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Abstract: Traffic flow prediction is a significant component for the new generation intelligent trans-
portation. In the field of air transportation, accurate prediction of airport flight flow can help airlines
schedule flights and provide a decision-making basis for airport resource allocation. With the help of
Deep Learning technology, this paper focuses on the characteristics of flight flow easily disturbed by
environmental factors, studies the spatiotemporal dependence between flight flows, and predicts
the spatiotemporal distribution of flight flows from the airport network level. We proposed a deep
learning architecture named ATFSTNP, which combining the residual neural network (ResNet), graph
convolutional network (GCN), and long short-term memory (LSTM). Based big data analytics of
air traffic management, this method takes the spatiotemporal causal relationship between weather
impact and flight flow as the core, and deeply mines the complex spatiotemporal relationship of
flight flow. The model’s methodologies are improved from the practical application level, and ex-
tensive experiments conducted on the China’s flight operation dataset. The results illustrate that
the improved model has significant advantages in predicting the flight flow under weather affect.
Even in the complex and variable external environment, the model can still accurately predict the
spatiotemporal distribution of the airport network flight flow, with strong robustness.

Keywords: deep learning; spatiotemporal correlation; airport network; flight flow prediction; big data

1. Introduction

When flight delays or cancelations (irregularities) occur, the real-time flight flow in the
airport network is difficult to predict, especially when there are uncertainties in the external
environment. If we can accurately predict the spatiotemporal distribution of flight flows
in the airport network, it will be helpful for the formulation of proactive flight schedule
recovery plans during irregular operations. The current flight schedule recovery plan
of disrupted flight is mainly aimed at the short-term local traffic congestion. After the
delay occurs, the schedule disrupted flight is handled passively according to personal
experience, which often ignores the long-term impact caused by the flight delay spreading
in the airport network. This makes the overall operation of the transportation system
inefficient. If an active recovery system is constructed for schedule disrupted flights from
the micro perspective of supply and demand balance, it can effectively avoid the occurrence
of large-scale flight delays, and improve the punctuality rate of flight operations and the
operating efficiency of airline flights.

The airport network flight flow time series mainly has two signal manifestations: (1)
the regularity of airport flight operations, and (2) the uncertainty affected by environmental
factors. The traditional prediction method of predicting the future flight flow directly from
the historical flow big data can only capture the periodic characteristics of flight flow, but
cannot reflect the random changes of the flow influenced by interference factors from the
perspective of flight scheduling. Therefore, we treats the flight flow signal as a random flight
residual flow signal, and only considers the superposition results of multiple characteristics
caused by environmental factors on the flight flow. It includes the nonlinearity inherent
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in the complex structure of the airport network, the time-varying of flight plans due to
meeting the demands of passengers, the uncertainty that flight operations are susceptible
to external random factors, as well as the long-range correlation of flight flows caused by
delays propagating further through the network [1,2].

This paper intends to build a deep learning model framework Air Traffic Flow Spatial-
Temporal Network Prediction Model (ATFSTNP) based on data-driven technology, and
establishes a machine learning model for China’s major airport networks. The model solves
the flight flow prediction problem from airport network level by predicting and analysing
the airport network flight flow performance patterns. The flow of airport flights refers to
the number of inbound and outbound flights operating at the airport per unit time, which
should be equal to the planned flow of airport flights under ideal operating conditions.
However, in actual operation, the flight plan made in advance will be affected by uncertain
factors, resulting in discrepancies between the actual flight schedule and the plan flight
schedule. This paper combines the airport network topology, flight flow redistribution
decision, and the impact of external environmental factors to construct a flight flow residual
sequence to reflect the impact of flight flow, and design a deep learning framework based
on flight flow characteristics including:

(1) Spatial dependence: Since the flight of the aircraft follows the flight plan, there is
an interaction between the flight flow of the local airport and the flight flow of the
navigable airport. In this paper, branch 1 of the model is used to reflect the influence
of the topology of the airport network on the flight flow. By constructing a weighted
adjacency matrix as the spatial matrix of the network, the improved ResNet-GCN
technology is used to deeply mine the abstract spatial dependence of the flight flow
residual sequence.

(2) Temporal dependence: The change of airport flight flow has obvious periodicity and
trend. Within a day, the traffic peak of the airport will appear at a specific time period
according to the demand of airport passengers, usually between 12:00–14:00 and
17:00–19:00, which is time-sensitive. In addition, the flight flow in the current period
may also affect the flight flow in the future period. For example, the flight in the
current period is delayed, which will move part of the current flow to the future
period, resulting in the redistribution of the flight flow. In this paper, branch 2 is used
to reflect the influence of environmental factors on flight flow in the time dimension,
and LSTM is introduced to deal with the temporal dependence of flight flow.

(3) Influence of external environmental factors: Airport flight flow is easily affected by
environmental factors, resulting in inaccurate predictions. The interference of external
environmental factors such as weather impact will cause the real-time capacity of
the airport to be lower than the operating capacity of the airport on which the flight
plan is based. This will directly cause some flight delays or cancellations. It is worth
noting that one flight string, formed by a sequence of flight legs for one aircraft in
daily scheduled operations, is related to multiple time nodes at multiple airports. In
an airport network composed of multiple flight strings, weather phenomena can affect
the airport capacity distribution, which in turn affects the spatiotemporal distribution
of airport flight flows, and increase the difficulty of forecasting. Hence, the sequence
of the influence degree of the airport flight flow by the random weather conditions
is constructed as the input of branch 2. The information of weather phenomena is
processed through backbone fusion, and the attention mechanism based on network
learning is added to dynamically capture the spatiotemporal dependence mechanism
of airport network flight flow.

