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Abstract: Motion estimation for complex fluid flows via their image sequences is a challenging issue
in computer vision. It plays a significant role in scientific research and engineering applications related
to meteorology, oceanography, and fluid mechanics. In this paper, we introduce a novel convolutional
neural network (CNN)-based motion estimator for complex fluid flows using multiscale cost volume.
It uses correlation coefficients as the matching costs, which can improve the accuracy of motion
estimation by enhancing the discrimination of the feature matching and overcoming the feature
distortions caused by the changes of fluid shapes and illuminations. Specifically, it first generates
sparse seeds by a feature extraction network. A correlation pyramid is then constructed for all
pairs of sparse seeds, and the predicted matches are iteratively updated through a recurrent neural
network, which lookups a multi-scale cost volume from a correlation pyramid via a multi-scale
search scheme. Then it uses the searched multi-scale cost volume, the current matches, and the
context features as the input features to correlate the predicted matches. Since the multi-scale cost
volume contains motion information for both large and small displacements, it can recover small-scale
motion structures. However, the predicted matches are sparse, so the final flow field is computed by
performing a CNN-based interpolation for these sparse matches. The experimental results show that
our method significantly outperforms the current motion estimators in capturing different motion
patterns in complex fluid flows, especially in recovering some small-scale vortices. It also achieves
state-of-the-art evaluation results on the public fluid datasets and successfully captures the storms in
Jupiter’s White Ovals from the remote sensing images.

Keywords: motion estimation; computer vision; complex fluid flows; convolution neural network

1. Introduction

Motion estimation for complex fluid flows via their image sequences is a challenging
problem in computer vision. It plays an important role in scientific research and engineer-
ing applications related to meteorology, oceanography, and fluid mechanics, such as the
analysis of atmospheric or sea ice motion, the detection and early warning of a forest fire
or smoke, the prediction of sandstorms or tornadoes, the application of particle image
velocimetry, etc. It provides reliable measurement in a non-intrusive way to acquire a
deeper insight of complex flow phenomena. During the last several decades, although a
great many motion estimators [1–8] have been introduced to predict the motion of complex
fluid flows, there are still some challenging problems that need to be solved.

The fluid is nonrigid and characterized by hardly predictable variation. When the fluid
flows from one image to another, its shape often changes. Therefore, how to over-come
the change of fluid shapes with time is the key for high-precision fluid motion estimation.
In addition, the fluid is usually transparent and contains weak textures. Different parts
of the fluid often have a similar appearance. Therefore, it is difficult to distinguish the
differences between them. Furthermore, when the fluid is affected by the illumination
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changes, its brightness often changes. This leads to ambiguity in the matching between
different parts of a fluid image pair. Therefore, how to enhance the discriminability for
them is another challenge of high-precision fluid motion estimation. Finally, the fluid flows
generally contain complex motion patterns, the current motion estimators [9–11] often fail
to capture them, especially when recovering some small-scale motion structures. Therefore,
how to capture these different motion patterns in complex fluid flows is another urgent
problem that needs to be solved.

In this paper, we solve these problems by introducing a novel motion estimator, and
the main contributions are summarized as follows:

1. A novel CNN-based motion estimator is introduced to predict complex fluid flows,
and it uses correlation coefficients as the matching costs, which can overcome the
feature distortions caused by the changes of fluid shapes and illuminations, and
improve the accuracy of motion estimation by enhancing the discrimination of the
feature matching.

2. The multi-scale cost volume is retrieved from a correlation pyramid using a multi-scale
search scheme. Therefore, it contains both global and local motion information, which
can recover the moving structures with both large and small displacements and,
especially capture the motion of small fast-moving objects, such as some important
small-scale vortices in complex fluid flows.

3. The proposed CNN-based motion estimator significant outperforms the current opti-
cal flow methods in capturing different motion patterns in complex fluid flows. It also
achieves state-of-the-art evaluation results on the public fluid datasets and successfully
captures the storms in Jupiter’s White Ovals from the remote sensing images.

2. Related Work

In this section, we briefly review the motion estimators related to the complex fluid
flows. During the past several decades, various motion estimators have been developed to
improve the accuracy of fluid motion estimation. These methods are mainly classified into
three groups: correlation-based methods, variational optical flow methods, and CNN-based
motion estimators.

