
Citation: Deniziak, S.; Płaza, M.;

Arcab, Ł. Approach for Designing

Real-Time IoT Systems. Electronics

2022, 11, 4120. https://doi.org/

10.3390/electronics11244120

Academic Editors: Juan M. Corchado,

Byung-Gyu Kim, Carlos A. Iglesias,

In Lee, Fuji Ren

and Rashid Mehmood

Received: 8 November 2022

Accepted: 7 December 2022

Published: 10 December 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Approach for Designing Real-Time IoT Systems
Stanisław Deniziak *, Mirosław Płaza * and Łukasz Arcab

Faculty of Electrical Engineering, Automatic Control and Computer Science, Kielce University of Technology,
Al. Tysiaclecia P.P. 7, 25-314 Kielce, Poland
* Correspondence: s.deniziak@tu.kielce.pl (S.D.); m.plaza@tu.kielce.pl (M.P.); Tel.: +48-41-342-4167 (M.P.)

Abstract: Along with the rapid development of Internet of Things (IoT) technology over the past
few years, opportunities for its implementation in service areas that require real-time requirements
have begun to be recognized. In this regard, one of the most important criteria is to maintain Quality
of Service (QoS) parameters at an appropriate and sufficiently high level. The QoS level should
ensure the delivery of data packets in the shortest time possible while preventing critical parameters
relevant to real-time transmission from being exceeded. This article proposes a new methodology
for designing real-time IoT systems. The premise of the proposed approach is to adapt selected
solutions used in other types of systems working with real-time requirements. Some analogy to
embedded systems with a distributed architecture has been noted and used in this regard. The
main differences from the concept of built-in systems can primarily be seen in the communication
layer. The methodology proposed in this article is based on the authors’ proposed model of real-time
system functional specification and its mapping to the IoT architecture. In addition, the developed
methodology makes extensive use of selected IoT architecture elements described in this article, as
well as selected task scheduling methods and communication protocols. The proposed methodology
for designing RTIoT systems is based on dedicated transmission serialization methods and dedicated
routing protocols. These methods ensure that the time constraints for the assumed bandwidth of IoT
links are met by appropriately prioritizing transmissions and determining communication routes.
The presented approach can be used to design a broad class of RTIoT systems.

Keywords: real time; IoT; tasks scheduling; communication protocols

1. Introduction

For a number of years, there has been a continuous and rapid development of products
and services in the area of Internet of Things (IoT) technology [1–4]. Research in this arena
is focused on introducing new solutions in the form of dedicated, smart, specialized and
autonomous systems [5–8]. The main reason for the widespread use of IoT solutions is
usually the desire to improve people’s lifestyle and comfort, the optimal use of natural
resources, and the low energy consumption of these solutions [9–12]. IoT solutions in
this area often provide previously unattainable levels of efficiency while minimizing the
contribution of the human factor. This trend is being forced by the ever-increasing demands
of profit optimization in all industries and economies, as well as the quality and safety of
life demands of specific groups of consumers and even entire global communities [13].

The most up-to-date literature describes numerous examples of implementations
of classical IoT solutions for various purposes. As is well known, the so-called “smart”
systems, e.g., smart homes, smart factories, smart cities, and smart grids, have gained
great popularity [14,15]. In addition, a number of systems have been developed for the
medical [16], automotive [17], agricultural [18], property protection [19], logistics [20], and
sports and recreation [21] industries, as well as many other areas related to the immediate
needs of the public. Smart systems for managing amusement parks [7,8,22]; automated
customer service solutions based on speech recognition techniques and voice assistants [23];
facial recognition and motion detection systems used for security and access control [24];

Electronics 2022, 11, 4120. https://doi.org/10.3390/electronics11244120 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics11244120
https://doi.org/10.3390/electronics11244120
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0001-9728-3630
https://doi.org/10.3390/electronics11244120
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics11244120?type=check_update&version=1

Electronics 2022, 11, 4120 2 of 21

smart systems for managing [25,26], controlling [27], and optimizing production pro-
cesses [28–30]; and real-time object location systems [12,31,32] are being implemented.
The aforementioned solutions are just a few examples of the known applications of IoT
technology. The possibilities of implementing traditional solutions are very wide and
mainly depend on the needs of the recipients and the ingenuity of their designers, thus
influencing the development of a certain area of the service market.

At the same time, it should be noted that services and products where real-time
transmission requirements play a key role are still major constraints in the implementa-
tion of IoT solutions. The need to design real-time applications for IoT (RTIoT) solutions
was recognized more than 10 years ago [33]. The first technologies and standards in this
area also began to emerge at that time. Examples include: ITCC (Intel Time Coordinated
Computing) [34,35], TSN (Time Sensitive Network) [36], M2M (Machine to Machine Com-
munication) [37], SaaS (Sensing as a Service) [38], and a multi-layered reference model
dedicated to IoE (Internet of Everything) technologies [3]. However, most work to date
in the field of RTIoT systems has only been concerned with trying to develop selected
elements of the IoT architecture [39] or applications and technologies [40,41] optimized
for the highest possible QoS (Quality of Service). These mostly deal with issues related
to real-time transmission and protocols, server applications, or real-time databases. As
previously mentioned, there was a need for real-time transmission early in the development
of the internet, mainly for the purpose of transmitting multimedia data. The RTP/RSTP [42]
or XMPP [43] protocols in use at the time did not allow for the parameters associated with
time constraints to be met. It was not until the development of the IEEE 802.1 standard
in the form of the TSN solution that some conditions were created for the development
of data transmission methods that considered time parameters. However, this standard
only defines basic mechanisms for time synchronization, transmission scheduling or re-
source reservation. It does not specify specific communication protocols or algorithms
for scheduling and routing data transmission [44]. In terms of server applications, there
is ongoing work on cloud computing. This work focuses on developing real-time cloud
services, scheduling tasks according to real-time requirements, and developing web servers
that handle requests with time constraints [45–47]. Real-time databases, on the other hand,
define real time as the fastest execution of queries to a database. Examples of such databases
are VoltDB [48] and Firebase [49].

Although it is possible to find numerous publications presenting examples of IoT ap-
plications running in real time, these solutions are not fully compatible with the concept of
a real-time system. Typically, these solutions are highly optimized in terms of data process-
ing and data transmission performance so the time requirements under typical operating
conditions are met. However, such solutions do not provide the required QoS level when
operating conditions change (e.g., with higher network load). Moreover, providing high
performance is often associated with significant costs of computing and communication
resources. Additionally, the methodologies of designing RTIoT systems that take cost and
QoS optimization into account are unknown. Constraints related to real-time requirements
are currently one of the main challenges faced by IoT system research, and they were also
the main motivation for the authors of this study to carry out the presented research.

The purpose of this work was to identify the problems and needs that exist in the
design of RTIoT systems, to identify research directions to solve these problems, and to
propose a design methodology that considers the requirements of RTIoT systems. The
contribution to the body of knowledge of this article is:

• The proposal of a methodology for designing real-time IoT systems considering the
application of edge computing, fog computing, SDN (Software-Defined Networking),
and NFV (Network Function Virtualization) concepts.

• An overview of the components, methods and technologies of distributed real-time
systems, with particular emphasis on scheduling methods and communication proto-
cols in the context of their applications in RTIoT systems.

• The proposal of a general RTIoT system architecture covering a broad class of applications.

Electronics 2022, 11, 4120 3 of 21

The starting point for the RTIoT system design methodology proposed in this article is
an analysis of approaches used in other classes of real-time systems. In particular, one can
see a certain analogy with embedded systems, or rather, IoT systems can be seen as a certain
generalization or development of the concept of embedded systems with a distributed
architecture. The differences are particularly evident in the communication layer. This
article presents a proposed methodology based on analogous approaches to the synthesis
of embedded systems.

The rest of this article is organized as follows. Section 2 describes the functional
specification model and synthesis process for real-time systems, and Section 3 considers
selected components of IoT systems in relation to real-time requirements. Section 4 is
devoted to an analysis of task scheduling methods and communication protocols possible
to apply in RTIoT systems, and Section 5 describes the new methodology for designing
RTIoT systems proposed by the authors. The summary and conclusions are provided
in Section 6.

2. Functional Specification Model and Synthesis of Real-Time Systems

The design methodology for complex IT systems usually consists of two stages:

• Developing a high-level model: The system model allows for an analysis to validate
and optimize the proposed solution. This is particularly important in the case of
distributed systems, where the verification of the communication and synchronization
mechanisms used between processes is of significance.

• Mapping the model to the target architecture: It is possible to map to a standard
architecture (e.g., a multi-core processor) or to synthesize a specialized architecture
optimized for a given application.

2.1. IoT Application System Model

The first stage of design is to create a system model of the application. The system
model represents the application function at the highest abstraction level, where tasks
(processes) and interactions between tasks are distinguished. At this level, what a task does
is not as important as when it is activated, what the synchronization between tasks is, and
how the tasks communicate with each other. Typically, system models are graph models.
Existing methods use various system models. We can distinguish, for example:

• Task Graph (TG): one of the simplest and most popular methods of representing
functions at the system level. It is a directed acyclic graph in which nodes represent
tasks and edges represent the order in which tasks are performed (usually representing
transmissions). The task is activated when all preceding ones are completed. In this
way, sequential dependencies between tasks are presented. Transmission volumes
are represented by edge weights. A sample task graph is shown in Figure 1. The
graph describes a six-task system. Tasks on the same path in the graph are sequentially
executed, while tasks from parallel paths can be executed in parallel. Extended
versions of task graphs can also be found in the literature, e.g., conditional task graphs
and multimodal task graphs [50,51]. Such models allow for the specification of special
cases, such as the conditional or alternative performance of certain tasks.

• SDF (Synchronous Data Flow) or SSDF (Statically Schedulable Data Flow): models
representing data flow (often used in modeling telecommunications applications).
Like the TG, SDF is a directed graph. Unlike the TG, cycles can occur in SDF. The
synchronization mechanism is described by determining the number of tags generated
by the execution of a given task (for each output edge). The number of tags taken from
each input is also specified for each task. The task is activated if the required number
of tags is available on all inputs.

• STATECHARTS: a model based on a FSM (Finite State Machine), models based on
a description in the form of various forms of automation enable the specification of
control flow. Unlike a classic FSM, state charts enable parallel descriptions and task
specifications. Tasks are related to transitions between states.

Electronics 2022, 11, 4120 4 of 21Electronics 2022, 11, x FOR PEER REVIEW 4 of 22

Figure 1. Sample task graph.