The rest of the paper is organized as follows. Section 2 reviews the current research
status in the field of traffic flow forecasting, based on which the methodological con-
tributions of the paper are stated. In Section 3, the research problem is described and
defined, and the framework structure and learning method of the ATFSTNP model are
introduced. In Section 4, the proposed deep learning framework is applied to the flight
operation data prediction of 67 airports in China. The model parameter configuration and
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accuracy evaluation indicators are introduced, and the prediction results are analysed and
discussed by comparing the prediction performance of the ATFTNSP model with several
advanced models. Finally, Section 5 summarizes the research conclusions and identifies
future research directions.

2. Literature Review

Traffic flow prediction has always been a hot research topic in academia because of its
practical application. Although there are many methods for predicting traffic flow, they
are mainly used in the traffic flow prediction in the field of ground traffic, and those in
the field of air traffic also focus on the prediction of aircraft flight trajectories in the air [3].
Traffic flow prediction methods can be roughly divided into three categories: statistical
theory [4–6], traditional machine learning [7,8] and deep learning. Among them, statistical
theory and traditional machine learning often assume that the predicted traffic flow data
has the same characteristics as the historical flow data, which is limited to the acquisition
of time information and ignores the impact of the spatial structure of the airport network
on the airport flight flow [9]. Chen et al. [10] used dynamic networks to describe the
structure of airway and airspace, and used the continuity equation in fluid mechanics to
describe the continuous behaviour of airway traffic. But they only focused on the flow
distribution of aircraft operating space, and did not consider the time dependence of
historical flow conditions.

In recent years, deep learning has achieved great success in capturing spatiotemporal,
topological and many other information. Many scholars apply it to the problem of predict-
ing the spatiotemporal distribution of traffic flow. Liu et al. [11] and Lin et al. [12] studied
the spatial dependence of adjacent airspaces and the temporal dependence of historical
traffic in a given airspace based on the ConvLSTM model. However, the spatial distribution
of the airport is in a network topology relationship, which is not the same as the distribution
of the airspace grid format. To more effectively integrate the spatiotemporal dependencies
of traffic flow, recent research introduces Graph Convolutional Networks (GCNs) to learn
the spatial topology of traffic network sites. Li et al. [13] and Han et al. [14] used GCN to
extract the correlations between rail transit stations. Zhao et al. [15] proposed the T-GCN
model, which used the gating mechanism to study the problem of traffic flow prediction in
urban road networks from the spatiotemporal dimension, and proved the superiority of the
model in traffic prediction. Liu et al. [16] used an improved residual networks to capture
the bus traffic flow spatiotemporal correlation to predict bus traffic flow and found that it
was effective for the prediction of scheduled bus lines. Han and Gong [17] embed the LSTM
model into the GCN parameters. Hu, Shao and Sun [18] proposed a graph space–time
network (GSTNCNI) incorporated complex network feature information, is proposed to
predict future highway traffic flow time series. Their models greatly reduce the amount of
computation and make a good use of the temporal and spatial information of the California
highway data.

Air transportation is more susceptible to traffic congestion due to variable weather
than ground transportation, and ground transportation is fundamentally different from
air transportation in dealing with congestion problems. So that the selection of traffic
flow characteristics and the acquisition of the topology relationship of the traffic network
are not universal for ground traffic and air traffic. For example, ground transportation
vehicles can stop or queue slowly if they encounter traffic congestion. To move forward,
the aircrafts running at high speed need to consume fuel at all times to maintain power
when they stay in the air, and the limited airspace cannot accommodate too many aircrafts
running at high speed at the same time. Therefore, the ground holding decision [19,20] is
the main means to adjust and control the air traffic flow, that is, to make the aircraft park at
the airport and wait for take-off [21]. This means that the ground traffic flow forecast is
more concerned with the forecast of traffic OD (Origin-Destination) demand, while in air
transportation, since the flight plan is formulated in advance, predicting the actual flight
flow at the airport needs to consider the dynamic impact of weather phenomena on flight
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plans, which is the propagation characteristics of flight delays referred to in the field of air
transportation research.

Because flights need to operate according to a pre-established flight plan and are
easily affected by weather conditions, the spatiotemporal dependencies of airport flight
flows are extremely complex. In air transport activities, the delay of one flight may affect
the normal operation of other flights with which it shares certain resources vertically or
horizontally. The vertical direction can be understood as a chain of related flights that
share aircraft or crews on the time axis [22,23], while the horizontal direction can be
understood as other flights that share airport or airspace resources in the same time period
in terms of spatial distribution [24]. This makes the airport flight flow highly non-linear in
spatiotemporal correlation—the flight flow at an airport may affect neighbouring airports
or distant airports, and the flight flow at the current moment may also affect the flight
flow at future moments. At present, the impact of airport network structure [25] on flight
delay and propagation is mostly studied from a static perspective, without considering
the dynamic impact of random weather factors and the dynamic changes of the affected
transportation network. Most of the research on airport flight flow forecasting concentrates
on computing the information entropy of the airport from the macro level, and predicts the
airport operation situation quantitatively as a whole [26,27]. The prediction accuracy of
this method is not high. Because it cannot achieve real-time prediction of airport flight flow
from the perspective of flight planning, and also ignores the influence of external uncertain
factors on flight operation.

At present, the deep learning methods are mostly used to predict ground traffic
flow problems, and there are few studies on predicting flight flow, especially airport
flight flow. While, the current research on airport flight flow prediction mainly focuses
on a single airport, and do not consider the flight delay behaviour and its propagation
characteristics in the airport network. It is a micro-scale research from the perspective
of the network, and cannot reflect the spatiotemporal dependence of airport network
flight flow and the basic characteristics affected by external environmental factors. Yan
et al. [28] constructed a deep-learning-based model that considered the influence of the
topological airport network, but failed to consider the impact of weather on airport flight
flow. Therefore, this paper links the single airport to an airport network by flight string,
and incorporates flight delay spatiotemporal propagation characteristics to solve the flight
flow prediction problem at airport network level. This is fundamentally different from the
problem of flight flow prediction for a single airport or a single flight string, and this is the
core methodological contribution for this paper.