2.1. Correlation-Based Methods

The traditional correlation-based method [1] divides an image into many interrogation
windows with a fixed size, and it finds the best match by searching for the maximum of
cross-correlation between two interrogation windows of an image pair. However, it often
produces sparse matches and requires a post-processing step, such as outlier detection
and interpolation. Then, a great many methods have been proposed to solve this problem.
Astarita et al. [2,3] improved the spatial resolution of the velocity field by a velocity interpo-
lation and image deformation. Becker et al. [4] proposed a variational adaptive correlation
method, which predicts complex fluid flows using a variational adaptive Gaussian win-
dow. Theunissen et al. [5] introduced an adaptive sampling and windowing interrogation
method to improve the robustness of particle image velocimetry. They later [6] proposed
a spatially adaptive PIV interrogation based on the data ensemble to select the adaptive
interrogation parameters. Yu et al. [7] proposed an adaptive PIV algorithm based on seed-
ing density and velocity information. Although correlation-based methods have greatly
improved over the last several decades, they still have relatively large errors in regions
with large velocity gradients due to the smoothing effect of the interrogation window.

2.2. Variational Optical Flow Methods

To overcome the shortcomings of correlation-based methods, variational optical flow
methods are introduced to acquire the dense velocity fields. The variational optical flow
model was first proposed by Horn and Schunck [8], and it relies on the energy minimization
of an objective function that consists of a data term and a regularization term. The data
term is associated with the brightness constancy assumption, which assumes that when
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a pixel flows from one image to another, its brightness does not change. However, the
brightness constancy assumption is sensitive to illumination changes in the real world. At
the same time, the regularization term uses the penalization of the L2 norm, which leads to
an isotropic diffusion that can yield over-smoothing flow fields in motion discontinuities.
Therefore, a great many optical flow methods are introduced to solve these problems.
Brox et al. [12] added the gradient constancy assumption to the data term to handle weak
illumination changes and introduced a robust penalty function for the regularization
term that can create piecewise smooth flow fields. An isotropic TV-L1 regularization was
first proposed by Zach et al. [13] to preserve motion discontinuities. Corpetti et al. [14]
investigated a dedicated minimization-based motion estimator, and the cost function
includes a novel data term relying on an integrated version of the continuity equation of
fluid mechanics, which is associated with an original second-order div-curl regularizer.
Zhou et al. [15] presented a novel approach to estimate and analyze the 3D fluid structure
and motion of clouds from multi-spectrum 2D cloud image sequences. Sakaino [16]
introduced optical flow estimation based on the physical properties of waves and later
proposed a spatiotemporal image pattern prediction method [17] based on a physical model
with a time-varying optical flow. Li et al. [18] proposed to recover fluid-type motions using
a Navier–Stokes potential flow. Cuzol et al. [19] proposed a new motion estimator for image
sequences depicting fluid flows, relying on the Helmholtz decomposition of a motion field,
which consists of decoupling the velocity field into a divergence free component and a
vorticity free component. Ren et al. [20] proposed a novel incompressible SPH solver, where
the compressibility of fluid is directly measured by the deformation gradient. Although
these motion estimators improve the accuracy of the fluid motion estimation, they still do
not handle the feature distortions caused by the changes of fluid shapes and illuminations,
and also do not capture some important small-scale motion structures.