 SDF (Synchronous Data Flow) or SSDF (Statically Schedulable Data Flow): models
representing data flow (often used in modeling telecommunications applications).
Like the TG, SDF is a directed graph. Unlike the TG, cycles can occur in SDF. The
synchronization mechanism is described by determining the number of tags gener-
ated by the execution of a given task (for each output edge). The number of tags
taken from each input is also specified for each task. The task is activated if the re-
quired number of tags is available on all inputs.

 STATECHARTS: a model based on a FSM (Finite State Machine), models based on
a description in the form of various forms of automation enable the specification of
control flow. Unlike a classic FSM, state charts enable parallel descriptions and task
specifications. Tasks are related to transitions between states.
There are also a number of other methods that often target specific classes of appli-

cations. The system model should not impose any constraints on the target system ar-
chitecture if this is not directly implied by the design assumptions. The architecture
should be the result of system optimization. Therefore, the first step in the methodology
should be to propose a method for specifying the application at the system level. This
model will be the starting point for further design (scheduling, mapping into architec-
ture, and optimization). Therefore, it should contain all the information so that the above
tasks can be performed. Each method has limitations (e.g., the task graph offers no way of
describing the control functionality). In the case of RTIoT, the model should allow for the
specification of both computational and transmission tasks (communication tasks). The
model should also target so-called reactive systems, i.e., systems in which particular se-
quences of actions/tasks are activated as a result of reactions to specific events.

2.2. Mapping Functional Specifications to Real-Time IoT Architecture
In a typical approach to mapping a system specification into a distributed infor-

mation system architecture, three main steps are performed [52]:
 Resource allocation: At this stage, the target hardware architecture of the system is

determined. Resources can be processors, specialized hardware modules, and
communication channels (buses, communication processors, etc.). At the same time
as the allocation, the connections between system components are determined.

Figure 1. Sample task graph.

There are also a number of other methods that often target specific classes of ap-
plications. The system model should not impose any constraints on the target system
architecture if this is not directly implied by the design assumptions. The architecture
should be the result of system optimization. Therefore, the first step in the methodology
should be to propose a method for specifying the application at the system level. This
model will be the starting point for further design (scheduling, mapping into architecture,
and optimization). Therefore, it should contain all the information so that the above tasks
can be performed. Each method has limitations (e.g., the task graph offers no way of
describing the control functionality). In the case of RTIoT, the model should allow for
the specification of both computational and transmission tasks (communication tasks).
The model should also target so-called reactive systems, i.e., systems in which particular
sequences of actions/tasks are activated as a result of reactions to specific events.

2.2. Mapping Functional Specifications to Real-Time IoT Architecture

In a typical approach to mapping a system specification into a distributed information
system architecture, three main steps are performed [52]:

• Resource allocation: At this stage, the target hardware architecture of the system
is determined. Resources can be processors, specialized hardware modules, and
communication channels (buses, communication processors, etc.). At the same time as
the allocation, the connections between system components are determined.

• Assignment of tasks to resources: This step involves assigning individual tasks to
resources. Tasks are assigned to computing modules, and transmissions are assigned
to communication channels. Task allocation is closely related to resource allocation.
For specialized resources, only tasks corresponding to the function performed by the
resource can be assigned. Transmissions must only be assigned to communication
channels between resources with assigned communicating tasks. When two tasks are
assigned to the same resource, transmissions between them are ignored.

• Task prioritization: Task scheduling is necessary to determine the order in which tasks are
performed when more than one task is assigned to a resource. Scheduling must consider
the sequential relationships between tasks. During scheduling, speed optimization is per-
formed. In the case of real-time systems, the main goal is to arrange the execution of tasks

Electronics 2022, 11, 4120 5 of 21

and transmissions in such a way that all timing constraints are met (hard-constrained
systems) or that timing constraint overruns are minimized (QoS maximization).

IoT systems are characterized by a specific architecture, and for this reason, it is
not possible to directly apply existing methods of synthesizing real-time systems to IoT
applications. The main distinguishing features of these systems are:

• A distributed architecture based on internet infrastructure.
• Communication through internet links, thus not ensuring that time constraints are met.

From the above-mentioned properties of IoT systems comes the need to develop
a specialized method for mapping specifications to the target architecture, as well as
the need to develop solutions to ensure the implementation of transmission that meets
real-time requirements.

3. Selected Elements of IoT System Architecture

There are many proposals for IoT system architectures. In order for a given architecture
to enable the implementation of a real-time system, it must meet certain requirements in
terms of the predictability of operation and the possibility of optimization in terms of
response time. This section presents an overview of the various elements of the IoT
architecture, with a focus on how they can be used in real-time systems.

3.1. Edge and Fog Computing

Today, the amount of data that are generated by IoT systems and then transmitted
over the network is increasing at a very high rate. Therefore, it is important to use the
throughput of IoT systems as efficiently as possible. The concepts of edge computing and
fog computing [53] can be used to optimize this problem. One of the main features of edge
computing is the clear separation of the physical devices that make up the edge infras-
tructure from the core network devices [54]. Edge devices can perform data preprocessing
functions at the network edges, which significantly improves the ability to maintain the
required transmission time parameters in the context of real-time systems. If the tasks per-
formed by edge devices are subject to time constraints, then these devices are implemented
as real-time embedded systems enabling real-time data processing [55,56]. Therefore, it
is becoming increasingly desirable to use edge computing for smart data processing and
performing specific optimization tasks [57,58]. The partial offloading of centralized cloud
systems is also possible through fog computing mechanisms [59]. Solutions of this class
can perform services by computation at the level of a distributed, decentralized network
infrastructure (e.g., using local IoT networks/systems) [60]. Fog computing and edge
computing also provide some opportunity to apply function virtualization techniques on a
massive scale [61–65], which consequently reduces the demand for resources and comput-
ing power of a data center. Both of the solutions under consideration significantly reduce
the amount of data that must be transmitted and processed by the core network/server
infrastructure, thus relieving the burden on traditional cloud computing and data center
systems. If the target resources are less loaded, then it is easier to meet the assumptions
that guarantee throughput and latency at levels appropriate for real-time solutions [66].
The primary purpose of edge infrastructure and the use of distributed computing is to
solve a number of critical tasks affecting the latency, throughput, energy consumption,
and scalability of IoT systems [67]. Moreover, these solutions allow for a high degree of
autonomy in managing the optimal configuration of a system [68,69] and increasing the
level of security [70]. All of the above aspects favorably affect the ability to implement IoT
services with time requirements.

3.2. Programmable Networks and Virtualization Techniques

In the context of real-time IoT tasks, new developments in Software-Defined Network-
ing (SDN) and mass-scale Network Function Virtualization (NFV) methods are important
elements to consider. SDN networks are commonly associated with IoT technology because
the architecture provides a more flexible and manageable environment. In addition, more

Electronics 2022, 11, 4120 6 of 21

and more research (for example, on blockchain) is focused on implementing solutions
that combine SDN and IoT technologies with NFV methods. Therefore, it is anticipated
that NFV will be a very important tool to support the automation of network solutions,
including in real-time transmission issues.

In SDN, management tasks are separated from data transmission tasks. In this ap-
proach, network devices solely act as relays that transmit sequentially routed packets
from the source to the destination, with all policies in place for both communication and
security [71]. The management space in SDN is a highly centralized area, while the data
space operates on a distributed plane. Potential SDN applications related to real-time
transmission are shown in [72], where a four-tier cloudlet architecture (based on SDN) in
combination with a WBAN (Wireless Body Area Network) architecture was described. The
paper described a cloudlet—a mobile, cloud-based data center system that is located at
the edge of the network. This approach was shown to enable efficient traffic processing,
optimal resource utilization, and reduced latency, which is of great importance for real-time
systems. The approach proposes that all network controllers be located in a cloudlet,
resulting in better optimization in terms of QoS mechanisms, as well as a complete view
of the network. On the other hand, the authors of [73] proposed the concept of a three-
layer SDN application based on a WBAN scheme called an SDWBAN (Software-Defined
Wireless Body Area Network). In this solution, network traffic prioritization is performed.
Higher-priority packets are analyzed and sent through the network first, which is made
possible by optimal resource allocation (e.g., throughput), path allocation and the use of
cloud computing. In this case, transmission latency is reduced by formulating a heuristic
allocation model for minimizing the service time of individual services. Security issues
for IoT systems are also an important issue. In this area, solutions using SDN are known,
such as artificial intelligence mechanisms that automatically analyze network traffic while
taking real-time transmission requirements into account [74].

In today’s vast IT world, technology is beginning to play an increasingly important
role in the move away from physical infrastructure building and solutions based on dedi-
cated physical network devices to virtualization technology. An example of virtualization
technology in relation to the IoT area is the NFV solution. The implementation of virtual-
ization technology in IoT solutions provides flexibility for applications regardless of the
platform on which this solution is based or built while maintaining the full management
of logical network functions and the modeling of the full technology stack. An additional
advantage of implementing NFV technology in IoT solutions is the ability to fully manage
and configure individual virtualized network elements at all levels (from physical machines
to virtualized machines to sublime network services) [75]. From the point of view of the
IoT and real-time requirements, the use of NFV virtualization technology has begun to play
a key role due to the requirements of real-time transmission, i.e., transmission with the
shortest possible packet delivery and processing time while maintaining an appropriate
QoS and meeting the deadline value requirements of individual packets [76]. The biggest
advantage of virtualization technology is its versatility in application to various IoT archi-
tectures, although due to its definition and similar mechanisms, NFV technology perfectly
complements IoT solutions based on the SDN model architecture.

3.3. Real-Time Database Systems

To ensure the best possible QoS performance in real-time transmission, the solutions
described in the previous sections are crucial from the points of view of hardware technolo-
gies and transmission and data processing concepts. At the same time, as the data volume
generated by IoT systems continues to grow, there is also a steady increase in the need for
solutions to store that data while supporting mechanisms that consider real-time require-
ments [77]. One of the directions is the concept “fast data”, which involves developing
database technology to ensure the fastest possible execution of queries. Examples of such
databases are Druid [78] and Volt Active Data [79].

Electronics 2022, 11, 4120 7 of 21

Some of the most well-known approaches for storing large datasets are SDDS (Scal-
able Distributed Data Structure) structures, which enable the virtualization of distributed
memory by aggregating resources at network nodes [80]. Considering real-time require-
ments and the need for QoS parameters, an extension of this concept in this direction are
SDDS LH/RP (Scalable Distributed Data Structure Linear Hashing/Range Partitioning) ap-
proaches dedicated to real-time cloud applications [81]. An SDDS server schedules queries
using real-time queuing methods that consider importance attributes, which enables the
achievement of a higher level of execution of queries in a certain time in the case of SDDS
LH/RP approaches than in the case of FIFO (First In, First Out) queuing approaches [82].
With such an implementation, QoS metrics in real-time IoT systems can be significantly
improved [83]. The steady increase in demand for big data processing environments has
led to the development of more dedicated data storage models, such as NoSQL [84] and
NewSQL [85]. These IoT system solutions are beginning to gain value from the point of
view of time requirements due to the need to address the processing of large volumes of
data while maintaining QoS parameters.