Furthermore, the design of the deep learning model framework ATFSTNP in this
paper is mainly to solve the practical problems of air transportation. From the perspective
of the flight strings, ATFSTNP combining GCN, Attention-LSTM and ResNet to conduct
spatiotemporal prediction on the airport network scale. In addition to the topological
relationships between airports, the spatiotemporal correlations between airports’ flight flow,
and airport dynamic weather conditions are all incorporated into ATFSTNP to determine
how such factors affect flight flow. The flight flow residual sequence is used for the first
time to accurately predict the airport flight flow. The advantage is that it can capture the
operational differences of flight flows at different airports and their effects on the entire
network, and amplify the impact of each airport’s flight planning flow in the spatiotemporal
dimension of the airport network through the flight residual flow. Then we synthesize
the direct influence of weather phenomena on the airport flight plan, superimpose the
influence of space and time on the influence of random factors, and restore the residual. The
flight flow prediction results of the network can better reflect the randomness of variable
weather interference airport flow and improve the prediction accuracy of the model. The
ATFSTNP provides data support for the next step to proactively optimize flight schedules
before flight delays occur. It also evaluates airport operating conditions and flight delays in
the air transportation system, and provides a predictive predictive model for airlines to
proactively manage and control flight flows across airport networks.
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3. Model Development
3.1. Definition

(1) Airport Network: The airport network is defined as an undirected topological graph
G = (V, E, A), where each airport is a node, V = {v1, v2, . . . , vN} is the set of N
nodes, E is a set of edges, A is a weighted adjacent matrix of G, indicating the physical
property of an airport connected to an airport by flight.

(2) Flight Flow Feature: Define the characteristic matrix of the real-time flight operation
flow of each airport in the network as XN×m, where m is the total length of historical
time series, Xt, Yt, Zt ∈ RNk represent the flight operation flow, planned flow and
real-time capacity of each airport in the kth time series, respectively.

(3) Input Feature: The airport flight flow residual subsequence is constructed as Inputt =
Outputt = Yt − Xt, which is used as the input of branch 1 of the ATFSTNP model.
Impactt = max{0, Yt − Zt} is to quantify the influence degree of the random weather
impacts on the airport flight flow, as the input of branch 2.

Therefore, in the ATFSTNP model, the problem of spatiotemporal flight traffic forecast-
ing in the airport network can be regarded as learning the mapping function f, as shown in
Equation (1):

[Outputt+1, . . . , Outputt+T ] = f (G; (Inputt−n, . . . , Inputt, Impactt−n, . . . , Impactt)) (1)

where T is the length of the time series needed to be predicted and n is the length of
historical time series.

3.2. Overview of Model Framework

The architecture of the ATFSTNP model is mainly based on ResNet, GCN and attention
LSTM methodologies. As shown in Figure 1, it includes two branches of mutual causality,
which respectively consider the correlation between changes in airport flight flow (effect)
in the spatial dimension, and the impact of weather conditions (cause) on airport flight
flow in the temporal dimension.

Figure 1. ATFSTNP Model Architecture. (a) ATFSTNP Model Architecture; (b) Schematic Diagram
of Neural Network Structure.
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The model predicts the flow residuals from t + 1 to t + T in real time by inputting
the residual sequence of airport flight flow and the degree of weather impact from t-n to
t online. Firstly, the model converts the two-dimensional feature matrix reflecting flight
flow residuals in branch 1 into three-dimensional tensors according to the time prediction
step size and the number of airport nodes, and uses the ResNet-GCN module that captures
spatial features to perform regularization operations and convolution operations on graph
data. Then, the influence of weather conditions reflected in branch 2 on the planned flight
flow is spatially expanded through LSTM processing. The spatial state features of each
time period of the two branches are fused into the attention LSTM module. The prediction
features with spatiotemporal information are obtained by comprehensive scoring based
on the influence degree of input on output in rolling time domain through the attention
LSTM module. Finally, the predicted flight flow is obtained by using the planned flow data
to restore the residual flow of each airport. Detailed model architecture descriptions are
given below.

3.3. Branch 1: Airport Traffic Flow Distribution

The spatial structure of airport networks and historical operational flow data have
important implications for predicting airport network flows. Hence, the branch 1 of the
ATFSTNP model uses the improved ResNet-GCN technology to deeply mine the spatial
dependence of the residual flow sequence. In previous studies on airport traffic flow, inflow
and outflow are always considered separately through independent models. However, the
flight is the transportation behaviour to complete the displacement activity according to
the plan. It’s departure and arrival exist at the departure airport and the arrival airport
at the same time. For any airport, there is an interaction between the inflow and outflow
of flights at the same time. For example, in the case of limited capacity, airports usually
guarantee the normal operation of arriving flights first. So we propose a method that
considers both inflow and outflow to study the spatial dependence of air transport flow
network topological structure.

(1) GCN

The traditional Convolutional Neural Network (CNN) treats the traffic flow network
as grid matrices, which cannot reflect the complex topology of the airport network, so it
cannot accurately capture the spatial dependencies. However, GCN can construct filters in
the Fourier domain, act on nodes and their adjacent (related) nodes, encode the network
topological structure, and obtain spatially dependent features between nodes, as shown in
Figure 2.

Figure 2. GCN internal structure of airport network.