2.3. CNN-Based Motion Estimators

In recent work, convolutional neural networks have attracted a great deal of attention
due to their remarkable success in computer vision. FlowNet [21] is the first end-to-end
supervised optical flow learning framework, which takes an image pair as the input and
outputs a dense flow field. FlowNet2 [22] is later proposed to improve the accuracy by
staking several basic FlowNet modules for refinement. PWC-Net [23] computes optical
flow with CNNs via a pyramid, warping, and cost volume. LiteFlowNet [24] achieves
start-of-the-art results with a lightweight framework by warping the features extracted
from CNNs. ARFlow [25] introduces an unsupervised optical flow estimation by the
reliable supervision from transformations. RAFT [11] is a new deep network architecture
for optical flow estimation using recurrent all-pairs field transformations. GMA [26] solves
the occlusion problem by introducing a global motion aggregation module. Recently,
Cai et al. [9] proposed the dense motion estimation of particle images via a convolutional
neural network base on FlowNetS [21], and the corresponding CNN model is trained with a
synthetic dataset of fluid flow images. They later [10] introduced an enhanced configuration
of LiteFlowNet [24] for particle image velocimetry, which achieves a high accuracy via
training the corresponding CNN model using different kinds of fluid-like images. However,
these CNN-based motion estimators do not outperform the well-established correlation-
based optical flow methods for all aspects, and the accuracy of them is largely determined
by the training data. Masaki et al. [27] introduced convolutional neural networks for fluid
flow analysis, toward effective metamodeling and low-dimensionalization. It considers two
types of CNN-based fluid flow analyses: CNN metamodeling and CNN autoencoder. For
the first type of CNN, which has additional scalar inputs, they investigated the influence
of the input placements in the CNN training pipeline, and then investigated the influence
of the various parameters and operations on CNN performance, with the utilization
of an autoencoder. Murata et al. [28] proposed a nonlinear mode decomposition with
convolutional neural networks for fluid dynamics, which is used to visualize decomposed
flow fields. Nakamura et al. [29] introduced a robust training approach for neural networks
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for fluid flow state estimations, where a convolutional neural network is utilized to estimate
velocity fields from sectional sensor measurements. Yu et al. [30] proposed a cascaded
convolutional neural network to implement end-to-end two-phase flow fluid motion
estimation. Liang et al. [31] introduced particle-tracking velocimetry for complex flow
motion via deep neural networks, which has a high accuracy and efficiency. Guo et al. [32]
proposed a time-resolved particle image velocimetry algorithm based on deep learning,
which achieves excellent performance with a competitive calculation accuracy and high
calculation efficiency. In contrast with these existing CNN-based methods [27–32] for fluid
flow estimation, our method uses a very different network structure, which uses correlation
coefficients as the matching costs to enhance the discrimination of the feature matching and
overcome the feature distortions caused by the changes of fluid shapes and illuminations,
and it also achieves state-of-the-art results on the public fluid datasets.

3. Proposed Approach
3.1. Overview

In this section, a novel CNN-based motion estimator is introduced to predict complex
fluid flows. It mainly consists of five parts: (1) sparse seeds; (2) a correlation pyramid;
(3) multi-scale cost volume; (4) a CNN-based update module; (5) CNN-based interpolation.
Next, we will introduce each part in detail.

3.2. Sparse Seeds

A dense motion field is predicted by first generating sparse seeds on the image plane.
This is based on the observation that the motion field is generally sparse due to the motion
self-similarity of pixels in a local neighborhood. Therefore, it is unnecessary to compute
the match for each pixel. Specifically, by selecting appropriate seeds on the image plane,
the computational efficiency for optical flow estimation can be greatly improved with
almost no loss in accuracy. After obtaining matches for the sparse seeds, a CNN-based
interpolation is performed to recover the sparse matches to the full resolution.

The sparse seeds are generated by a feature extraction network, and seeds S1 and S2 are
extracted from input image pair I1 and I2, respectively, with the resolution of W × H and
three color channels, where W and H are the width and height of the image, respectively.
Specifically, this feature extraction network consists of a convolution layer, 2n residual
blocks (where every two residual blocks is a group, and the resolution of each residual
block in the k-th group is W

2k × H
2k ), and a convolution layer, where k = 1,2, . . . ,n. The sparse

seeds are the output features of the feature extraction network, where the adjacent seeds
have an interval of n pixels. The sparsity of seeds is controlled by adjusting the interval n,
which is often set to 2 or 3 in practice. Since these sparse seeds are evenly distributed on the
image plane at equal intervals, it ensures enough matches in a local neighborhood. It is very
helpful for our method to better restore local motion details by a CNN-based interpolation.

Fs and Ft are the feature maps for the seeds S1 and S2, respectively, which are extracted
from a pair of images I1 and I2 using the same feature extraction network in Figure 1. In
addition, the context feature map Fc is extracted from the first input image I1 using the
context network, which is the same as the feature extraction network. The structure of the
feature extraction network is given in Figure 1. The context feature map is mainly used
as a guide to preserve the motion discontinuities for the optical flow field to be estimated.
This is based on the observation that motion boundaries are often consistent with the edge
structures of the input image I1.



Electronics 2022, 11, 4159 5 of 20

Electronics 2022, 11, x FOR PEER REVIEW 5 of 20 
 

 

using the context network, which is the same as the feature extraction network. The struc-

ture of the feature extraction network is given in Figure 1. The context feature map is 

mainly used as a guide to preserve the motion discontinuities for the optical flow field to 

be estimated. This is based on the observation that motion boundaries are often consistent 

with the edge structures of the input image 𝐼1. 