In terms of real-time database systems, issues remain to be addressed in terms of
ensuring that hard real-time policies are met for queries that update data that are already
recorded/stored and for bucket splitting operations [86,87].

4. Task/Transmission Scheduling and Communication Protocols

The real-time system design methodology proposed in this paper assumes the appro-
priate scheduling of calculations and transmissions. In classic system solutions, schedul-
ing can be implemented through FIFO queuing or other static or dynamic scheduling
methods [88]. Static scheduling methods are mainly concerned with the design of embed-
ded systems, which are most often used to control various devices when there are time
constraints. These systems feature a dedicated architecture and perform predetermined
functions. Therefore, it is possible to estimate the execution time of each function and to
perform a ranking, ensuring that all time constraints are met. IoT systems can be viewed as
a generalization of embedded systems with a distributed architecture. The main difference
is the communication between system components. In the case of embedded systems, the
components are directly connected and the transmission time is predetermined. In the
case of IoT systems, transmission time also depends on other factors, e.g., on the traffic
and throughput of links and on the route determined by routing processes. Thus, it is not
possible to directly apply known static task scheduling methods to IoT systems, though
these methods can be considered from the point of view of ensuring optimal cooperation
with relevant communication protocols. Therefore, this section examines the scheduling
methods and selected communication protocols used in data transmission tasks that assume
the need to meet real-time assumptions.

4.1. FIFO

Depending on the application, FIFO queuing mechanisms can be implemented as a
hardware sliding register or using different memory structures. Such solutions often use
network devices such as switches or routers. These devices queue data packets as they
travel from source to destination. Typically, one FIFO structure is used per connection [89].
Some network devices also have multiple FIFO structures/implementations for the simulta-
neous and independent queuing of different types of data. Most software implementations
of FIFO queuing do not meet security conditions and require an additional security mecha-
nism to verify the chain of data structures [90]. Achieving good performance in terms of
throughput and scalability while maintaining a high level of security in IoT systems has
always been a major challenge. The packet queuing process strategy represented by the
FIFO algorithm contributed to the later development of algorithms such as SAGA-PBFT
(Security-Aware Genetic Algorithm-based Practical Byzantine Fault Tolerance), which was
developed on the basis of the PBFT (Practical Byzantine Fault Tolerance) algorithm. The

Electronics 2022, 11, 4120 8 of 21

SAGA-PBFT algorithm is used in solutions such as the block chain, where security aspects
and transmission time requirements are extremely important [91].

4.2. Static and Dynamic Task Scheduling Methods in Real-Time Systems

Static task scheduling algorithms assume that before the target scheduling process, a
set of input tasks is processed according to one of the specified sorting rules. These rules
define how the input task array is sorted. With this approach, it is possible to determine
which packages, criteria, or parameters in the IoT architecture will have the highest priority
at the outset. Static task scheduling algorithms include LS (List Scheduling) mechanisms.
In this group, we can distinguish the following sorting rules: LPT (Longest Processing
Time), SPT (Shortest Processing Time), and RPT (Reverse Processing Time). In this case,
the drawback of using list scheduling in real-time solutions is the additional overhead
of executing the processes implemented in the sorting rules before the data packet is
forwarded to the next network layers. This adversely affects packet delivery times, so
meeting the goals of RTIoT solutions is difficult to implement [92]. Another popular static
task scheduling algorithm is the Rate Monotonic Scheduling (RMS) method. This algorithm
assigns priorities to individual tasks before they begin execution that do not change during
the algorithm’s run time. Priorities are assigned to each task by taking the frequency of their
appearance into account (the task with the shortest period will have the highest priority).
RMS is typically used to schedule single-processor tasks [93], which is a major limitation of
it for the design of extended RTIoT solutions. On the other hand, its expropriation feature
(the highest priority task is performed) is decent in terms of maintaining the best possible
QoS performance and meeting real-time conditions.

For dynamic scheduling in the context of the research presented in this article, it is
worth considering the EDF (Earliest Deadline First) and LLF (Least Laxity First) algorithms.
Real-time systems distinguish between two types of input data. The first type comprises
data generated over certain fixed periods of time (e.g., traffic resulting from the functionality
of the communication protocols used), and the second type comprises data generated as
a result of actual events (e.g., data from various types of sensors). In IoT systems, which
deal with data generated as a result of interactions taking place, the EDF algorithm [46]
may find application in scheduling processes. In this solution, the value referred to as the
deadline for each task is taken as the priority value, so the lower it is, the closer the deadline
for a given task is. An additional advantage of the EDF algorithm over others is its good
utilization of CPU resources and fairly fast response times, which, from the point of view of
designing real-time IoT systems, can have key roles in ensuring adequate QoS parameters
and other real-time requirements. Another example of a dynamic scheduling algorithm
that can find application in a real-time IoT system is the LLF algorithm. It uses the deadline
value, which, along with the time left to complete a given task, is used to calculate the laxity
parameter used to prioritize the execution of individual tasks. In this case, the lower the
value of laxity, the higher priority the task will be and the faster it should be completed [94].
A certain disadvantage of this algorithm is when there are many tasks with the same or
similar laxity value simultaneously, the demand for computing power increases [95]. This
represents a kind of limitation from the point of view of applications for RTIoT systems,
since one of the priorities of IoT systems is to optimize their energy intensity [96]. On the
other hand, however, the advantages of this algorithm include resistance to overloading, to
which systems using the EDF algorithm are prone, which translates into the possibility of
using it in the design and implementation of real-time systems [83]. Considering the above,
it can be concluded that both EDF and LLF can be used for certain tasks in the design and
implementation of RTIoT solutions.

4.3. Communication Protocols

In real-time IoT systems, in addition to the described task scheduling techniques, the
use of appropriate types of transmission media and the implementation of proper com-
munication protocols, with particular emphasis on routing protocols, also play important

Electronics 2022, 11, 4120 9 of 21

roles. Some well-known routing protocols to consider when designing RTIoT solutions
are: RSTP (Real Time Streaming Protocol), WebRTC (Web Real Time Communication),
XMPP (Extensible Messaging and Presence Protocol), MQTT (Message Queue Telemetry
Transport), CoAP (Constrained Application Protocol), WebSocket, and 6LoWPAN (IPv6
over Low-Power Wireless Personal Area Networks).

The RSTP is an application layer protocol for the control, transmission and delivery of
data while maintaining real-time transmission criteria. The most common implementations
of this protocol are systems used to transmit voice and video in real time. Data are
continuously delivered, even when RTSP requests are not received by the server. A new
area in which this protocol is being applied is the technology area of the teaching of
language, which includes listening, speaking, reading and writing [97]. Another protocol
implemented in real-time IoT systems is WebRTC. Its most common applications are
solutions for transmitting video images or streaming data in the broadest sense while
achieving the lowest possible levels of latency and data transmission loss, as exemplified by
applications for voice transmission and videoconferencing. Research [98] conducted in the
area of the WebRTC protocol indicates that it yields better response times and connection
stabilization times in web applications compared with other streaming protocols such
as the RTSP [99]. In addition, from the point of view of QoS parameters and energy
consumption, the implementation of the WebRTC protocol allows one to achieve better
values, which translates into meeting the real-time transmission requirements of solutions
implemented in IoT systems. The XMPP protocol, on the other hand, is based on XML [100].
The protocol is commonly available and can be freely modified, and many XMPP servers
are available [101]. This translates into its main use being implementations in systems
and applications for exchanging text-based content such as popular instant messaging
applications. The simplest and lightest protocol for real-time data transmission is the MQTT
protocol, which is based on the publish/subscribe pattern. It is designed for transmission
for devices that do not require a high throughput. By limiting the transmission speed, the
protocol provides a greater reliability. The protocol is perfect for IoT machine-to-machine
connections, mobile devices, and where throughput and energy savings are required. By
using this protocol, one can easily transfer data during a conversation from one device
to another and continue the conversation [102]. An example of a protocol that uses the
UDP protocol for communication and is also applicable to RTIoT systems is the CoAP
protocol. It has been optimized for constrained devices and networks (used in wireless
sensor networks) [103]. The CoAP protocol extends the paradigm of ubiquitous web
services in mobile applications to IoT and M2M solutions, which can then be developed
using shared and reusable RESTful web services. In doing so, this protocol considers
IoT constraints and requirements or QoS requirements [104]. A two-way data exchange
channel over a single TCP connection is provided by the WebSocket protocol. The protocol
is designed to operate on ports 80 and 443, similarly to HTTP, allowing for interactions
between a web browser (or other client application) and a web server at a lower load
than alternatives while making it much easier to transfer real-time data to and from the
server, which is an asset when considering its use in IoT systems [105]. Thanks to the
previously mentioned interactions between the web browser and the server, the protocol
has found applications in the development of online games, particularly [106]. With the
development of technology, the need for IPv4 address allocation has gradually increased,
which has contributed to basically exhausting the entire pool of this addressing. In response
to the introduction of the new IPv6 addressing standard and the need to handle packets
containing such addresses, the 6LowPAN routing protocol, which is characterized by a
low power consumption, was created. The shortcomings of this protocol include the large
size of the header relative to the data themselves; from the point of view of application
considerations, the implementation of this protocol in RTIoT solutions can contribute to
an increase in the level of latency or packet loss with a direct impact on the deterioration
of QoS parameters. Today, further research is underway to address the challenges of the
6LowPAN protocol, which include fragmentation, header compression and security [107].

Electronics 2022, 11, 4120 10 of 21

5. RTIoT System Design Methodology

The implementation of the functional model of the real-time system proposed in
Section 2 requires the implementation of selected elements included in the IoT solution
architecture. Typical IoT systems primarily consist of sensors providing data to the system,
end devices (usually also equipped with sensors), a server application, and a client appli-
cation [5]. The sensors can be directly connected to the server via internet links or can be
an integral part of the end device. Indirectly, there may also be edge devices whose job is
to pre-process data. Communication is usually carried out via low-energy technologies
such as BLE (Bluetooth Low Energy) [108], ZigBee [109], and LoRaWAN (Long Range
Wide Area Network) [110]. End devices using sensors communicate with an IoT system
via internet links. They can also include actuators and controllers, so an IoT system can
remotely control such devices. Server applications are usually installed in cloud computing
or on a dedicated server, while the client applications used to operate the system can come
in the form of mobile, desktop or web applications. All of the aforementioned components
communicate using the relevant protocols.