We use the airport as a node to construct a multi-layer GCN to capture the spatial
topological dependencies between the central airport and its neighbouring airports, and to
realize the information transfer of multi-order neighbourhoods by stacking convolutional
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layers to capture the impact of flight flows of other airports on the flight flow of central
airport. The transformation rules are expressed as:

H(l+1) = f
(

H(l), A
)
= σ

(
D̃−

1
2 ÃD̃−

1
2 H(l)W(l)

)
(2)

where, W(l) is the weight matrix of the lth layer of the neural network, σ(·) is an activation
function, H(l) is the output of the lth layer, and H(0) = Input ∈ RN×m is the feature matrix
composed of the flight flow residual subsequence of each airport in the airport network. A
is the adjacency matrix, IN is the identity matrix, Ã = A + IN , D̃ = ∑j Ãij is the diagonal
node-degree matrix of Ã.

(2) Airport Network Adjacency Matrix

In air transport activities, flight is a one-time location transfer process. It only connects
departure and arrival airports at the time of operation, and has no subsequent connection
impact after the task is completed. In addition, the number of operating flights of each
route is different, and the traditional 0–1 adjacency matrix is not enough to reflect the
relationship between airport flight flows. Therefore, this paper further considers the
influence of the degree value setting of each node in the network on the prediction accuracy,
defines the airport network as an undirected topology weighted graph. For a flight plan
of a certain duration (such as one month), we set (A) the Pearson correlation coefficient of
airport traffic, and (B) the airport navigability rate, as the weight of the adjacency matrix
W(A) =

{
0, aij

}
∈ RN×N , i, j ∈ V (the calculation formula is shown in Table 1), and

compare the results with the prediction results using the traditional adjacency matrix.
Â = W(A) ◦ Ã is used to describe the degree of mutual influence of the flight flow residuals
between airports. By performing the regularization operation D̃−

1
2 ÂD̃−

1
2 on the weighted

adjacency matrix Â, the spatial distribution information of the feature matrix H can be
preserved in the process of information transfer.

Table 1. The setting of airport network adjacency matrix.

Code Description Function

O Airport connectivity aij = {0, 1}

A Airport flight flow correlation
aij =

σij
σi ·σj

= ∑(xk−x)(yk−y)√
∑(xk−x)2(yk−y)2

B Airport navigability rate aij =
The number o f time slots with f light between airports i and j

Total number o f time slots

Therefore, the above definition can be used to superimpose the departure and arrival
flight flow matrices of each airport into a two-channel image-like tensor to obtain the
airport network topology in a specific time zone. Taking the data in June as an example,
Figure 3 visually shows the network topology of 67 airports. There is a particularly obvious
difference between the spatial matrix considering weights and those without weights.
The darker the colour, the greater the spatiotemporal relationship of flight flows between
airports. Actually, considering the airport flight flow correlation and airport navigability
rate is more complicated than the adjacency matrix considering only airport connectivity,
which will have an impact on the prediction of the spatiotemporal correlation of airport
network flight flow under different operating conditions.

(3) ResNet

Past studies have found that stacking multiple GCN layers not only increases the
complexity of backpropagation, but also produces gradient dispersion or gradient explo-
sion, which degrades the performance of deeper GCNs. The ResNet directly connects the
high-level neural network to the low-level neural network through a shortcut connection,
which effectively prevents the gradient vanishing during backpropagation, and solves the



Electronics 2022, 11, 4058 8 of 19

problem that the deep network is not easy to fit the identity map [29]. Considering the
real-time nature of traffic flow prediction, this paper introduces the improved residual
block proposed in article [30] (as shown in Figure 4b). We extend the traditional GCN into
ResNet-GCN to improve the prediction accuracy and speed of the model, treat the input
feature matrix as a graph signal, and process it according to the following formula:

H′ = D̃−
1
2 ÂD̃−

1
2 H (3)

Figure 3. Visualization of spatial topological relationship of airport network. (a) Airport connectivity;
(b) Airport flight flow correlation; (c) Airport navigability rate.

Figure 4. Residual block and improved residual block. (a) Original; (b) Improved.

Then build the residual block by setting the skip connection, skip the identity mapping
layer Hl+1 = Xl + F(Hl), and directly fit the residual mapping F(Hl) = 0. In this way, the
feature extraction process of multiple GCN layers is optimized, and the model prediction
speed and accuracy are improved. Where D̃−

1
2 ÂD̃−

1
2 is the regularized Laplacian matrix,

H ∈ RN×n is the feature matrix input containing graph features, where N is the number
of airports, n is the length of historical time, and H′ is a feature matrix with the same
size, which includes the airport network and the spatial dependency information between
airport flight flows.

In branch 1, the traffic characteristics and network topological relationship of each
airport are input into the ResNet-GCN consisting of two residual blocks (see Figure 1 for
details). The graph convolution sets 32 filters, the first residual block sets 32 filters, the
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second residual block sets 64 filters, the convolution kernel size of the convolution layer is
set to 3 × 3, the stride Set to 1 × 1, and fill rule to SAME. The data is then flattened and
fully linked with 67 neurons, which finally feed the output data of branch 1 to the feature
fusion layer.

3.4. Branch 2: Airport Capacity Impact

Although flight operations are easily affected by environmental factors such as weather,
there are few studies that incorporate this into the consideration of flight flow as an influencing
factor. However, the reduction of airport capacity due to weather changes is the essential
reason that affects airport flight flow, such as flight delays or cancellations due to capacity
constraints. The branch 2 of the ATFSTNP model uses multi-layer LSTM to mine the direct
influence of weather phenomena on airport flight flow changes in the time dimension, and
then input the weather impact into the feature fusion layer from the spatial dimension.

