution has a uniform distribution model within the interval between Mini,j

and Mini,j, the answer is 0 (zero). In fact, the workloads are increased as NVMG increases
relative to the host servers. In other words, the performance of the VMG is degraded
as NVMG increases. To easily explain the equations, we assume that the CPU capacity
decreases as NVMG increases.

CPU capacity of a PVS can be represented by the product of PVSCORES and PVSCLOCK.
This ratio of server capacity degradation can be obtained by using a pre-experimental
test, and it can be predicted by using regression model d(NVMG). We use the polynomial
regression model shown in Equation (6). Note that, as d(NVMG) depends on the VMG
and CMP specifications, we should obtain the polynomial coefficients by using a pre-
experimental test in a given cluster platform environment (i.e., the type of hypervisor being
used) at least once. In this work, we determine the ratio of server capacity degradation
by using a benchmark program (i.e., OpenSSL-bench [35]), and design the d(NVMG). For
example, we set the cluster platform and then measured the CPU performance by increasing
NVMG. Finally, we obtain the polynomial coefficients and design the d(NVMG).

d(NVMG) = aknk + ak−1nk−1 + . . . + an + a0 (6)

The total CPU capacity of PVS CCPU is represented in Equation (7). Note that because
the VMG can be manually assigned to each PVS in cluster microgrid services based on
CMP, Equation (7) does not consider load-balancing problems.

CCPU = ∑NPSV
i=1

{
d
(

NVMG
NPSV

)
× PSVCORE × PSVCLOCK

}
i

(7)

There are dynamic and static modes for memory assignment in cluster microgrids
platform. The dynamic mode provides for the memory resources to be shared with every
VMG, and thus the memory resources can be efficiently used. In contrast, the static mode
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can provide higher speed and stability than dynamic mode. Thus, we determine the CMP
mode as static mode. In this study, we focus on static mode for memory assignment.

Figure 5 shows the correlation of impacts for UMEM. WMEM depends on VMGMEM (i.e.,
the memory size of a VMG) and NVMG. Moreover, CMEM depends on VMGMEM (i.e., the
memory capacity and overhead of the PSV for one VMG execution), SERVERMEM (i.e., the
memory size of a server), NVMG, and NSERVER.

In the static mode for memory assignment, WMEM depends on NVMG and VMGMEM,
and APPMEM does not affect WMEM in this mode. Therefore, WMEM can be represented as
Equation (8).

WMEM = ∑NVMG
i=i (VMMEM)i (8)

Because the servers require memory for VMG executions, the total memory capac-
ity CMEM depends on VMGMEM. Therefore, CMEM is represented as Equation (9). Note
that VMMEM can be obtained by conducting a pre-experimental test in the given PVS
environment at least once.

CMEM = PVSMEM·NPVS − VMMEM·NVMG (9)

In these correlations of impacts, we can obtain WNET by using Equation (10) as follows.

WNET =
NVMG

∑
i=1

NAPP

∑
j=1

APPij
NET ·I

(
APPij

NET

)
+ VMNET ·NVMG (10)

The utilization prediction model for network separation is constructed by deriving
Equation (11) from Equation (10) by using the probability density functions, which we
denote as fi,j(·) and Pi,j[·], respectively. These probability density functions depend on a
given cluster microgrid environment, and we can use another probability density function
depending on the cluster microgrid services.

WNET =
NVMG

∑
i=1

{
NAPP

∑
j=1

(
∫ Maxi,j

Mini,j

1

∑
b=0

(
ai,j·bi, j

)
× Pi,j

[
bi,j
]
× fi,j

(
ai,j
)

daij )

}
(11)

In this study, we assume that fi,j(·) is uniformly distributed between Mini,j and Maxi,j,
and thus WNET is derived as Equation (12) as follows.

WNET =
NVMG

∑
i=1

NAPP

∑
j=1

(
Pi j
(

Maxi j + Mini j)
2

) (12)

It should be noted that VMNET is negligible according to the network separation
for a cluster microgrids platform network [13]. Therefore, VMNET can be represented as
Equation (13).

CNET = PVSNET × NPVS (13)

In this section, we describe the configuration of cluster microgrids platform for the
large-scale distributed energy system. In fact, to provide cluster microgrid services for
these users, we can increase the capacity of PVS by either extending the number of servers
or improving the PVS architecture platforms. Efficient configuration of cluster microgrids
platform requires us to find a way to determine the optimal PVS configuration (i.e., CMP
specifications) in a given large-scale cluster microgrids service environment (i.e., software
and VMG specifications) with high utilization (i.e., U ≤ 1). Here, we propose a greedy
approach to find the optimal CMP specifications for high utilization in the given software
and VMG specifications.