In the case of real-time systems, there is a time limit on obtaining a response, which
means that once a request is sent, a response is expected to be obtained within an assumed
maximum time (deadline). Exceeding this time can be treated as an error (systems with
hard constraints) or as a reduction in service quality (systems with soft constraints) [111].
Requests can be sent by either end devices or server or client applications. In order to
reduce the occurrence of the aforementioned errors or to maintain the required level of
quality of service in IoT systems, one can use the solutions described earlier, such as edge
computing, fog computing, SDN, NFV, real-time databases, scheduling methods, and
relevant communication protocols. These elements are described in Sections 3 and 4 of this
article, and based on them, an illustrative architecture for a real-time IoT system can be
proposed, as shown in Figure 2. In the architecture, the following computing layers that
can perform various tasks of the IoT system can be distinguished:

• Sensor and actuator layer (SL): the layer consisting the interface between an IoT system
and its environment that enables the collection of data from the environment and the
control of the elements of the environment.

• Edge layer (EL) (optional): an intermediate layer that enables the distributed process-
ing of data without the need to send them to a central system server.

• Cloud layer (CL): the layer that contains the system’s servers and databases and that
usually controls the operation of the entire system.

• User layer (UL): the layer that uses user applications (mobile, web or desktop). These
applications allow a user to interact with the rest of the IoT system.

Electronics 2022, 11, x FOR PEER REVIEW 11 of 22

 Cloud layer (CL): the layer that contains the system’s servers and databases and that
usually controls the operation of the entire system.

 User layer (UL): the layer that uses user applications (mobile, web or desktop).
These applications allow a user to interact with the rest of the IoT system.

Figure 2. General architecture of a real-time IoT system.

There are communication links between different layers that enable data transfer.

5.1. System Specifications
The starting point for designing an RTIoT system is a system specification in the

form of an attributed set of task graphs. Each task graph describes one function of the
system. The following attributes are defined for each graph:
 Maximum frequency of graph activation: This attribute specifies the maximum

frequency of appearance of input events that cause the execution of functions rep-
resented by a given TG.

 Maximum number of TG instances: This attribute specifies the maximum number of
simultaneous instances of the task graph. This corresponds to the maximum number
of simultaneous events that cause the activation of the functions described by the
TG.

 A set of time constraints: The time constraints are associated with the selected paths
in the task graph and define the maximum time in which all tasks must be com-
pleted from the activation of the task that starts the path to the completion of the
task that ends the path.

 For each task, an attribute is specified that assigns the task to a specific layer of the
architecture. This attribute is defined by the designer.
Example task graphs are shown in Figures 3–6. These graphs describe nine basic

functions of a smart city system for managing parking spaces. Figure 3 shows a us-
er-activated task graph for the following system functionalities: searching for the parking
space closest to the user’s current location, the function of finding the user’s car in the
parking lot based on their license plate number, the function of reserving any free park-
ing space based on the entered search criteria, the function of charging a parking fee for
the used parking lot, and the function of retrieving information on weather conditions.

Figure 2. General architecture of a real-time IoT system.

Electronics 2022, 11, 4120 11 of 21

There are communication links between different layers that enable data transfer.

5.1. System Specifications

The starting point for designing an RTIoT system is a system specification in the form
of an attributed set of task graphs. Each task graph describes one function of the system.
The following attributes are defined for each graph:

• Maximum frequency of graph activation: This attribute specifies the maximum fre-
quency of appearance of input events that cause the execution of functions represented
by a given TG.

• Maximum number of TG instances: This attribute specifies the maximum number of
simultaneous instances of the task graph. This corresponds to the maximum number
of simultaneous events that cause the activation of the functions described by the TG.

• A set of time constraints: The time constraints are associated with the selected paths
in the task graph and define the maximum time in which all tasks must be completed
from the activation of the task that starts the path to the completion of the task that
ends the path.

• For each task, an attribute is specified that assigns the task to a specific layer of the
architecture. This attribute is defined by the designer.

Example task graphs are shown in Figures 3–6. These graphs describe nine basic
functions of a smart city system for managing parking spaces. Figure 3 shows a user-
activated task graph for the following system functionalities: searching for the parking
space closest to the user’s current location, the function of finding the user’s car in the
parking lot based on their license plate number, the function of reserving any free parking
space based on the entered search criteria, the function of charging a parking fee for the
used parking lot, and the function of retrieving information on weather conditions.

Electronics 2022, 11, x FOR PEER REVIEW 12 of 22

Figure 3. Task graph of the parking space management system.

Figure 4. Task graph for the problem of monitoring/managing parking spaces.

Figure 3. Task graph of the parking space management system.

Electronics 2022, 11, 4120 12 of 21

Electronics 2022, 11, x FOR PEER REVIEW 12 of 22

Figure 3. Task graph of the parking space management system.

Figure 4. Task graph for the problem of monitoring/managing parking spaces.

Figure 4. Task graph for the problem of monitoring/managing parking spaces.

Electronics 2022, 11, x FOR PEER REVIEW 13 of 22

Figure 5. Task graph of basic system functions triggered from the application.

Figure 6. Task graph for the problem of collecting/updating data on weather conditions.

For all system functionality, the starting point, or trigger (T0_0), is the end-user ac-
tivity in a dedicated application made by selecting the appropriate function at the UL
layer level. Depending on the selected function, a further sequence of events follows.
When the user selects the parking space search function (T0_1), the user’s current loca-
tion is retrieved using the GPS module (T0_4). If the car search function (T0_2) is selected,
the user must enter the license plate number of the searched vehicle (T0_10) into the ap-
plication. On the other hand, when the function of reserving a free parking space is se-
lected from the user’s application (T0_03), the end user enters data/criteria for the search
function, such as city and street (T0_12). The user also has the ability to download in-
formation on weather conditions (T0_17). In the next step (T0_5), the central server (a
dedicated cloud application running in the CL layer) receives queries from the UL layer
and starts the processes necessary to perform the called functions. For example, data-

Figure 5. Task graph of basic system functions triggered from the application.

Electronics 2022, 11, 4120 13 of 21

Electronics 2022, 11, x FOR PEER REVIEW 13 of 22

Figure 5. Task graph of basic system functions triggered from the application.

Figure 6. Task graph for the problem of collecting/updating data on weather conditions.

For all system functionality, the starting point, or trigger (T0_0), is the end-user ac-
tivity in a dedicated application made by selecting the appropriate function at the UL
layer level. Depending on the selected function, a further sequence of events follows.
When the user selects the parking space search function (T0_1), the user’s current loca-
tion is retrieved using the GPS module (T0_4). If the car search function (T0_2) is selected,
the user must enter the license plate number of the searched vehicle (T0_10) into the ap-
plication. On the other hand, when the function of reserving a free parking space is se-
lected from the user’s application (T0_03), the end user enters data/criteria for the search
function, such as city and street (T0_12). The user also has the ability to download in-
formation on weather conditions (T0_17). In the next step (T0_5), the central server (a
dedicated cloud application running in the CL layer) receives queries from the UL layer
and starts the processes necessary to perform the called functions. For example, data-

Figure 6. Task graph for the problem of collecting/updating data on weather conditions.

For all system functionality, the starting point, or trigger (T0_0), is the end-user activity
in a dedicated application made by selecting the appropriate function at the UL layer
level. Depending on the selected function, a further sequence of events follows. When
the user selects the parking space search function (T0_1), the user’s current location is
retrieved using the GPS module (T0_4). If the car search function (T0_2) is selected, the user
must enter the license plate number of the searched vehicle (T0_10) into the application.
On the other hand, when the function of reserving a free parking space is selected from
the user’s application (T0_03), the end user enters data/criteria for the search function,
such as city and street (T0_12). The user also has the ability to download information
on weather conditions (T0_17). In the next step (T0_5), the central server (a dedicated
cloud application running in the CL layer) receives queries from the UL layer and starts
the processes necessary to perform the called functions. For example, databases can be
searched to find free parking spaces while considering information from the GPS tracker. A
search for license plate numbers can be run, along with the retrieval of the vehicle location
data assigned to them (parking/parking space number). Taking the user’s criteria into
account, free parking spaces can be searched for, or the fee due can be calculated based on
the time the parking space is occupied and the parking rate for the given parking space. The
(T0_6) task runs functions in the user application responsible for receiving and processing
data coming from the CL layer. In the next step, the user, based on the generated data,
selects a parking space by activating the “Reserve” function (T0_7); in turn, for the process
of searching for a car based on the entered license plate number (T0_10), the end result is
the presentation of the results of the query processing in the end-user application (T0_11) or
the start of the payment process using a debit/credit card or bank transfer (T0_14). It is also
possible to visualize data on weather conditions (T0_18). Once the task is completed (T0_7),
the server-level procedure for processing a parking space reservation request (T0_8) is
started, and the state of the sensor is changed; this is realized, for example, by changing the
color of the marking of a given space from green to red (T0_9). The task (T0_14) is followed
by the payment process through data exchange with the bank/payment card architecture
(T0_15). At the end of this path, the result is received in the form of information on the
payment in progress (T0_16).

Figure 4 shows a task graph for the functionality of monitoring and updating the
status of individual parking spaces.

The starting point/trigger for system function aimed at monitoring or managing
parking spaces is to register a change in sensor state/status (T1_0) at the sensor (sensor)
layer level. Then, via the network infrastructure, such information is transmitted to the
servers that make up the parking system (T1_1). In the next step (T1_2), the central
server (a dedicated cloud application running at the CL layer) receives queries from the
EL layer and runs the processes necessary to execute the called functions—in this case, a
function to update the database with the latest parking sensor states/statuses. In order

Electronics 2022, 11, 4120 14 of 21

for the process to be considered successful, the end result at the edge layer is to run
a procedure that receives a confirmation of the completion of cloud processing for the
database update (T1_3).

Figure 5 presents a task graph for the following functionalities: the function of reserv-
ing an available parking space for given time criteria (T2_1) and the function of plotting a
route leading to a vehicle in the parking lot (T2_2). As for the task graph in Figure 3, the
trigger for these functionalities is also the end-user activity of selecting the appropriate
function from the user application (T2_0). Depending on the user’s selection of a specific
function, they may be prompted in the next step of the process to provide the data necessary
to perform the search function (T2_3). If the function of routing to a vehicle is implemented,
the results of calling the cloud processing presentation function may be displayed in the
user’s application (T2_9). In the next step (T2_4) the central server (a dedicated cloud appli-
cation running in the CL layer) receives queries from the UL layer and starts the processes
necessary to perform the called functions. For example, a database can be searched for
free parking spaces given the criteria set by the user or a process can be run to search the
database to determine the location of a vehicle with a specific license plate number. Then,
the function responsible for receiving and processing data coming from the CL layer (T2_5)
is run in the user’s application. In the next step, based on the generated data, the user
selects a parking space by running the reservation function (T2_6). Alternatively, from
the user’s application level, a function for the presentation of the results of cloud query
processing (T2_9) is run. After the task (T2_6) is completed, the procedure for processing a
parking reservation request (T2_7) is started from the EL layer. The next step could be a
task to start the navigation function in the user’s application interface (T2_10). Finally, a
change in the state of the sensor is made; this can be visualized, for example, by changing
the color of the marking of the given parking space from green to red (T2_8). For another
process, it could be running a function designed to retrieve current position data from a
GPS module.