Compared with the traditional RNN which simply superimposes the memory, LSTM
adds a gating mechanism [31] to limit the transmission state of information and learn
the dynamic changes of the affected airport flight traffic data in the time dimension. It is
more suitable for traffic data prediction problems that require ‘long-term memory’. As
can be seen from Figure 5, three ‘gates’ are added to LSTM. The forget gate ft controls
how much the information in the previous memory state is retained. The input gate it
controls the degree to which the current calculated new state is updated to the memory
state. The state transition between the internal memory state Ct is jointly determined by
the it and the ft. The output gate ot controls how much the current output depends on
the current memory state. xt and ht are the input and output states at time t, respectively.
Except for the use of tanh as the activation function when calculating candidate memory
and hidden states, all other gates use sigmoid as the activation function. LSTM completes
the acquisition and transmission of data information through the gating mechanism. The
specific transformation is shown in Equations (4)–(9), where W is the weight matrix in the
gated cyclic unit, b is the bias, σ(·) and t tanh(·) are activation functions, and ‘◦’ represents
the Hadamard product.

ft = σ
(

W f ·[ht−1, xt] + b f

)
(4)

it = σ(Wi·[ht−1, xt] + bi) (5)

C̃t = tanh(WC·[ht−1, xt] + bC) (6)

Ct = ft ◦ Ct−1 + it ◦ C̃t (7)

ot = σ(Wo·[ht−1, xt] + bo) (8)

ht = ot ◦ tanh(Ct) (9)

Figure 5. The architecture of LSTM unit.
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As shown in Figure 1, branch 2 adds the input flattening to the fully connected layer
to obtain weighted indicators, and mines features through the first layer of LSTM with
an output dimension of 128, and updates and resets information through the control
gate of LSTM. Then, the second layer of LSTM is used to spatialize the data with time
information according to the airport network structure, output the data with spatiotemporal
characteristics and the characteristics of flight flow, and input it to the backbone fusion
layer together with the output data of branch one.

3.5. Backbone: Spatial-Temporal Fusion

(1) Spatial-Temporal Feature Fusion

Because the changes of airport flight flow are periodic and trendy, the outputs of
branch 1 (effect) and branch 2 (cause) are weighted and fused in the backbone part of the
model through the fully connected layer. The formula is as follows:

Fusion = W1 ◦ Input∗ + W2 ◦ Impact (10)

where Wi ∈ RN×T is the weight vector of the input tensor i, where N is the number of
airports, T is the length of the predicted time series, and ‘◦’ is the Hadamard product. The
weight vector W is randomly initialized before training and can be updated during neural
network backpropagation. Then the LSTM layer based on the attention mechanism is used
to capture the time dependence of the airport flight flow, and finally the Dense layer is
connected with 67 neurons to generate the final output [Outputt+1, . . . , Outputt+T ].

(2) Attention Mechanism Based on Network Learning

Since the attention mechanism was proposed, it has been widely used in various
deep learning models based on the RNN framework, and achieved very good results [32].
Since civil aviation transportation is affected by weather, flight delay propagation and the
complex spatiotemporal influence of nonlinear network structure, the traditional attention
mechanism based on distance assignment weight or function score is not enough to reflect.
Therefore, based on the previous research by Wu et al. [33], this paper uses the fully
connected network to learn the weights, uses the influence of the input on the output in the
rolling time domain to comprehensively score, and uses back propagation to correct the
network weights.

Attention = f
(

WU ◦U + b
)

(11)

U′ = Attention ◦U (12)

Let the matrix U ∈ RT×N be the output of LSTM, where T is the length of the predicted
time series, and N is the number of features. Attention is the weight matrix with the same
size as U, ‘◦’ is the Hadamard product, f (·) is the fully connected layer whose activation
function is linear, WU is the weight of the fully connected network, and b is the bias. The
attention-based output U′ is obtained by formulas (11) and (12), and its architecture is
shown in Figure 6, where u and a represent the input elements and the corresponding
scoring coefficients of the elements, respectively.

By combining the capture of the spatial characteristics of flight flow and the temporal
characteristics of external environmental factors in branches 1 and 2, the change character-
istics of the airport network flight flow at the spatial-temporal level are further captured,
and the dynamic time-space flight flow change rules are obtained. From the practical appli-
cation and theoretical level, it can better capture the spatiotemporal correlation mechanism
of airport network flight flow, and achieve more accurate and effective prediction.
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Figure 6. The architecture of Attention mechanism.

4. Case Study Results and Discussion

Based on the model framework proposed above, this paper takes China civil aviation
flight operation data as an example to design and apply baseline models and ablation
models to evaluate the specific prediction performance of ATFSTNP. This section describes
the dataset, gives detailed model configuration and evaluation metrics, and discusses and
analyses the prediction results.

4.1. Data Description

The research data in this paper comes from Umetrip, which is an application created by
TravelSky Technology Limited (Beijing, China) for providing civil aviation travel informa-
tion. We selected the operation data of all domestic flights in the first 30 unit days of China
Civil Aviation in June with good weather conditions and July with more thunderstorms in
2019. A total of 702,922 plus 798,593 planned flights and 683,554 plus 769,959 actual flight
transportation activities were involved in June and July. It covers a total of 2888 routes and
227 domestic airports. Since 90% of flight transportation activities only involve 67 major
domestic airports, this paper only performs pre-processing and statistics on the airport
network flight flow composed of these 67 airports to reduce the computational complexity
of the GCN network in the model. Figure 7 shows the spatiotemporal distribution of flight
flow at 12 major airports in Eastern China from 25–30 June.

Figure 7. Spatial-temporal distribution of flight flows at 12 major airports in Eastern China from
25–30 June 2019.