 

Figure 1. The structure of the feature extraction network. 

3.3. Correlation Pyramid 

Inspired by the properties of correlation coefficients, we construct a full correlation 

volume by computing correlation coefficients between all the feature pairs of Fs and Ft, 

where the size of Fs and Ft is Ws × Hs = W
2n⁄ × H

2n⁄ . Specifically, the correlation coef-

ficients are used as the matching costs, and the matching cost between two feature vectors, 

Fs(x) located at x and Ft(y) located at y, is computed by: 

C(Fs(x), Ft(y)) =
1

D
∑

Fs
h(x) − μs(x)

σs(x)

D

h=1

∙
Ft

h(y) − μt(y)

σt(y)
 (1) 

where h ∈ {1,2, … , D} is the channel index, and Μs(x), μt(y) and σs(x), σt(y) are the 

means and variances of the feature vectors Fs(x), Ft(y) along the channel, respectively. 

For a feature vector in Fs, we take the matching costs between it and all the feature 

vectors in Ft to generate a 2D Ws × Hs correlation map. That is, each feature vector in Fs 

produces a 2D response map. Therefore, a full correlation volume is a 4D 

Ws × Hs × Ws × Hs volume, which is formed by taking the matching costs between all the 

feature pairs of Fs and Ft. As in [11], a correlation pyramid 𝐂 = {Cl|l = 0,1, … , L − 1} is 

constructed by an average pooling for the last two dimensions of the correlation volume 

with a kernel size of κ = {2(l) × 2(l)|l = 0,1, … , L − 1} , where C(l)  has a dimension of 

Hs × Ws ×
Hs

2l⁄ ×
Ws

2l⁄ . The correlation pyramid is a multi-scale correlation volume, 

which contains coarse-to-fine correlation features about almost all the different displace-

ments of sparse seeds, and we can look up the matching costs of different displacements 

at different scales for a feature vector in 𝐹𝑠 from the correlation pyramid. Since the corre-

lation pyramid considers both low- and high-resolution correlation information, while 

maintaining the first two dimensions (or the full resolution) of sparse seeds 𝑆1, it allows 

for our method to recover both large and small displacements, especially to capture the 

motion of small fast-moving objects, such as small-scale vortices in complex fluid flows. 

Now, let us discuss the advantages of the multi-scale correlation volume using cor-

relation coefficients as the matching costs. 

Figure 1. The structure of the feature extraction network.

3.3. Correlation Pyramid

Inspired by the properties of correlation coefficients, we construct a full correlation
volume by computing correlation coefficients between all the feature pairs of Fs and Ft,
where the size of Fs and Ft is Ws ×Hs =

W
2n × H

2n . Specifically, the correlation coefficients
are used as the matching costs, and the matching cost between two feature vectors, Fs(x)
located at x and Ft(y) located at y, is computed by:

C(Fs(x), Ft(y)) =
1
D

D

∑
h=1

Fh
s (x)− µs(x)

σs(x)
·F

h
t (y)− µt(y)

σt(y)
(1)

where h ∈ {1, 2, . . . , D} is the channel index, and Ms(x), µt(y) and σs(x), σt(y) are the
means and variances of the feature vectors Fs(x), Ft(y) along the channel, respectively.

For a feature vector in Fs, we take the matching costs between it and all the fea-
ture vectors in Ft to generate a 2D Ws ×Hs correlation map. That is, each feature vec-
tor in Fs produces a 2D response map. Therefore, a full correlation volume is a 4D
Ws ×Hs ×Ws ×Hs volume, which is formed by taking the matching costs between all the
feature pairs of Fs and Ft. As in [11], a correlation pyramid C =

{
Cl |l = 0, 1, . . . , L− 1

}
is

constructed by an average pooling for the last two dimensions of the correlation volume
with a kernel size of κ =

{
2(l) × 2(l) |l = 0, 1, . . . , L− 1

}
, where C(l) has a dimension of

Hs ×Ws × Hs
2l × Ws

2l . The correlation pyramid is a multi-scale correlation volume, which
contains coarse-to-fine correlation features about almost all the different displacements of
sparse seeds, and we can look up the matching costs of different displacements at different
scales for a feature vector in Fs from the correlation pyramid. Since the correlation pyramid
considers both low- and high-resolution correlation information, while maintaining the
first two dimensions (or the full resolution) of sparse seeds S1, it allows for our method
to recover both large and small displacements, especially to capture the motion of small
fast-moving objects, such as small-scale vortices in complex fluid flows.