The last graph shows the tasks for the functionality of reading and processing informa-
tion on the value of the outdoor temperature, as well as reading and processing information
on the state of atmospheric pressure.

Similar to the task graph shown in Figure 4, the tasks described for the problem of
collecting/updating data on weather conditions also have sensor readings (T3_0) as the
starting point/trigger for system operation. Then, through the network infrastructure, the
temperature (T3_1) or the atmospheric pressure (T3_2) information is transmitted to the
servers that make up the CL layer level of the system. In the next step (T3_3), the central
server receives queries from the EL layer and starts the processes necessary to perform the
called functions. Processes can be considered successfully completed when the end result
at the EL layer is the launch of a procedure that receives confirmation of the completion of
cloud processing for database updates (T3_4).

5.2. Mapping Specifications to RTIoT System Architecture

The assignment of tasks to the RTIoT architecture layer is performed by the designer
at the system specification stage. The next step is to map the specifications to the different
layers of the RTIoT architecture. Figure 7 shows the results of the specification mapping
introduced in Section 5.1.

For simplicity, only one instance of each graph was assumed. This corresponds to a
system with one user and single sensors (one parking lot and one parking space). In a real
system, one instance is created for each user and one instance is created for each sensor
that can activate the TG. For this purpose, it is necessary to assume the maximum load on
the system, i.e., the maximum number of simultaneous users and the maximum number of
parking lots and stands served by the system. For clarity, the figure also does not indicate
transmission volumes and time constraints. Based on the mapping, it is possible to obtain
information about the transmissions between the layers and the sequence dependencies
between these transmissions. For example, there may be 10 transmissions between the

Electronics 2022, 11, 4120 15 of 21

UL and CL layers: T0_4→T0_5, T0_10→T0_5, T0_12→T0_5, T0_17→T0_5, T0_5→T0_6,
T0_14→T0_15, T0_15→T0_16, T2_3→T2_4, T2_9→T2_4, and T2_4→T2_5. It can also be
noted that there are sequence dependencies between some transmissions, which means
that these transmissions will not compete with each other for the communication link. This
is important information from the point of view of transmission scheduling.

Electronics 2022, 11, x FOR PEER REVIEW 15 of 22

The last graph shows the tasks for the functionality of reading and processing in-
formation on the value of the outdoor temperature, as well as reading and processing
information on the state of atmospheric pressure.

Similar to the task graph shown in Figure 4, the tasks described for the problem of
collecting/updating data on weather conditions also have sensor readings (T3_0) as the
starting point/trigger for system operation. Then, through the network infrastructure, the
temperature (T3_1) or the atmospheric pressure (T3_2) information is transmitted to the
servers that make up the CL layer level of the system. In the next step (T3_3), the central
server receives queries from the EL layer and starts the processes necessary to perform
the called functions. Processes can be considered successfully completed when the end
result at the EL layer is the launch of a procedure that receives confirmation of the com-
pletion of cloud processing for database updates (T3_4).

5.2. Mapping Specifications to RTIoT System Architecture
The assignment of tasks to the RTIoT architecture layer is performed by the designer

at the system specification stage. The next step is to map the specifications to the different
layers of the RTIoT architecture. Figure 7 shows the results of the specification mapping
introduced in Section 5.1.

Figure 7. Mapping the described processes to RTIoT system architecture. Figure 7. Mapping the described processes to RTIoT system architecture.

Assuming the maximum frequency of activation of individual tasks and the size
of individual transmissions, it is possible to estimate the throughput requirements of
communication links. These requirements can be reduced by appropriately scheduling
transmissions so that time-constrained transmissions are executed in an order that ensures
the maximum QoS.

5.3. RTIoT System Optimization

In the RTIoT system, each function, represented by a task graph, can be simultaneously
activated by different sources (users and sensors). This can be represented by multiple
instances of a given graph. When designing an RTIoT system, one specifies the requirements
for the system by identifying the following constraints:

• Maximum number of instances of a given graph: This parameter determines the
maximum load on the system in terms of the number of simultaneously activated tasks.

Electronics 2022, 11, 4120 16 of 21

• Maximum processing time (deadline): This parameter specifies the maximum time
that can elapse from the start of the tstart task to the completion of the tstop task. For
a given system, there can be multiple time constraints that define different paths in
task graphs. For soft-real-time systems, a soft constraint is defined as ds

max and a hard
constraint is defined as dh

max.

The goal of optimizing RTIoT systems is to achieve the highest possible QoS. The QoS
for a single constraint can be defined as:

QoSi =

0 if ti > dh

max
1 if ti < ds

max

1− ti−ds
max

dh
max−ds

max
in other cases

(1)

where ti is the current execution time of tasks covered by the i-th constraint.
Then, the total QoS for the system can be determined as the average value of all QoSi:

QoS =
n

∑
i=0

QoSi
n

(2)

where n is the number of all constraints in all instances of task graphs.
While intending to obtain the highest possible QoS value, the optimization of the

system consists in prioritizing the execution of tasks and transmissions in such a way as to
minimize any exceedance of time constrains. For this purpose, the scheduling methods
described in Section 4 can be used. However, in order to be able to perform tasks and
transmissions according to the optimized prioritization, it is necessary to consider the
following properties of the RTIoT architecture:

• Transmissions are carried out over shared internet links: To ensure predictable trans-
mission times, it is necessary to develop routing methods that consider the required
order and priority of transmissions.

• Individual tasks and transmissions are assigned to resources distributed over the
internet. Therefore, in order to execute them in the required order, it is necessary
to use time synchronization mechanisms. This can be accomplished by developing
appropriate communication protocols.

Assuming that the aforementioned solutions are available, the presented methodology
can enable the automatic synthesis of QoS-optimized RTIoT systems. The quality of a given
solution is evaluated by calculating the QoS value defined by Equation (2). This value
is calculated for the worst-case scenario, i.e., assuming the maximum system load and
maximum computation and transmission times.

6. Conclusions

This article presents a methodology for designing RTIoT systems that includes the
following elements:

• Four-layer generic RTIoT system architecture model.
• Functional specification method in the form of a set of task graphs with assignment of

tasks to IoT architecture layers.
• A method for mapping functional specifications into an RTIoT system architecture.
• Requirements for communication protocols and routing methods used in RTIoT systems.

For the proposed RTIoT architecture model, a method is presented to ensure that
the functional specification is mapped into an optimized IoT architecture. The starting
point is the specification of the functions of a given system in the form of task graphs.
For each task, their assignment to the different layers of the IoT architecture and time
constraints are specified. The specification is then mapped into the target architecture
by globally prioritizing tasks and transmissions. The scheduling method optimizes the
schedule to achieve the highest possible QoS. The presented methodology is based on

Electronics 2022, 11, 4120 17 of 21

analogous methodologies used in the synthesis of embedded systems. However, due to
the nature of the IoT architecture, it was necessary to consider specific features of the
IoT architecture such as the lack of the centralized control of all elements of the system,
the sharing of communication and computing infrastructure with other systems, and
the dynamic number of tasks in the system. This paper also provides an overview of
existing methods and technologies relevant to RTIoT systems. The purpose of this review
was to present current solutions that can be applied to RTIoT systems, as well as to
indicate the missing elements that require development in order to create a complete design
environment for RTIoT systems. In this way, this paper can also be a valuable resource for
designers and others interested in RTIoT.

The proposed methodology was illustrated with an example of designing a practical
RTIoT system that performs the functions of a smart system for handling a city’s parking
lots. The example demonstrated the practical usefulness of the proposed methodology in
the design and optimization of RTIoT systems. To the best of our knowledge, this is the first
paper to present a complete methodology for the design of a broad class of RTIoT systems
while considering the QoS optimization of such systems.

Further work will involve the development of routing methods and communication
protocols to enable the implementation of systems designed according to the method-
ology presented in this work. The result will be a complete RTIoT system design and
implementation environment that ensures the creation of systems with a high level of QoS.

Author Contributions: S.D.: conceptualization, methodology, investigation, formal analysis, valida-
tion, visualization, writing—original draft, writing—review and editing, supervision, and funding
acquisition; M.P.: conceptualization, methodology, investigation, formal analysis, validation, visu-
alization, writing—original draft, writing—review and editing, and supervision; Ł.A.: conceptu-
alization, methodology, investigation, formal analysis, validation, visualization, writing—original
draft, and writing—review and editing. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Qadri, Y.A.; Nauman, A.; Zikria, Y.B.; Vasilakos, A.V.; Kim, S.W. The Future of Healthcare Internet of Things: A Survey of

Emerging Technologies. IEEE Commun. Surv. Tutor. 2020, 22, 1121–1167. [CrossRef]
2. Sadhukhan, P. An IoT-based E-Parking System for Smart Cities. In Proceedings of the 2017 International Conference on Advances

in Computing, Communications and Informatics (ICACCI), Udupi, India, 13–16 September 2017.
3. Płaza, M.; Belka, R.; Szcześniak, Z. Towards a different world–On the potential of the internet of everything. IAPGOS 2019,

2, 8–11. [CrossRef]
4. Shuja, J.; Humayun, M.A.; Alasmary, W.; Sinky, H.; Alanazi, E.; Khan, M.K. Resource efficient geo-textual hierarchical clustering

framework for social IoT applications. IEEE Sens. J. 2021, 21, 25114–25122. [CrossRef]
5. Khanna, A. IoT based Smart Parking System. In Proceedings of the 2016 International Conference on Internet of Things and

Applications (IOTA), Maharashtra Institute of Technology, Pune, India, 22–24 January 2016.
6. Ahmad, I.; Pothuganti, K. Design & implementation of real time autonomouscar by using image processing & IoT. In Proceedings

of the 2020 Third International Conference on Smart Systems and Inventive Technology (ICSSIT 2020), Tirunelveli, India,
20–22 August 2020.