In CMP, each PVS device has limited performance. Therefore, we should specify
the possible maximum capacity values for each device and denote them as CLOCKMAX,
COREMAX, MEMMAX, and NETMAX. In addition, we obtain the ratio of PVS capacity
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degradation and the memory overhead required for executing one VMG on a server by
using a pre-experimental test (i.e., d(NVMG) and VMMEM). WCPU, WMEM, and WNET are
calculated by using Equations (4), (7) and (10), and then the CMP specifications are set
up as the minimum value (i.e., =1). Finally, we find the optimal configuration parameters
by increasing PVSCORE, PVSCLOCK, PVSMEM, PVSNET, and NPVS such that U ≤ 1 (i.e.,
UCPU ≤ 1, UMEM ≤ 1, and UNET ≤ 1). Algorithm 1 shows the method that allows the
optimal CMP configuration (i.e., CMP specifications) to be found.

Algorithm 1 Finding optimal cluster platform configuration and parameters

1: Limited PVS devices specifications parameters initialize
2: CLOCKMAX← INIT; COREMAX← INIT;
3: MEMMAX← INIT; NETMAX← INIT;
4:
5: Pre-experimental test parameters initialize
6: d(NVMG)← INIT;
7: VMMEM← INIT;
8:
9: W initialize with Software and VMG specifications
10: WCPU← INIT;//Equation (5)
11: WMEM← INIT;//Equation (8)
12: WNET← INIT;//Equation (10)
13:
14: C initialize with VMG specification and limited CMP specifications
15: PVSCORE← 1; PVSCLOCK← 1; PVSMEM← 1; PVSNET← 1; NPVS← 1;
16: CCPU← INIT;//Equation (7)
17: CMEM← INIT;//Equation (9)
18: CNET← INIT;//Equation (11)
19:
20: LOOP(UCPU >1)
21: LOOP (COREMAX ≥ PVSCORE)
22: CORE++
23: LOOP (CLOCKMAX ≥ PVSCLOCK)
24: PVSCLOCK ++
25: CCPU← d(NVMG/NPVS)× PVSCORE× PVSCLOCK × NPVS
26: UCPU← WCPU

CCPU
27: NPVS ++
28:
29: LOOP (UMEM > 1)
30: LOOP (MEMMAX ≥ PVSMEM)
31: PVSMEM ++
32: CMEM← PVSMEM × NPVS × NMG
33: UMEM← WMEM

CMEM
34: NSERVER ++
35:
36: LOOP (UNET > 1)
37: LOOP (NETMAX ≥ PVSNET)
38: PVSNET++
39: CNET← PVSNET × NPVS
40: UNET← WNET

CNET
41: NPVS ++
42:
43: FINDPVSCORE, PVSCLOCK, PVSMEM, PVSNET, and NPVS

4. Results
4.1. Test Environments

We configured an experimental environment that would enable us to use the utilization
analysis to evaluate the utilization prediction model for the cluster microgrids platform, as
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shown in Figure 6. We first measured the utilization of cluster microgrids platform systems
with the various events (i.e., applications and the number of IEDs and MGs).
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We used two servers for the cluster microgrids platform, which are summarized in
Table 1. The CPU clock, memory size, and network bandwidth were 2.7 GHz, 396 GB,
and 1 GB, respectively, in both servers. Furthermore, we configured the hypervisor as
Linux [22,23]. In PVS 1, the number of cores was 24, and a Windows VMG was used. For
example, the operating system is Windows 7, the CPU setup is 2.7 GHz, 1 core, and RAM is
2 GB. PVS 2 consisted of 20 cores, and a Linux VMG was used. In this case, OS is Linux, the
CPU setup is 2.7 GHz, 1 core, and RAM is 500 MB.

Table 1. PVSs for cluster platform.

PVS1 PVS2

CMP
specifications

CPU: 2.7 GHz, 24 cores
RAM: 396 GB

Network: 1 GB
Hypervisor: Linux (KVM)

CPU: 2.7 GHz, 20 cores
RAM: 396 GB

Network: 1 GB
Hypervisor: Linux (KVM)

VMG
specifications

OS: Windows 7
CPU: 2.7 GHz, 1 core

RAM: 2 GB

OS: Linux
CPU: 2.7 GHz, 1 core

RAM: 500 MB

We used four application programs. For example, a word processor, web service, video
streaming service, and download service), which are summarized in Table 1, to execute on
the PVSs.