Time granularity is the basic unit of system management time. Generally, the smaller
the time granularity, the more refined the system management, but the corresponding
management burden will be increased. The time granularity setting of the proactive flight
control system needs to be based on various operating time specifications of civil aviation
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transportation. Based on the previous research results of predicting the real-time capacity
of the airport considering the influence of weather, and considering the unit time limitation
of weather data collection and airport capacity-flow data statistics (such as the airport time
slot is 3–5 min, the flight delay standard is 15–30 min, the weather collection frequency is
half an hour to two hours, etc.), we finally take 30 min as the time granularity of the active
flight control system.

4.2. Model Configuration

The model used the Python language to complete data processing and was imple-
mented using Pandas, Numpy, TensorFlow, and Keras. The data of the first 24 days of
the 30 days was used as the training set, and the data of the last 6 days was used as the
test set. The ratio of training and testing data is 8:2. In order to avoid improper parameter
initialization, the model training adopts the early stopping technique to avoid overfitting.
The model hyperparameters are determined by experiments: the learning rate is 0.001,
the number of training rounds is 1000, and the batch size is 32. For other parameters, see
Section 3. In order to balance the model training time and prediction accuracy, this paper
used the first 2, 3, 4, 6 and 8 h of flight traffic at airports in the entire network to predict the
flight traffic at each airport in the next half an hour. It was found that the model prediction
using the flight flow information of the previous 6 h as the historical input feature performs
best. As shown in Figure 8, during model training, its training loss and validation loss
can be quickly fitted in the first 3–5 iterations. The training loss and validation loss of the
model only slightly oscillate before the iteration stops. The model stops within 80 times
and the training speed is fast.

Figure 8. Training loss and validation loss.

4.3. Loss Function and Evaluation Metrics

The experiment uses Mean Square Error (MSE) as the loss function, and the optimizer is
‘Adam’. Root Mean Square Error (RMSE), Mean Absolute Error (MAE), and Weighted Mean
Absolute Percentage Error (WMAPE) were used to evaluate the predictive performance of
the model. The formulas are as follows.

Loss = MSE = 1/n ∑n
i=1(yi − ŷi)

2, ∈ [0,+∞) (13)

RMSE =
√

1/n ∑n
i=1(yi − ŷi)

2 , ∈ [0,+∞) (14)

MAE = 1/n ∑n
i=1|yi − ŷi| , ∈ [0,+∞) (15)
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WMAPE = ∑n
i=1

(
yi

∑n
i=1 yi

∣∣∣∣yi − ŷi
yi

∣∣∣∣), ∈ [0, 1] (16)

where, yi is the actual value, ŷi is the predicted value, n is the number of samples, and i is
the sample.

4.4. Results and Discussion
4.4.1. Comparison of Airport Network Flight Flow Prediction Results of Different Models

In order to verify the prediction performance of the ATFSTNP model, we selects three
types of models based on mathematical statistics, traditional machine learning and depth
graph convolution methods as the benchmark models for the experiments to verify the
prediction performance of ATFSTNP. Then, through the Ablation Study, the influence of
the spatial dependence, temporal dependence and environmental interference factors in
the ATFSTNP model on the accurate prediction of flight flow value was verified from the
model structure level. We analyzed the influence of different adjacency matrix weight
settings on the prediction accuracy of the model from the perspective of aviation network
topology, and further studied the performance of neural networks in depth to understand
network behavior.

(1) Baseline Models

We set up Seasonal-ARIMA [34], RBF-SVR, and traditional two-layer GCNs as bench-
mark models for predicting airport flight traffic. Except for ARIMA, all models took the
time series of airport flight traffic as input, and obtained the overall prediction results of
67 airports by training a single model.

(2) Ablation Models
(a) Model Structure: We ablated the proposed ATFSTNP deep learning framework,

analyzed the influence of each part of the model on the performance of airport traffic
forecasting through the control variable method, and used the airport flight traffic
residual subsequence constructed in this paper as the input of the model. (1) Only
the Attention LSTM model is built without considering the correlation of the spatial
dimension and the influence of weather phenomena; (2) Only the Rest-GCN model is
built without considering the correlation of the time dimension and weather impact;
(3) Do not consider the dynamic impact of changes in airport capacity caused by
weather changes, only build the Rest-LSTM model, and delete branch 2; (4) Set
up a complete ATFSTNP model that considers time, space and weather impact for
comparison.

(b) Adjacency Matrix: We used the control variable method to verify the prediction
performance of the weighted adjacency matrices O, A and B, representing the connec-
tivity, flow correlation and navigability between airports, respectively, in models that
consider the airway transportation network topology.

Table 2 shows the prediction accuracy of each model for the June and July flight traffic
data of 67 major airports in China in 2019. In most cases, the prediction performance
based on the ATFSTNP framework and using the flight flow residual subsequence as input
significantly outperforms the baseline models with flight flow as input feature. Deep
learning models that use GCN to capture transportation network topology, or use attention
mechanism LSTM to extract temporal dependence also outperform learning models based
on mathematical statistics and traditional machine learning. The improved Rest-GCN
significantly improves the prediction accuracy of GCN, and effectively reduces the time
spent on model training. It proves that applying ResNet to the ATFSTNP model framework
can optimize the overall model structure and improve the prediction reliability.
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Table 2. Comparison of prediction accuracy of various models for flight flow in 67 airport networks.