Now, let us discuss the advantages of the multi-scale correlation volume using correla-
tion coefficients as the matching costs.

3.3.1. Feature-Distortion Invariance

When the fluid flows from one image to another, its shape is often not fixed, and it
tends to change with time, such as local contraction and expansion. At the same time,
its brightness often changes due to the influence of illumination changes. Therefore, the
extracted features are often distorted to some extent. We maintain feature-distortion
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invariance by using correlation coefficients as the matching costs. Fs(x) is a feature vec-
tor of a seed located at x in the source feature map S1, when this seed moves from the
source feature map S1 to the target feature map S2, its feature may be distorted due to
the changes of fluid shapes and illuminations. We assume that it satisfies the following
feature-distortion model:

Fi(y) = ayFt(y) + by (2)

where Ft(y) denotes an original feature vector in the target feature map S2, and Fi(y) is the
corresponding feature vector influenced by the changes of fluid shapes and illuminations.
ay and by represent the parameters of this linear model located at y. The mean µi(y) and
standard deviation σi(y) of Fi(y) can be respectively given by:

µi(y) = ayµt(y) + by (3)

σi(y) = ayσt(y) (4)

where σt(y) and µt(y) are the standard and mean deviation of Ft(y), respectively. Based
on Equations (1)–(4), the matching cost between Fs(x) and Fi(y) is given by:

C(Fs(x), Ft(y)) = C
(
Fs(x), ayFt(y) + by

)
= 1

D

D
∑

h=1

Fh
s (x)−µs(x)

σs(x)
· F

h
i ((y))−µi(y)

σi(y)

= 1
D

D
∑

h=1

Fh
s (x)−µs(x)

σs(x)
· ayFh

t (y)+by−(ayµt(y)+by)
ayσt(y)

= 1
D

D
∑

h=1

Fh
s (x)−µs(x)

σs(x)
· F

h
t ((y))−µt(y)

σt(y)
= C(Fs(x), Ft(y))

(5)

which demonstrates that although the feature vector Fi(y) = ayFt(y) + by varies with the
parameters ay and by, such that the parameters ay and by became large or small due to the
changes of fluid shapes and illuminations, the matching cost or the correlation coefficient
between Fs(x) and Fi(y) is still invariant, that is C(Fs(x), Fi(y)) = C(Fs(x), Ft(y)).

Based on the above derivation, the feature distortion caused by the changes of fluid
shapes and illuminations has little effect on the matching cost between any feature pair.
Furthermore, the large changes of the feature vectors will not cause large fluctuations
in the matching cost due to |C(Fs(x), Fi(y))| ≤ 1. By taking correlation coefficients as
the matching costs, the multi-scale correlation volume provides a fair comparison for the
matching degree of different feature pairs. At the matching position, the matching cost is
larger. Otherwise, it is much smaller.

3.3.2. Discrimination Enhancement

The discriminability of the matching cost is essentially a problem of classification. It
requires that the matching cost has a large value between the matched feature pair and
a small value between the unmatched feature pair. In particular, for the matched feature
pairs with large differences in appearance or the unmatched feature pairs with similar
appearances, we can still find the correct matches by the matching costs.

To show the strong discriminability of the matching cost using a correlation coefficient,
we directly compare it with the previous matching cost using cross-correlation:

Cp(Fs(x), Ft(y)) =
1
D

D

∑
h=1

Fh
s (x)·Fh

t (y) (6)

Figure 2 provides a visual comparison to show the discriminability of Cp(Fs(x), Ft(y))
and C(Fs(x), Ft(y)), where F+

t (y) and F−t (y) are the matched and unmatched target features
for the source feature Fs(x), respectively. Fs(x) and F+

t (y) are the matched feature pair with the
same gradients but a large difference in appearance, and Fs(x) and F−t (y) are the unmatched
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feature pair with similar appearances. This shows that when a source feature vector Fs(x) and
a target feature vector F+

t (y) have the similar gradients, even with different feature values,

their feature transformations T(Fs(x)) =
Fs(x)−µs(x)

σs(x)
and T

(
F+t (x)

)
=

F+t (x)−µ+
t (x)

σ+
t (x)

still have

the same feature values, that is ‖T(Fs(x))− T
(
F+t (x)