Furthermore, the effectiveness of the integrated information model for microgrids
was tested using the tool of the electric power company developed in Korea to test the
effectiveness of the distributed system. It was verified that there was no error using the
service tool. At this time, the distributed information model verification tool developed by
the electric power company is named jCleanCIM, and it is a method of verifying validity in
conjunction with Enterprise Architect, an official modeling tool of IEC TC57 [35].

4.2. Validation

We investigate the proposed design system that can collect data from several IEDs
within one MG using sample values (i.e., raw data). In addition, we can verify the implemen-
tation of large-scale distributed processing by calculating the efficiency and productivity by
experimenting with MG (same as VMG). For example, controller data such as MG1, MG2,
and MG3 may be transmitted through the external network of each bus linked to the cluster
management network (as shown in Figure 4), and the number of IED and MG generated
can be checked in real-time. The sample value and cluster MG data are transmitted from
the IED to the controller and from the controller to VMG, and it can be an important point
to monitor for load utilization. Figure 7 shows an example of cluster microgrid monitoring
with a web service.
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Table 2 shows the test environments with increasing data size of each resources. The
data size of the sample value and latency depends on the number of IEDs. Table 3 shows
the data size and latency of the sample value as the number of IEDs increases. When the
IED was 1, the data size was 100 bytes, and the data latency through the internal network
was 0.1 s. When the number of IEDs is 20, 40, 100, or 200, the data sizes were 2 KB, 4 KB,
10 KB, and 20 KB, and the latency of each was 0.1 s, 0.1 s, 0.2 s, and 0.2 s, respectively.
Therefore, it can transmit sample values in real-time within 1 s.

Table 2. Test environments.

CPU
(Amount of

Instructions × 106)

Memory
(MB)

Network
(KB)

Sample value protocols 10~70 30~200 0.1~20
Cluster microgrid protocols 10~70 74~150 3~6000

Web and EMS services 20~30 4~25 10~300
VMG managements 20~30 74~160 50
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Table 3. Latency sample value through a Large-scale distributed system.

# of IDE 20 40 100 200

Data size of sample values 2 KB 4 KB 10 KB 20 KB
Latency 0.1 s 0.1 s 0.2 s 0.2 s

Table 4 shows Latency cluster microgrid protocols through an acquisition/control
network. The data size and latency of a cluster microgrid increase as the number of MGs
increases. Additionally, because the data of one MG includes sample data transmitted from
the internal IED, it increases according to the number of IEDs. In this study, we assumed
that the number of IEDs was 200 for the worst case. In this case, the data size for one cluster
microgrid was 60 MB (i.e., 60 × 5 × 200 KB), and the latency was 7 s.

Table 4. Latency cluster microgrid through Large-scale distributed system.

# of MG 1 5 10 20

Data size of
cluster microgrid 60 MB 300 MB 600 MB 1200 MB

Latency 7 s 37 s 91 s 171 s

Moreover, when the number of MGs was increased to 5, 10, and 20, the data sizes
of the cluster microgrid were 300 MB, 600 MB, and 1200 MB, and the latencies were 37 s,
91 s, and 171 s, respectively. It should be noted that MG sends cluster microgrid data every
5 min. Therefore, we confirmed that the cluster microgrid can be transmitted in real-time
because the measured latency does not exceed 5 min. Until now, it is possible to experiment
in seconds, but we still use data as a protocol every 5 min.

5. Discussion

First, to find the ratio of server capacity degradation as the number of VMGs increases,
we measured the performance of a benchmark program (i.e., OpenSSL benchmark [35]) on
two PVSs. In this case, the need to expand the scope of the microgrid comes out and can be
a University campus or hospital. For example, considering the capital, tens of thousands of
University campuses and hospitals are essential. Through this paper, we looked at how
important resource allocation is among the second or minute-unit constraints for each
resource in a large-capacity distributed system. This study can be said to have taken a
fundamental approach to whether resource management, such as electricity production,
is a large-capacity distributed system rather than an intermediate step. If the second-unit
cluster service of each resource is not properly checked, it is difficult to realize it as a
standard microgrid. We actually proposed a large-scale approach to distributing energy,
and we included latency in our experiments to address the underlying problem. In the
end, scalability and real-time are very important factors for real-time communication in
microgrid clusters to finally go to the smart city.