Category Model
June July

RMSE MAE WMAPE/% Time/s RMSE MAE WMAPE/% Time/s

Baseline
Models

ARIMA 4.025 3.087 30.576 Avg (489.6)
× 67 4.463 2.075 37.138 Avg (361.3) × 67

SVR 6.750 2.805 35.917 190.8 7.868 6.857 81.827 199.3
GCNs 3.250 2.301 29.209 447.3 3.706 2.823 34.092 489.8

Ablation
Models

A-LSTM 3.826 2.772 34.454 287.5 3.642 2.807 35.988 214.4

Rest-GCN-O 2.766 1.888 25.664 292.6 3.098 2.448 27.152 383.1
Rest-GCN-A 2.948 2.188 27.922 111.9 2.726 1.989 25.105 136.2
Rest-GCN-B 2.744 1.870 25.382 219.9 3.230 2.361 29.652 122.3

Rest-LSTM-O 2.330 1.622 23.213 266.5 2.722 1.977 24.496 246.1
Rest-LSTM-A 2.318 1.654 21.692 262.3 2.713 1.931 24.443 296.1
Rest-LSTM-B 2.444 1.749 21.301 339.7 2.614 1.842 24.092 244.8

ATFSTNP-O 2.518 1.859 23.290 344.5 2.679 1.849 24.102 321.1
ATFSTNP-A 2.251 1.556 19.632 332.4 2.619 1.845 23.829 368.7
ATFSTNP-B 2.270 1.595 20.751 346.5 2.585 1.803 22.790 290.3

In addition, the ARIMA model has certain limitations for dealing with flight flow
sequences affected by complex factors. This method combines autoregressive and moving
average components for time series modelling, ignoring the spatial dependence of traffic
flow. Due to the lack of multiple captures of the temporal or spatial dimension features
of flight flows in the airport network, the prediction accuracy of the SVR, GCN, A-LSTM
and Rest-GCN models is lower than that of the Rest-LSTM model which considers the
spatiotemporal relationship. The prediction performance of ATFSTNP considering weather
impact is higher than all other models, and its optimal WMAPE error percentage is lower
than other models by nearly 2% to 15%. It also proves that the prediction accuracy of
the airport network flight flow data can be further improved by introducing the weather
impact dataset.

Compared with the traditional prediction model, the ATFSTNP model proposed in the
paper can effectively improve the prediction accuracy and robustness of airport flight flow.

4.4.2. Analysis of Airport Network Flight Flow Prediction Results in Different Months by
ATFTNSP Model Using Different Adjacency Matrices

In this paper, the weight value of the GCN adjacency matrix reflects the spatiotemporal
influence relationship of flight flow in the airport network. Among them, the weight
calculation of the adjacency matrix is mainly based on the planned flight flow data of the
airport network, and the weather impact is the main reason for the difference between the
plan and the actual flight schedule. For the data of different months (see Figure 9), the
prediction accuracy of each model is generally higher in June with better weather than
in July with more complicated weather. But the prediction performance of models using
different adjacency matrices and different model structures is different.

In general, the prediction accuracy of the weighted adjacency matrix A and B is higher
than that of the traditional adjacency matrix O, and it will also affect the training speed of
the model. For the June data that is less affected by weather factors, the prediction accuracy
of the correlation matrix A is the highest, the error is about 2 sorties, and the training
speed is the fastest. For the more affected July data, the overall forecast performance of the
navigable rate matrix B is better than that of matrices O and A.

Combining with Figure 3 of the airport network topology relationship, it can be seen
that the correlation of the airport traffic itself can better describe the topology relationship
of the traffic network from the time and space dimensions when the weather impact is
small. When the weather conditions seriously affect the flow of upstream airports in the
flight string, the impact will be transmitted to downstream airports along the network
through flight delays. This creates the phenomenon of flight flow hysteresis.
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Figure 9. Prediction performance comparison of Rest-GCN, Rest-LSTM and ATFSTNP. (a) June; (b) July.

Hence, for the flight flow sequence affected by uncertain weather phenomena, apply-
ing the airport navigability rate to describe the spatiotemporal relationship can better grasp
the flight flow characteristics of the airport network and reduce the impact of flight delay
propagation on the flow prediction accuracy.

4.4.3. Analysis of Flight Flow Prediction Results of Different Airports Using Different
Adjacency Matrices in ATFTNSP Model

There are certain differences in the prediction results of the ATFTNSP model using
different adjacency matrices. In view of the model prediction performance of a single
airport, we chose three typical airports in the East China airport group to analyse the
real-time traffic forecast of the airport. (1) Shanghai Pudong International Airport (PVG),
which is a large international hub airport with an annual throughput of over 120 million
passengers; (2) Nanjing Lukou Airport (NKG) is a typical regional hub airport with an
annual throughput of over 30 million passengers; (3) Hefei Xinqiao Airport (HFE), a major
airport with an annual throughput of over 10 million passengers. This paper takes the
air traffic data set from 25–30 June 2019 as an example, and the ATFTNSP with different
adjacency matrices predicts the flight flow of three typical airports as follows (see Figure 10):

Figure 10. Comparison of actual and predicted traffic at a single airport from 25–30 June 2019.
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PVG, located in the international financial centre—Shanghai, is an important part
of Shanghai’s comprehensive transportation hub and the base airport of major domestic
airlines. NKG is a regional hub airport in the East China Airport Group, located in Nanjing
City, Jiangsu Province. From Figure 10, it can be seen that the PVG flight traffic peaks in
the morning and evening are obvious, showing the ‘M-shaped’ double peak characteristics
in one day. The traffic peak of NKG appears briefly in the morning, and the traffic peak in
the afternoon lasts for a long time.

The flight flow data of the two hub airports have obvious periodic regularity and
relatively stable changes from the 25th to the 27th. Comparing the prediction results of the
ATFTNSP model using the other two adjacency matrices, the prediction using the traffic
correlation matrix A performs the best on the 25th to 27th. However, due to the influence
of weather factors (thunderstorms), the flight flow data of PVG and NKG on the 28th to
30th are chaotic and lack regularity in the time dimension. While, the ATFTNSP model can
still accurately predict the flow distribution of each time period, and the prediction effect
of using the navigable rate matrix B is better than that of using the matrices A and O. It can
be considered that the ATFTNSP model can not only accurately predict the time series with
periodic regularity, but also has excellent prediction performance for the flight flow data
affected by uncertain weather conditions and spatial remote effects at the same time, which
reflects the strong robustness of the ATFTNSP model.