)
‖1

1 =0, and the correlation coefficient
between Fs(x) and F+t (y) has a relatively large value. Otherwise, even if a source feature
vector Fs(x) and a target feature vector F−t (y) have a similar appearance or similar feature
values, but with different gradients, their feature transformations T(Fs(x)) =

Fs(x)−µs(x)
σs(x)

and

T
(
F−t (x)

)
=

F−t (x)−µ−t (x)
σ−t (x)

are still different, that is ‖T(Fs(x))− T
(
F−t (x)

)
‖1

1 =1.52, and the

correlation coefficient between Fs(x) and F−t (y) has a relatively small value.
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The above description reveals the reason why the correlation coefficient is used as the
matching cost: it can enhance the discriminability of the feature matching. However, Cp
directly takes the cross correlation as the matching cost, which will fluctuate greatly when
the feature values change drastically due to the influence of the changes in the fluid shapes
and illuminations. The value of its matching cost does not reflect the matching degree
between any two feature vectors.

3.4. Multi-Scale Cost Volume

For each iteration, the multi-scale cost volume is constructed by performing a multi-
scale search from the correlation pyramid with the initial matches, which are the predicted
matches for the sparse seeds in the last iteration. For the first iteration, the initial matches
are set to zero. After obtaining the initial match f(sx) for the current seed sx in I1, we assume
the corresponding matching position in I2 is given by M(p(sx)) = p(sx) + f(sx). Here, we
define a search space:

{
M(p(sx)) + r|r ∈ Z2, r1 ≤ r

}
, which is centered at M(p(sx)) and

has a search radius of r in both horizontal and vertical directions. We look up the matching
costs from the multi-scale correlation volume by indexing a set of integer coordinates in
the search space. Specifically, the set of the searched matching costs at the level k of the
correlation pyramid is given by:

C(k)
S =

{
C(k)

(
Fs(p(sx)), Ft

(
M(p(sx))

2(k)
+ r
))
|r ∈ Z2, ‖r‖1 ≤ r

}
(7)

where C(k)
S is a correlation feature block, we perform lookups on all the levels of the

correlation pyramid and search for the matching costs with a constant radius r at each
level, and the multi-scale cost volume is constructed by the concatenation of the correlation
feature block C(k)

S (k = 0, 1, 2, 3) at different levels.
Now, we discuss the advantages of the multi-scale cost volume using a constant search

radius. A constant radius across levels of the correlation pyramid means a larger coverage
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when the radius at the higher level is mapped to the lower level. For instance, when the
level of the correlation pyramid L = 4, if a constant radius r = 4 at the coarsest level, it
corresponds to a relatively large radius of 2L−1·r = 32 at the finest level. If the interval
of the sparse seeds is set to n = 3, it has a larger radius of 2L−1·r·2n = 256 at the full
resolution of image. Finally, the matching costs searched from different levels are then
concatenated into a single feature block, named the multi-scale cost volume. Through a
multiscale search strategy, the multi-scale cost volume contains global and local motion
information, which can avoid the corresponding matches falling into the local minimum
and also provides a guarantee for the recovery of the local small-scale motion structures.

3.5. CNN-Based Update Module

In this section, we introduce a CNN-based update module with a recurrent neural
network, which is a gated activation unit based on the GRU cell. As in [11], it takes a context
feature, the current matches, the multi-scale cost volume, and a hidden state as input and
outputs the updated matches and an updated hidden state. Specifically, its update operator
is given as follows:

zd
t = σ

(
Convz(Wd

z ,[hd
t−1,xd

t ])

)
rd

t = σ
(

Convr(Wd
r ,[hd

t−1,xd
t ])

)
h̃

d
t = tan h

(
Convh(Wd

h ,[rd
t ∗h

d
t−1,xd

t ])

)
hd

t =
(
1− zd

t
)
∗ hd

t−1 + zd
t ∗ h̃

d
t

yd
t = σ

(
Conv_y

(
wd

y , hd
t

))
(8)

where xd
t is an input feature map, which is taken as the concatenation of the context feature,

the current matches, and the joint feature that combines both the feature of the searched
multi-scale cost volume and the feature of the current matches. Specifically, this is given in
Figure 3. We initialize the matches f(0) of these sparse seeds to zero everywhere before the
iteration. Given the current matches f(k), we retrieve the multiscale const volume from the
correlation pyramid via a multi-scale search scheme. The searched multi-scale cost volume
is then processed by two convolutional layers to generate the correlation feature, and the
match feature is extracted from the current matches with two convolutional layers. The joint
feature is extracted from the concatenation of both the correlation feature and the match
feature using a convolutional layer. The output yd

t is a predicted match offset ∆f(k), which
is generated using two convolution layers for the output hidden state hd

t from the GRU.
The predicted matches are updated by f(k+1) = f(k)+∆f(k), which is the sparse matches and
1

2n the resolution of the original input image. The CNN-based updated module contains
two conGRU unit: one with a 1× 5 convolution and one with a 5× 1 convolution.