7. Belka, R.; Deniziak, S.; Płaza, M.; Hejduk, M.; Pięta, P.; Płaza, M.; Czekaj, P.; Wołowiec, P.; Ludwinek, K. Integrated visitor
support system for tourism industry based on IoT technologies. In Proceedings of the SPIE 2018, Applications in Astronomy,
Communications, Industry, and High-Energy Physics Experiments, Wilga, Poland, 26 May–4 June 2018; p. 108081J. [CrossRef]

8. Pięta, P.; Deniziak, S.; Belka, R.; Płaza, M.; Płaza, M. Multi-domain model for simulating smart IoT-based theme parks. In Proceed-
ings of the SPIE 2018, Photonics Applications in Astronomy, Communications, Industry, and High-Energy Physics Experiments,
Wilga, Poland, 26 May–4 June 2018; p. 108082T. [CrossRef]

9. Ivankova, G.V.; Mochalina, E.P.; Goncharova, N.L. Internet of Things (IoT) in logistics. IOP Conf. Ser. Mater. Sci. Eng. 2020,
940, 1–7. [CrossRef]

10. Song, Y.; Yu, F.R.; Li Zhou, F.; Yang, X.; He, Z. Applications of the Internet of Things (IoT) in Smart Logistics: A Comprehensive
Survey. IEEE Internet Things J. 2021, 8, 4250–4274. [CrossRef]

http://doi.org/10.1109/COMST.2020.2973314
http://doi.org/10.5604/01.3001.0013.2539
http://doi.org/10.1109/JSEN.2021.3060953
http://doi.org/10.1117/12.2326403
http://doi.org/10.1117/12.2501659
http://doi.org/10.1088/1757-899X/940/1/012033
http://doi.org/10.1109/JIOT.2020.3034385

Electronics 2022, 11, 4120 18 of 21

11. Muangprathub, J.; Boonnam, N.; Kajornkasirat, S.; Lekbangpong, N.; Wanichsombat, A.; Nillaor, P. IoT and agriculture data
analysis for smart farm. Comput. Electron. Agric. 2019, 156, 467–474. [CrossRef]

12. Płaza, M.; Belka, R.; Płaza, M.; Deniziak, S.; Pięta, P.; Doszczeczko, S. Analysis of feasibility and capabilities of RTLS systems
in tourism industry. In Proceedings of the SPIE 2018, Photonics Applications in Astronomy, Communications, Industry, and
High-Energy Physics Experiments, Wilga, Poland, 26 May–4 June 2018; p. 108080C. [CrossRef]

13. Kodali, R.K.; Rajanarayanan, S.C.; Koganti, A.; Boppana, L. IoT based security system. In Proceedings of the TENCON 2019–2019
IEEE Region 10 Conference (TENCON), Kochi, India, 17–20 October 2019.

14. Kang, B.; Park, S.; Lee, T.; Park, S. IoT-based monitoring system using tri-level context making model for smart home ser-
vices. In Proceedings of the 2015 IEEE International Conference on Consumer Electronics (ICCE), Las Vegas, NV, USA,
9–12 January 2015.

15. Chen, X.-Y.; Jin, Z.-G. Research on Key Technology and Applications for Internet of Things. Phys. Procedia 2012, 33, 561–566.
[CrossRef]

16. Balandina, E.; Balandin, S.; Koucheryavy, Y.; Mouromtsev, D. IoT Use Cases in Healthcare and Tourism. In Proceedings of the
2015 IEEE 17th Conference on Business Informatics, Lisbon, Portugal, 13–16 July 2015.

17. Philip, B.V.; Alpcan, T.; Jin, J.; Palaniswami, M. Distributed Real-Time IoT for Autonomous Vehicles. IEEE Trans. Ind. Inform. 2019,
15, 1131–1140. [CrossRef]

18. Saraf, S.B.; Gawali, D.H. IoT Based Smart Irrigation Monitoring And Controlling System. In Proceedings of the 2017 2nd IEEE
International Conference On Recent Trends in Electronics Information & Communication Technology (RTEICT), Bangalore, India,
19–20 May 2017.

19. Pawar, S.; Kithani, V.; Ahuja, S.; Sahu, S. Smart Home Security using IoT and Face Recognition. In Proceedings of the 2018 Fourth
International Conference on Computing Communication Control and Automation (ICCUBEA), Pune, India, 16–18 August 2018.

20. Lu, D.; Teng, Q. Application of Cloud Computing and IoT in Logistics. J. Softw. Eng. Appl. 2012, 5, 204–207. [CrossRef]
21. Ebling, M.R.; Watson, J. IoT: From Sports to Fashion and Everything In-Between. IEEE Pervasive Comput. 2016, 15, 2–4. [CrossRef]
22. Tianxiang, Z. A Mobile Architecture to Real-time Device Safety Monitoring of Amusement Park Ride Based on the Internet of

Things. Contemp. Logist. 2011, 5, 42–46.
23. Isyanto, H.; Arifin, A.S.; Suryanegara, M. Design and Implementation of IoT-Based Smart Home Voice Commands for disabled

people using Google Assistant. In Proceedings of the 2020 International Conference on Smart Technology and Applications
(ICoSTA), Surabaya, Indonesia, 20 February 2020.

24. Patel, S.; Kumar, P.; Garg, S.; Kumar, R. Face Recognition based smart attendance system using IoT. Int. J. Comput. Sci. Eng. 2018,
6, 871–877. [CrossRef]

25. Avatefipour, O.; Sadry, F. Traffic Management System Using IoT Technology-A Comparative Review. In Proceedings of the 2018
IEEE International Conference on Electro/Information Technology (EIT), Rochester, MI, USA, 3–5 May 2018.

26. Płaza, M.; Deniziak, S.; Płaza, M.; Belka, R.; Pięta, P. Analysis of parallel computational models for clustering. In Proceedings of
the SPIE 2018, Photonics Applications in Astronomy, Communications, Industry, and High-Energy Physics Experiments, Wilga,
Poland, 3–10 June 2018; p. 108081O. [CrossRef]

27. Pradityo, F.; Surantha, N. Indoor Air Quality Monitoring and Controlling System Based on IoT and Fuzzy Logic. In Proceedings
of the 2019 7th International Conference on Information and Communication Technology (ICoICT), Kuala Lumpur, Malaysia,
24–26 July 2019.

28. Kalsoom, T.; Ahmed, S.; Rafi-ul-Shan, P.M.; Azmat, M.; Akhtar, P.; Pervez, Z.; Imran, M.A.; Ur-Rehman, M. Impact of IoT on
Manufacturing Industry 4.0: A New Triangular Systematic Review. Sustainability 2021, 13, 12506. [CrossRef]

29. Jayaraman, P.P.; Perera, C.; Georgakopoulos, D.; Dustdar, S.; Thakker, D.; Ranjan, R. Analytics-as-a-service in a multi-cloud
environment through semantically-enabled hierarchical data processing. Softw. Pract. Exp. 2010, 47, 1139–1156. [CrossRef]

30. Mourtzis, D.; Vlachou, E.; Milas, N. Industrial Big Data as a result of IoT adoption in Manufacturing. Procedia CIRP 2016,
55, 290–295. [CrossRef]

31. Ramnath, S.; Javali, A.; Narang, B.; Mishra, P.; Routray, S.K. IoT based localization and tracking. In Proceedings of the 2017
International Conference on IoT and Application (ICIOT), Nagapattinam, India, 19–20 May 2017.

32. Khelifi, F.; Bradai, A.; Benslimane, A.; Rawat, P.; Atri, M. A Survey of Localization Systems in Internet of Things. Mob. Netw. Appl.
2019, 24, 761–785. [CrossRef]

33. Bąk, S.; Czarnecki, R.; Deniziak, S. Synthesis of real-time cloud applications for Internet of Things. Turk. J. Electr. Eng. Comput. Sci.
2015, 23, 913–929. [CrossRef]

34. Intel. Intel Time Coordinated Computing Tools (Intel TCC Tools). 2022. Available online: https://www.intel.com/content/
www/us/en/developer/tools/time-coordinated-computing-tools/overview.html (accessed on 10 September 2022).

35. Intel. Real-Time at the Edge: Overview. 2022. Available online: https://www.intel.com/content/www/us/en/design/technologies-
and-topics/iot/real-time.html (accessed on 10 September 2022).

36. Lee, J.; Park, S. Time-Sensitive Network (TSN) Experiment in Sensor-Based Integrated Environment for Autonomous Driving.
Sensors 2019, 19, 1111. [CrossRef]

37. Rawat, P.; Singh, K.D.; Bonnin, J.M. Cognitive Radio for M2M and Internet of Things: A survey. Comput. Commun. 2016, 94, 1–29.
[CrossRef]

http://doi.org/10.1016/j.compag.2018.12.011
http://doi.org/10.1117/12.2500558
http://doi.org/10.1016/j.phpro.2012.05.104
http://doi.org/10.1109/TII.2018.2877217
http://doi.org/10.4236/jsea.2012.512B039
http://doi.org/10.1109/MPRV.2016.71
http://doi.org/10.26438/ijcse/v6i5.871877
http://doi.org/10.1117/12.2500795
http://doi.org/10.3390/su132212506
http://doi.org/10.1002/spe.2432
http://doi.org/10.1016/j.procir.2016.07.038
http://doi.org/10.1007/s11036-018-1090-3
http://doi.org/10.3906/elk-1302-178
https://www.intel.com/content/www/us/en/developer/tools/time-coordinated-computing-tools/overview.html
https://www.intel.com/content/www/us/en/developer/tools/time-coordinated-computing-tools/overview.html
https://www.intel.com/content/www/us/en/design/technologies-and-topics/iot/real-time.html
https://www.intel.com/content/www/us/en/design/technologies-and-topics/iot/real-time.html
http://doi.org/10.3390/s19051111
http://doi.org/10.1016/j.comcom.2016.07.012

Electronics 2022, 11, 4120 19 of 21

38. Perera, C.; Talagala, D.S.; Liu, C.H.; Estrella, J.C. Energy-Efficient Location and Activity-Aware On-Demand Mobile Distributed
Sensing Platform for Sensing as a Service in IoT Clouds. IEEE Trans. Comput. Soc. Syst. 2015, 2, 171–181. [CrossRef]

39. Lasota, M.; Deniziak, S.; Chrobot, A. Scalable Distributed Datastore for Real-Time Cloud Computing. In Federated Conference on
Software Development and Object Technologies; Springer: Cham, Switzerland, 2017; Volume 511, pp. 193–207.

40. Czarnecki, R.; Deniziak, S. Embedded Real-Time HTTP Server. Int. J. Comput. Netw. Inf. Secur. 2015, 5, 1–8. [CrossRef]
41. Zhao, J.-C.; Zhang, J.-F.; Feng, Y.; Guo, J.-X. The Study and Application of the IoT Technology in Agriculture. In Proceedings of

the 2010 3rd International Conference on Computer Science and Information Technology, Chengdu, China, 9–11 July 2010.
42. Lee, J.; Kim, J.; Kim, S.; Lim, C.; Jung, J. Enhanced distributed streaming system based on RTP/RTSP in resurgent ability.