Therefore, Figure 8 shows the normalized CPU and Memory capacity of each PVS
with increased VMs. We normalized the capacity of a server based on one VMG execution
on a PVS. As seen in Figure 8, we found PVS 2 to degrade the utilization of CPU and
memory more than PVS 2. The reason was that the Windows VMG required extensive CPU
and memory resources owing to its GUI environment.

These results enabled us to obtain the ratio of performance degradation (i.e., d(NVMG))
for an increasing NVMG, as shown in Table 3. It should be noted that we conducted the
d(NVMG) as a cubic regression model. In addition, VMMEM was constant.

We evaluated the utilization prediction model accuracy by comparing the estimated
and measured utilization (i.e., UCPU, UMEM, and UNET).
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PVS 1 with an increasing number of Windows VMGs; (b) Performance of PVS 2 with an increasing
number of Linux VMGs.

Figure 9a,b compare the measured and estimated utilization of PVS 1 and PVS 2,
respectively. To estimate the utilization, we also assumed that the applications are executed
on each VMG. The results show that, although the variation in the measured utilization
was larger than that of the estimation due to other factors, such as background software for
operating systems, we confirmed that the estimations are sufficient to configure the optimal
CMP specifications with this utilization prediction model for the given the software and
VMG specifications.

We used capacity analysis to evaluate the simulation results by using the software
and VMG specifications to configure the CMP specifications. We used four applications
(i.e., Sample Value protocols, Web service, EMS service, Cluster microgrid protocols, and
VMG managements) and two different VMGs (i.e., Windows and Linux). In addition, we
specified the maximum possible value for each device, for which CLOCKMAX, COREMAX,
MEMMAX, and NETMAX are 2.7 GHz, 24, 396 GB, and 128 MB (i.e., 1 Gbps), respectively.
Table 5 shows that server capacity degradation parameter of CPU and memory, respectively.
Table 6 shows the optimal CMP specifications (i.e., PVSCORES, PVSCLOCK, PVSMEM, PVSNET,
and NPSV) for Windows VMG and Linux VMG for an increasing number of users by using
the utilization prediction model. Note that the Windows VMG requires more platform
resources than the Linux VMG, and thus NSERVER for the Linux VMG was less than that for
the Windows VMG.
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Table 5. Server capacity degradation parameters of CPU and MEM.

d(NVMG) VMGMEM
(GB)a3 a2 a1 a0

PVS 1 −7.0 × 10−7 1.2 × 10−5 −7.3 × 10−3 0.9 200
PVS 2 −2.0 ×10−7 4.5 × 10−6 −3.9 × 10−3 1.0 20

Table 6. Optimal CMP Specifications with KVM Hypervisor.

# of VMGs
CMP Specifications

(PVSCORES, PVSCLOCK, PVSMEM, PVSNET,
AND NPVS)

Windows System VMG Linux System VMG

10 2, 2.7 GHz, 23 GB, 13 MB, 1 2, 2.7 GHz, 5 GB, 13 MB, 1
30 5, 2.7 GHz, 67 GB, 41 MB, 1 4, 2.7 GHz, 15 GB, 41 MB, 1
50 8, 2.7 GHz, 110 GB, 61 MB, 1 7, 2.7 GHz, 255 GB, 61 MB, 1
100 18, 2.7 GHz, 221 GB, 115 MB, 1 15, 2.7 GHz 51 GB, 115 MB, 1

1000 24, 2.7 GHz, 246 GB, 125 MB, 10 24, 2.7 GHz, 72 GB, 125 MB, 9

Through this, model dependencies, system design rules, potential errors, and ille-
gal/redundant UML notation were verified. Figure 10 is an open-source tool that supports
the validation of modeling results directly from the power company of distributed power
generation. Figure 10a is the case of Cross package links: 254 inheritance (no error), and
Figure 10b Package to Package Dependency: 23 inheritance (no error). Figure 10c shows
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the Class’s attribute types: 198 (no error), and Figure 10d Class to class associations: 398
(no error).
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package links: 254 inheritance (no error) (b) Package to Package Dependency: 23 inheritance (no
error) (c) Class’s attribute types: 198 (no error) (d) Class to class associations: 398 (no error).