3.6. CNN-Based Interpolation

Since the predicted matches are sparse and 1
2n the resolution of the original input image,

the sparse matches are upsampled to the full resolution by a CNN-based interpolation [11],
which uses two convolutional layers for the output hidden state hd

t to predict a mask
of size H

2n × W
2n × (64× 9) and perform softmax over the weights of the nine neighbors.

The high-resolution flow field is computed by taking a weighted combination of the nine
coarse resolution neighbors using the mask predicted by the network. During training and
evaluation, the predicted matches f are upsampled to the full resolution F, which is used
to match the resolution of the ground truth.

As in [11], the loss function is defined as:

ξ =
N−1

∑
i=1

λN−i·‖Fh
i − Fgt‖1 (9)
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where Fgt is the ground truth, and N is the number of the iteration. Fh
i is a predicted

flow field in the ith iteration, and λN−i is the weight for the L1 distance between the
predicted flow field Fh

i and the ground truth Fgt. The loss function considers the predicted
flow field in each iteration, and the weight λN−i exponentially increases as the number of
iterations increases.
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4. Experiments
4.1. Datasets and Evaluation Metrics

In this section, we perform our method on the public fluid datasets and the real-world
remote sensing images: (1) A 2D turbulent flow from the second set of fluid mechanics
image sequences; (2) A surface quasi-geostrophic (SQG) model of sea flow; (3) Jupiter’s
White Ovals.

(1) The 2D DNS-turbulent flow [33]: DNS-turbulent flow is a homogeneous, isotropic,
and incompressible turbulent flow, which is generated by direct numerical simulation of
the Navier–Stokes equations. This dataset contains typical difficulties for PIV measurement
methods, such as high velocity gradients and small-scale vortices, and it has become a
benchmark for evaluating the fluid motion estimators.

(2) The SQG flow [34]: SQG flow is geophysical flow under location uncertainty. It
is created from a surface quasi-geostrophic model of sea flow and contains a great many
small-scale vortices.

(3) Jupiter’s White Ovals [35]: Jupiter’s White Ovals are distinct storms in Jupiter’s
atmosphere, and the remote sensing images are taken by the NASA’s Galileo Solid State
Imaging system. It is key to understand the physical mechanisms of their forming and
sustaining by extracting the velocity field of Jupiter’s White Ovals by their images. There-
fore, it is of great significance to analyze the motion of Jupiter’s atmosphere based on the
observed data.

The most commonly used measure of performance for fluid flows is the average
endpoint error (AEE) [36], which is given by:

AEE =
1
N

N

∑
i=1

√[
(ui − uti)

2 + (vi − vti)
2
]

(10)

where ui and vi denote the horizontal and vertical components of the estimated flow vector
at the position i, and uti and vti denote the horizontal and vertical components of the
ground-truth flow at the position i. N is the number of pixels in the image.
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4.2. Parameter Detail

We perform our method with an intel (R) core (TM) i9-9900k CPU @3.6GHz. Our
network parameter model is trained using the particle image sequences (DNS-turbulent [33],
SQG [34], and JHTDB [37]) from PIV-dataset [10]. The batch size is set to 8, and the
parameter λ = 0.8. For the AdamW optimizer, the weight decay is set to 0.0001, and the
learning rate is set to 0.00025. Our method runs about 0.36 s for a particle image pair with a
resolution of 256× 256 pixels using Pytorch on a NVIDIA GeForce RTX 2070 GPU.