In Proceedings of the Fourth Annual ACIS International Conference on Computer and Information Science (ICIS’05), Jeju Island,
Republic of Korea, 14–16 July 2005.

43. Kirsche, M.; Klauck, R. Unify to bridge gaps: Bringing XMPP into the Internet of Things. In Proceedings of the 2012 IEEE
International Conference on Pervasive Computing and Communications Workshops, Lugano, Switzerland, 19–23 March 2012.

44. Krishnaa, G.G.; Krishnaa, G.; Bhalajia, N. Analysis of Routing Protocol for Low-Power and Lossy Networks in IoT Real Time.
Appl. Procedia Comput. Sci. 2016, 87, 270–274. [CrossRef]

45. Biswas, A.R.; Giaffreda, R. IoT and Cloud Convergence: Opportunities and Challenges. In Proceedings of the 2014 IEEE World
Forum on Internet of Things (WF-IoT), Seoul, Republic of Korea, 6–8 March 2014.

46. Ahmad, S.; Malik, S.; Ullah, I.; Fayaz, M.; Park, D.-H.; Kim, K.; Kim, D.H. An Adaptive Approach Based on Resource-Awareness
Towards Power-Efficient Real-Time Periodic Task Modeling on Embedded IoT Devices. Processes 2018, 6, 90. [CrossRef]

47. Eugne, D.; Ngangue, N.; Andomaya, C. On Enhancing Technology Coexistence in theIoT Era: ZigBee and 802.11 Case. IEEE
Access 2016, 4, 1835–1844.

48. Stonebraker, M.; Weisberg, A. The VoltDB Main Memory DBMS. IEEE Computer Society Technical Committee on Data Engineer-
ing. 2013. Available online: http://sites.computer.org/debull/A13june/VoltDB1.pdf (accessed on 10 September 2022).

49. Li, W.-J.; Yen, C.; Lin, Y.-S.; Tung, S.-C.; Huang, S.M. Just IoT Internet of Things based on the Firebase Real-time Database.
In Proceedings of the 2018 IEEE International Conference on Smart Manufacturing, Industrial & Logistics Engineering (SMILE),
Hsinchu, Taiwan, 8–9 February 2018.

50. Deniziak, S. Design Models in SYSTEMC Language. In Technical Transactions; 1-I; Krakow University of Technology: Krakow,
Poland, 2007; pp. 17–33.

51. Wolf, W. High-Performance Embedded Computing, Architectures, Applications, and Methodologies; Elsevier: San Francisco, CA,
USA, 2007.

52. Deniziak, S.; Tomaszewski, R. Co-synthesis of contention-free energy-efficient NOC-based real time embedded systems. J. Syst.
Archit. 2019, 98, 92–101. [CrossRef]

53. De Donno, M.; Tange, K.; Dragoni, N. Foundations and Evolution of Modern Computing Paradigms: Cloud, IoT, Edge, and Fog.
IEEE Access 2019, 7, 150936–150948. [CrossRef]

54. Alrowaily, M.; Lu, Z. Secure Edge Computing in IoT Systems: Review and Case Studies. In Proceedings of the 2018 IEEE/ACM
Symposium on Edge Computing (SEC), Seattle, WA, USA, 25–27 October 2018.

55. Wan, S.; Ding, S.; Chen, C. Edge computing enabled video segmentation for real-time traffic monitoring in internet of vehicles.
Pattern Recognit. 2022, 121, 108146. [CrossRef]

56. Sun, Y.; Fei, T.; Li, X.; Warnecke, A.; Warsitz, E.; Pohl, N. Real-time radar-based gesture detection and recognition built in an
edge-computing platform. IEEE Sens. J. 2020, 20, 10706–10716. [CrossRef]

57. Yu, W.; Liang, F.; He, X.; Hatcher, W.G.; Lu, C.; Lin, J.; Yang, X. A Survey on the Edge Computing for the Internet of Things. IEEE
Access 2017, 6, 6900–6919. [CrossRef]

58. Hamdan, S.; Ayyash, M.; Almajali, S. Edge-Computing Architectures for Internet of Things Applications: A Survey. Sensors 2020,
20, 6441. [CrossRef]

59. Bonomi, F.; Milito, R.; Zhu, J.; Addepalli, S. Fog Computing and its Role in the Internet of Things. In Proceedings of the First
Edition of the MCC Workshop on Mobile Cloud Computing, Helsinki, Finland, August 2012; pp. 13–16.

60. Oktian, Y.E.; Witanto, E.N.; Lee, S.-G. A Conceptual Architecture in Decentralizing Computing, Storage, and Networking Aspect
of IoT Infrastructure. IoT 2021, 2, 205–221. [CrossRef]

61. Li, J.; Jin, J.; Yuan, D.; Zhang, H. Virtual Fog: A Virtualization Enabled Fog Computing Framework for Internet of Things. IEEE
Internet Things J. 2018, 5, 121–131. [CrossRef]

62. Li, Y.; Xuan Phan, L.T.; Loo, B.T. Network Functions Virtualization with Soft Real-Time Guarantees. In Proceedings of the
IEEE INFOCOM 2016-The 35th Annual IEEE International Conference on Computer Communications, San Francisco, CA, USA,
10–14 April 2016.

63. Jawdhari, H.A.; Abdullah, A.A. The Application of Network Functions Virtualization on Different Networks, and its New
Applications in Blockchain: A Survey. Spec. Issue Comput. Technol. Inf. Manag. 2021, 18, 1007–1044. [CrossRef]

64. Abdulqadir, H.R.; Zeebaree, S.R.M.; Shukur, H.M.; Sadeeq, M.A.M.; Salim, B.W.; Salih, A.A.; Kak, S.F. A study of moving from
cloud computing to fog computing. Qubahan Acad. J. 2022, 2, 60–70. [CrossRef]

65. Cao, K.; Liu, Y.; Meng, G.; Sun, Q. An overview on edge computing research. IEEE Access 2020, 8, 85714–85728. [CrossRef]
66. Al-Shammari, B.K.J.; Al-Aboody, N.; Al-Raweshidy, H.S. IoT Traffic Management and Integration in the QoS Supported Network.

IEEE Internet Things J. 2017, 5, 352–370. [CrossRef]

http://doi.org/10.1109/TCSS.2016.2515844
http://doi.org/10.5815/ijcnis.2015.05.01
http://doi.org/10.1016/j.procs.2016.05.160
http://doi.org/10.3390/pr6070090
http://sites.computer.org/debull/A13june/VoltDB1.pdf
http://doi.org/10.1016/j.sysarc.2019.07.002
http://doi.org/10.1109/ACCESS.2019.2947652
http://doi.org/10.1016/j.patcog.2021.108146
http://doi.org/10.1109/JSEN.2020.2994292
http://doi.org/10.1109/ACCESS.2017.2778504
http://doi.org/10.3390/s20226441
http://doi.org/10.3390/iot2020011
http://doi.org/10.1109/JIOT.2017.2774286
http://doi.org/10.14704/WEB/V18SI04/WEB18179
http://doi.org/10.48161/qaj.v1n2a49
http://doi.org/10.1109/ACCESS.2020.2991734
http://doi.org/10.1109/JIOT.2017.2785219

Electronics 2022, 11, 4120 20 of 21

67. Cui, L.; Xu, C.; Yang, S.; Huang, J.Z.; Li, J.; Ming, X.W.Z.; Lu, N. Joint Optimization of Energy Consumption and Latency in
Mobile Edge Computing for Internet of Things. IEEE Internet Things J. 2018, 6, 4791–4803. [CrossRef]

68. Atlam, H.F.; Walters, R.J.; Wills, G.B. Fog Computing and the Internet of Things: A Review. Big Data Cogn. Comput. 2018, 2, 10.
[CrossRef]

69. Novo, O. Blockchain Meets IoT: An Architecture for Scalable Access Management in IoT. IEEE Internet Things J. 2018, 5, 1184–1195.
[CrossRef]

70. Ngabo, D.; Wang, D.; Iwendi, C.; Anajemb, J.A.; Ajao, L.A.; Biamba, C. Blockchain-Based Security Mechanism for the Medical
Data at Fog Computing Architecture of Internet of Things. Electronics 2021, 10, 2110. [CrossRef]

71. Tayyaba, S.K.; Shah, M.A.; Khan, O.A.; Ahmed, A.W. Software Defined Network (SDN) Based Internet of Things (IoT): A Road
Ahead. In Proceedings of the ICFNDS’17: Proceedings of the International Conference on Future Networks and Distributed
Systems, Cambridge, UK, 19–20 July 2017; pp. 1–8.

72. Mazhar, N.; Salleh, R.; Zeeshan, M.; Hameed, M.M.; Khan, N. R-IDPS: Real time SDN based IDPS system for IoT security.
In Proceedings of the 2021 IEEE 18th International Conference on Smart Communities: Improving Quality of Life Using ICT, IoT
and AI (HONET), Karachi, Pakistan, 11–13 October 2021.

73. Hasan, K.; Wu, X.-W.; Biswas, K.; Ahmed, K. A Novel Framework for Software Defined Wireless Body Area Network. In Proceed-
ings of the 2018 8th International Conference on Intelligent Systems, Modelling and Simulation (ISMS), Kuala Lumpur, Malaysia,
8–10 May 2018.

74. Yassein, M.B.; Aljawarneh, S.; Al-Rousan, M.; Mardini, W.; Al-Rashdan, W. Combined Software-Defined Network (SDN) and
Internet of Things (IoT). In Proceedings of the 2017 International Conference on Electrical and Computing Technologies and
Applications (ICECTA), Ras Al Khaimah, United Arab Emirates, 21–23 November 2017.

75. Li, J.; Altman, E.; Touati, C. A General SDN-based IoT Framework with NVF Implementation. ZTE Commun. 2015, 13, 42–45.
76. Tang, W.; Zhang, R.; Feng, S. A Spatiotemporal Model for Hard-deadlineMulti-stream Traffic in Uplink IoT Networks. IEEE

Internet Things J. 2021, 9, 601–615. [CrossRef]
77. Audsley, N.C.; Burns, A.; Richardson, M.F.; Wellings, A.J. Absolute and relative temporal constraints in hard real-time databases.