Finally, we used the optimal CMP specifications and utilization prediction model
for the given software and VMG specifications for the simulation. Figure 10 shows each
of the average utilizations (i.e., UCPU, UMEM, and UNET) with the optimal CMP specifica-
tions. One PVS can provide sufficient resources to users (i.e., fewer than 100 VMGs), and
several servers can also average sufficient resources to large-scale users (i.e., more than
1000 VMGs). The CPU ranged from 0.9 to 0.98, while each VMG increased from 10 to 1000,
as described. On the other hand, under the same conditions, the memory indicated almost
100% utilization from 0.98 to 1. Lastly, the network utilization rate was at least 0.96 and
peaked at 1. Figure 11a shows the result of testing on the Windows system, and Figure 11b
shows the result of testing the microgrid with different platforms on Linux. In this case, the
proposed approach can provide sufficient resources to large-scale users with the optimal
configuration of CMP at less than 100% utilization. It should be noted that we can either
add or change specifications; thus, alternative optimal CMP configurations can be achieved.
Therefore, the proposed approach can help many vendors provide sufficient resources to
large-scale users with the optimal configuration of the CMP.



Electronics 2022, 11, 4037 19 of 21

Electronics 2022, 11, x FOR PEER REVIEW 19 of 21 
 

 

Finally, we used the optimal CMP specifications and utilization prediction model for 
the given software and VMG specifications for the simulation. Figure 10 shows each of 
the average utilizations (i.e., UCPU, UMEM, and UNET) with the optimal CMP specifications. 
One PVS can provide sufficient resources to users (i.e., fewer than 100 VMGs), and several 
servers can also average sufficient resources to large-scale users (i.e., more than 1000 
VMGs). The CPU ranged from 0.9 to 0.98, while each VMG increased from 10 to 1000, as 
described. On the other hand, under the same conditions, the memory indicated almost 
100% utilization from 0.98 to 1. Lastly, the network utilization rate was at least 0.96 and 
peaked at 1. Figure 11a shows the result of testing on the Windows system, and Figure 
11b shows the result of testing the microgrid with different platforms on Linux. In this 
case, the proposed approach can provide sufficient resources to large-scale users with the 
optimal configuration of CMP at less than 100% utilization. It should be noted that we can 
either add or change specifications; thus, alternative optimal CMP configurations can be 
achieved. Therefore, the proposed approach can help many vendors provide sufficient 
resources to large-scale users with the optimal configuration of the CMP. 

 
(a) 

 
(b) 

Figure 11. Average utilization (UCPU, UMEM, and UNET) with optimal CMP configuration: (a) Simula-
tion results on Windows distributed platform; (b) Simulation results on Linux distributed platform. 

Figure 11. Average utilization (UCPU, UMEM, and UNET) with optimal CMP configuration: (a) Simu-
lation results on Windows distributed platform; (b) Simulation results on Linux distributed platform.

6. Conclusions

To provide a seamless monitoring environment, the real-time services and optimal
resource allocation technology of large-scale environments are important. In this study, we
proposed two techniques for real-time monitoring and optimal resource allocation for a
large-scale energy system.

In particular, to configure a CMP for real-time service, we analyzed a data transmission
rate and utilization from the IED of the terminal, collecting the power production data to
the individual microgrid controller (MG). The details provided in this paper were used
to design a sample-value-based smart grid protocol based on IEC 61850 for mapping,
considering six logical nodes (LNs) with the possibility of further extension. The choice
of sampled values was to attain the critical time requirement of data transmission for the
current transformers (CT), voltage transformers (VT), and protective relaying of less than
1 s without complicating the real-time implementation and processing power. Furthermore,
in this study, a way to determine the optimal number of physical resources (i.e., CPU,
memory, and network) for a given cluster of testing environments was proposed.

In this paper, we constructed a test set of experiment and verified the proposed method
through simulation. When the number of virtual microgrids was increased to 5, 10, and 20,
the data sizes of the cluster microgrid were 300 MB, 600 MB, and 1200 MB, and the latencies
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were 37 s, 91 s, and 171 s, respectively. It should be noted that microgrids send CMP data
every 5 min. Therefore, we confirmed that the CMP can be transmitted in real-time because
the measured latency does not exceed 5 min. Based on the experimental results, the VMG
was tested on the Windows and Linux systems of the distributed information model for
CPU, memory, and network, which are physical resources, respectively. The lowest CPU
showed 96% utilization, and the highest memory utilization was 100%. Therefore, we
confirmed that CMP with real-time communication protocols and optimal configuration
can provide a seamless monitoring service without exceeding 100% utilization.
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