Different from the hub airport, the flight flow peak of HFE mostly occurs at noon, and
the time regularity is low, and the data fluctuation is more messy. But the ATFTNSP model
can still capture the changing trend of flight flow independent of peak or off-peak period of
airport traffic. From the prediction results, for the HFE that is greatly affected by the flight
operation status of the hub airport, the airport flow results predicted by using the navigable
rate matrix to describe the spatiotemporal relationship between the airport network flows
are closer to the true value. It shows that ATFTNSP can well learn the spatiotemporal
distribution law of flight flow in airport network affected by uncertain weather phenomena,
and has the ability to predict the spatiotemporal distribution of traffic from the airport
network level.

5. Conclusions

In conclusion, airport flight flow has the characteristics of non-linearity, time-variability,
strong coupling and uncertainty, so it is difficult to build an accurate mathematical model.
Based on GCN, Attention LSTM and ResNet technology. This paper constructs an ATF-
STNP deep learning framework, and applies China’s civil aviation transportation big data
to accurately predict the spatiotemporal distribution of domestic airport network flight
flows. It is a practical application of deep learning technology in big data analytics of air
traffic management. The main contributions and fundings are summarized as follows:

(1) Different from the previous studies, this paper considers the uncertain influence of
weather phenomena in the airport network and the spatiotemporal correlation of
flight flow from the perspective of flight operation schedule at the same time. Using
GCN to capture the topological structure of the airport network, combined with the
LSTM of the attention mechanism, the spatiotemporal correlation of flight flows in
the airport network per unit time is studied. We also added the ResNet module to the
model, which effectively solved the gradient explosion problem of GCNs, improved
the prediction effect of the model, and made it have obvious advantages over other
prediction models.

(2) In this paper, the flight operation big data of 67 airports in China is used to con-
struct a real-time flight flow prediction model for predicting China’s civil aviation
transportation, and an ablation experiment is designed for the proposed ATFTNSP
model. Based on the experimental results, the composition of the model framework
and the action mechanism of the core parts are discussed. The effects of the spatial
topology of the airport network, the temporal dimension of the flight flow and the
external environmental factors (weather impacts) on the spatiotemporal distribution
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of the airport flight flow are further analysed. It proves the prediction reliability and
robustness of the model proposed in this paper, and provides a prediction model with
practical application significance for flight flow control.

(3) Flight operations are susceptible to disruptions that lead to changes on both the supply
and demand sides. While, the supply side and the demand side maintain a dynamic
balance. The bad weather conditions will reduce the supply side, and have a greater
impact on the prediction accuracy. Hence, this paper studies the spatiotemporal
correlation of flight flow by quantifying the impact of weather on airport network
by airport capacity. With the help of Rest-GCN technology, the input sequence is
weighted by spatial correlation. The weighted sequence is input into the LSTM to
realize the joint mining and prediction of the spatiotemporal characteristics of flight
flow. Later, by introducing the attention mechanism, the importance of each time
step in the historical data is obtained in a rolling manner, which further captures the
changing characteristics of the time series and improves the prediction accuracy of
the model.

(4) The key to real-time quantitative prediction of flight flow is to analyse flight delay
behaviour and its propagation characteristics. In this paper, the ATFTNSP model,
based on the deep learning framework, comprehensively considers the chain conduc-
tion caused by the execution of multiple cross-domain flight string by one aircraft
and the actual needs of flight operation management. It has significant advantages in
real-time prediction of the flight flow with periodic changes.

(5) This paper represents the airport network as a weighted graph based on flight sched-
ules. We took the traditional adjacency matrix, flow correlation and navigability rate
as the spatiotemporal influence weights of the airport flight flow, and used the edge
weights to describe the mutual influence and effect of flight flow values between
airports from the spatiotemporal dimension, so as to realize the visual analysis of the
spatiotemporal influence relationship of flight flows in the airport network.

For the air transportation system with nonlinear and time-varying uncertainty, the
method of dynamic real-time prediction from the network level can timely compensate
for the uncertainty of flight flow caused by the interference of environmental factors, and
essentially improve the dynamic performance of flight flow prediction. The prediction
of the spatiotemporal distribution of flight flows at each airport in the airport network
is not only helpful for airline operation management, but also provides proactive flight
scheduling decisions for air traffic flow control. It is one of the key core technologies
for constructing a proactive recovery system for schedule disrupted flights, and it is also
a significant way to realize the digital transformation of the aviation industry. The model
algorithm proposed in this paper can perform real-time calculation on online big data
of air transportation. By predicting the spatiotemporal distribution of flight flows in
the airport network, the active recovery of schedule interrupted flights can be realized.
At the same time, it improves flight operation and control efficiency, and the economic
benefits of passengers, airlines and airports. However, deep learning algorithms cannot
make unbiased estimates of the regularity of airport network flight flow performance, and
depend on the quality of training data and computer hardware configuration.

Except for the weather impact considered in this paper, other external environmental
factors are also worth investigating and systematically studying in the future, such as
aircraft failures, air traffic control information, and military activity. In addition, human
intervention and traffic control decisions will also affect the spatiotemporal distribution of
airports flight flow. In order to effectively control the impact of delays on airport congestion
and flight delays and achieve precise management, it is necessary to further discuss the
performance law and evolution mechanism of airport network flight flow under human
control.
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