In Proceedings of the Fourth Euromicro Workshop on Real-Time Systems, Athens, Greece, 3–5 June 1992.
78. Druid. Apache Druid Is a Real-time Database to Power Modern Analytics Applications. 2022. Available online: https://druid.apache.

org/ (accessed on 10 September 2022).
79. Volt Active Data. Where We Sit in the Stack. 2022. Available online: https://www.voltactivedata.com/ (accessed on 10 September 2022).
80. Litwin, W.; Neimat, M.-A.; Schneider, D.A. LH*—A scalable, distributed data structure. ACM Trans. Database Syst. 1996,

21, 480–525. [CrossRef]
81. Lasota, M.; Deniziak, S.; Chrobot, A. An SDDS-Based Architecture for a Real-Time Data Store. Int. J. Inf. Eng. Electron. Bus. 2016,

1, 21–28. [CrossRef]
82. Hayatunnufus; Riasetiawan, M.; Ashari, A. Performance Analysis of FIFO and Round Robin Scheduling Process Algorithm in IoT

Operating System for Collecting Landslide Data. In Proceedings of the 2020 International Conference on Data Science, Artificial
Intelligence, and Business Analytics (DATABIA), Medan, Indonesia, 16–17 July 2020.

83. Malik, S.; Ahmad, S.; Ullah, I.; Park, D.H.; Kim, D.H. An Adaptive Emergency First Intelligent Scheduling Algorithm for E cient
Task Management and Scheduling in Hybrid of Hard Real-Time and Soft Real-Time Embedded IoT Systems. Sustainability 2019,
11, 2192. [CrossRef]

84. Pereira, D.A.; Ourique de Morais, W.; Pignaton de Freitas, E. NoSQL real-time database performance comparison. Int. J. Parallel
Emergent Distrib. Syst. 2017, 33, 144–156. [CrossRef]

85. Kaur, K.; Sachdeva, M. Performance Evaluation of NewSQL Databases. In Proceedings of the 2017 International Conference on
Inventive Systems and Control (ICISC), Coimbatore, India, 19–20 January 2017.

86. Singh, R.K.; Pandey, S.; Shanker, U. A Non-Database Operations Aware Priority Ceiling Protocol for Hard Real-Time Database
Systems. In Proceedings of the 2019 10th International Conference on Computing, Communication and Networking Technologies
(ICCCNT), Kanpur, India, 6–8 July 2019.

87. Halang, W.A.; Stoyenko, A.D. Real Time Computing; Springer: Berlin/Heidelberg, Germany, 1994; pp. 261–282.
88. Abohamama, A.S.; El-Ghamry, A.; Hamouda, E. Real-Time Task Scheduling Algorithm for IoT-Based Applications in the

Cloud–Fog Environment. J. Netw. Syst. Manag. 2022, 30, 54. [CrossRef]
89. Koukopoulos, D. The Impact of FIFO Compositions with Other Protocols on the Stability of Multimedia Networks Facing

Dynamic Adversarial Attacks. In Proceedings of the MINES’13, 2013 Fifth International Conference on Multimedia Information
Networking and Security, Beijing, China, 1 November 2013; pp. 575–578.

90. Kashyap, R.; Arora, K.; Sharma, M.; Aazam, A. Security-Aware GA based Practical Byzantine Fault Tolerance for Permissioned
Blockchain. In Proceedings of the 2019 4th International Conference on Control, Robotics and Cybernetics (CRC), Tokyo, Japan,
27–30 September 2019.

91. Xu, G.; Liu, Y.; Xing, J.; Luo, T.; Gu, Y.; Liu, S.; Zheng, X.; Vasilakos, A.V. SG-PBFT: A Secure and Highly Efficient, Blockchain
PBFT Consensus Algorithm for Internet of Vehicles, Computer Science. J. Parallel Distrib. Comput. 2022, 164, 1–11. [CrossRef]

92. Park, G.-L.; Shirazi, B.; Marquis, J.; Choo, H. Decisive path scheduling: A new list scheduling method. In Proceedings of the 1997
International Conference on Parallel Processing, Bloomington, IL, USA, 11–15 August 1997.

http://doi.org/10.1109/JIOT.2018.2869226
http://doi.org/10.3390/bdcc2020010
http://doi.org/10.1109/JIOT.2018.2812239
http://doi.org/10.3390/electronics10172110
http://doi.org/10.1109/JIOT.2021.3085899
https://druid.apache.org/
https://druid.apache.org/
https://www.voltactivedata.com/
http://doi.org/10.1145/236711.236713
http://doi.org/10.5815/ijieeb.2016.01.03
http://doi.org/10.3390/su11082192
http://doi.org/10.1080/17445760.2017.1307367
http://doi.org/10.1007/s10922-022-09664-6
http://doi.org/10.1016/j.jpdc.2022.01.029

Electronics 2022, 11, 4120 21 of 21

93. Zonios, C.; Tenentes, V. Energy Efficient Speech Command Recognition for Private Smart Home IoT Applications. In Proceedings
of the 2021 10th International Conference on Modern Circuits and Systems Technologies (MOCAST), Thessaloniki, Greece,
5–7 July 2021.

94. Teng, S.; Zhang, W.; Zhu, H.; Fu, X.; Su, J.; Cui, B. A Least-Laxity-First Scheduling Algorithm of Variable Time Slice for Periodic
Tasks. Int. J. Softw. Sci. Comput. Intell. 2012, 2, 19.

95. Furst, J.; Chen, K.; Kim, H.-S.; Bonnet, P. Evaluating Bluetooth Low Energy for IoT. In Proceedings of the 2018 IEEE Workshop on
Benchmarking Cyber-Physical Networks and Systems (CPSBench), Porto, Portugal, 10–13 April 2018.

96. Beshley, M.; Kryvinska, N.; Beshley, H.; Yaremko, O.; Pyrih, J. Virtual Router Design and Modeling for Future Networks with
QoS Guarantees. Electronics 2021, 10, 1139. [CrossRef]

97. Schulzrinne, H.; Rao, A.; Lanphier, R. Real Time Streaming Protocol (RTSP). RFC 1998, 2326.
98. Rhinow, F.; Veloso, P.P.; Puyelo, C.; Barrett, S.; O Nuallain, E. P2P live video streaming in WebRTC. In Proceedings of the 2014

World Congress on Computer Applications and Information Systems (WCCAIS), Hammamet, Tunisia, 17–19 January 2014.
99. Jianbing, L.; Shuhui, C. The Design and Implementation of RTSP/RTP Multimedia Traffic Identification Algorithm. J. Phys. Conf.

Ser. 2019, 1168, 1–8. [CrossRef]
100. Saint-Andre, P. Extensible Messaging and Presence Protocol (XMPP): Core. RFC 3920, IETF. October 2004. Available online:

https://www.rfc-editor.org/rfc/rfc6120 (accessed on 10 September 2022).
101. Saint-Andre, P. Extensible Messaging and Presence Protocol (XMPP): Instant Messaging and Presence, RFC 3921, IETF.

October 2004. Available online: http://www.kandroid.org/board/data/board/guestbook/file_in_body/1/xmpp.pdf
(accessed on 10 September 2022).

102. MQTT. MQTT: The Standard for IoT Messaging. 2022. Available online: https://mqtt.org (accessed on 10 September 2022).
103. Bormann, C.; Castellani, A.P.; Shelby, Z. CoAP: An Application Protocol for Billions of Tiny Internet Nodes. IEEE Internet Comput.

2012, 16, 62–67. [CrossRef]
104. Porcius, M.; Fortuna, C.; Kandus, G.; Mohorcic, M. Integrating custom hardware into Sensor Web.SoftCOM 2010. In Pro-

ceedings of the 18th International Conference on Software, Telecommunications and Computer Networks, Split, Croatia,
23–25 September 2010.

105. Internet Engineering Task Force. The WebSocket Protocol. 2022. Available online: https://datatracker.ietf.org/doc/html/rfc6455
(accessed on 10 September 2022).

106. Muller, G.L. HTML5 WebSocket Protocol and Its Application to Distributed Computing. Available online: https://arxiv.org/abs/
1409.3367 (accessed on 10 September 2022).

107. Ha, M.; Kim, D.; Kim, S.H.; Hong, S. Inter-MARIO: A Fast and Seamless Mobility Protocol to Support Inter-Pan Handover
in 6LoWPAN. In Proceedings of the 2010 IEEE Global Telecommunications Conference GLOBECOM 2010, Miami, FL, USA,
6–10 December 2010; pp. 1–6.

108. Tosi, J.; Taffoni, F.; Santacatterina, M.; Sannino, R.; Formica, D. Performance Evaluation of Bluetooth Low Energy: A Systematic
Review. Sensors 2017, 17, 2898. [CrossRef]

109. Varghese, S.G.; Kurian, C.P.; George, V.I.; John, A.; Nayak, V.; Upadhyay, A. Comparative study of zigBee topologies for IoT-based
lighting automation. IET Wirel. Sens. Syst. 2019, 4, 201–207. [CrossRef]

110. Haxhibeqiri, J.; De Poorter, E.; Moerman, I.; Hoebeke, J. A Survey of LoRaWAN for IoT: From Technologyto Application. Sensors
2018, 18, 3995. [CrossRef] [PubMed]

111. Wu, C.-G.; Wang, L. A Deadline-Aware Estimation of Distribution Algorithm for Resource Scheduling in Fog Computing Systems.
In Proceedings of the 2019 IEEE Congress on Evolutionary Computation (CEC), Wellington, New Zealand, 10–13 June 2019.

http://doi.org/10.3390/electronics10101139
http://doi.org/10.1088/1742-6596/1168/5/052033
https://www.rfc-editor.org/rfc/rfc6120
http://www.kandroid.org/board/data/board/guestbook/file_in_body/1/xmpp.pdf
https://mqtt.org
http://doi.org/10.1109/MIC.2012.29
https://datatracker.ietf.org/doc/html/rfc6455
https://arxiv.org/abs/1409.3367
https://arxiv.org/abs/1409.3367
http://doi.org/10.3390/s17122898
http://doi.org/10.1049/iet-wss.2018.5065
http://doi.org/10.3390/s18113995
http://www.ncbi.nlm.nih.gov/pubmed/30453524

	Introduction
	Functional Specification Model and Synthesis of Real-Time Systems
	IoT Application System Model
	Mapping Functional Specifications to Real-Time IoT Architecture

	Selected Elements of IoT System Architecture
	Edge and Fog Computing
	Programmable Networks and Virtualization Techniques
	Real-Time Database Systems

	Task/Transmission Scheduling and Communication Protocols
	FIFO
	Static and Dynamic Task Scheduling Methods in Real-Time Systems
	Communication Protocols

	RTIoT System Design Methodology
	System Specifications
	Mapping Specifications to RTIoT System Architecture
	RTIoT System Optimization

	Conclusions
	References