To monitor the training progress, we provide the curve of training process in Figure 4,
which plots the training loss for each iteration.
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4.3. Main Results and Analysis
4.3.1. DNS-Turbulent Flow

We compare our method with the current state-of-the art motion estimators. Figure 5
shows the curves of AEE (average endpoint error) for different optical flow methods, where
we perform the experiments on the 100 successive images with the size of 256 × 256 pixels
from 2D DNS-turbulent flow. The evaluation results in Figure 6 show that our method
achieves better performance than the traditional motion estimators (such as Physics Flow [38]
and TV-Wavelet Flow [39]) and CNN-based motion estimators (PIV-LiteFlowNet [10] and
PIV-RAFT [11]). It has a significant improvement in accuracy, and the main reason for this is
that our method uses correlation coefficients as the matching costs, which can overcome the
feature distortions caused by the changes of fluid shapes and illuminations and improve the
accuracy of motion estimation by enhancing the discrimination of the feature matching.

Figure 6 shows an image pair from DNS-turbulent flow, and the corresponding stream-
lines of different motion estimators are shown in Figure 7. The streamlines allow us to better
observe the vortices in complex fluid flows, and the streamlines in Figure 7 show that our
method significantly outperforms the current motion estimators in recovering small-scale
vortices. The main reason is that the multi-scale cost volume is used for our method to re-
cover the moving structures with both large and small displacements, especially to capture
the motion of small fast-moving objects, such as some important small-scale vortices in
complex fluid flows. Figure 8 shows that the visual flow vectors estimated by our method
are very similar to the ground-truth flow vectors.

In this paper, to facilitate observation and analysis, the color-coded vorticity field is
produced by performing a Gaussian filtering for vorticity field normalized by its maximum
values. The red and blue colors represent positive and negative curls, respectively. Figure 9
shows that the vorticity predicted by our method is also consistent with the correspond-
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ing ground truth, and simultaneously the designed CNN-based motion estimator can
successfully locate the centers of these vortices, which are marked in a red or blue color.
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Electronics 2022, 11, x FOR PEER REVIEW 11 of 20 
 

 

main reason for this is that our method uses correlation coefficients as the matching costs, 

which can overcome the feature distortions caused by the changes of fluid shapes and 

illuminations and improve the accuracy of motion estimation by enhancing the discrimi-

nation of the feature matching. 

 

Figure 5. The curves of AEE (average endpoint error) for different optical flow methods (Horn–

Schunck [8], Physics-based Flow [38], LAP-Flow [40], Split-Bregman Flow [41], SegFlow [42], TV-

Wavelet Flow [39], PIV-RAFT [11], PIV-LiteFlowNet [10], DCN-Flow) on the 100 successive images 

of DNS-turbulent flow. 

 

Figure 6. An image pair from DNS-turbulent flow. 

Figure 6 shows an image pair from DNS-turbulent flow, and the corresponding 

streamlines of different motion estimators are shown in Figure 7. The streamlines allow 

us to better observe the vortices in complex fluid flows, and the streamlines in Figure 7 

show that our method significantly outperforms the current motion estimators in recov-

ering small-scale vortices. The main reason is that the multi-scale cost volume is used for 

our method to recover the moving structures with both large and small displacements, 

especially to capture the motion of small fast-moving objects, such as some important 

Figure 6. An image pair from DNS-turbulent flow.



Electronics 2022, 11, 4159 12 of 20

Electronics 2022, 11, x FOR PEER REVIEW 12 of 20 
 

 

small-scale vortices in complex fluid flows. Figure 8 shows that the visual flow vectors 

estimated by our method are very similar to the ground-truth flow vectors. 

 

Figure 7. The streamlines of different motion estimators (Physics-Flow [38], TV-Wavelet Flow [39], 

PIV-LiteFlowNet [10], PIV-RAFT [11], and DCN-Flow) on an image pair from DNS-turbulent flow. 

 

Figure 8. The flow vectors of DNS-turbulence estimated by our method (DCN-Flow). 

In this paper, to facilitate observation and analysis, the color-coded vorticity field is 

produced by performing a Gaussian filtering for vorticity field normalized by its maxi-

mum values. The red and blue colors represent positive and negative curls, respectively. 

Figure 9 shows that the vorticity predicted by our method is also consistent with the cor-

responding ground truth, and simultaneously the designed CNN-based motion estimator 

can successfully locate the centers of these vortices, which are marked in a red or blue 

color. 

Figure 7. The streamlines of different motion estimators (Physics-Flow [38], TV-Wavelet Flow [39],
PIV-LiteFlowNet [10], PIV-RAFT [11], and DCN-Flow) on an image pair from DNS-turbulent flow.

Electronics 2022, 11, x FOR PEER REVIEW 12 of 20 
 

 

small-scale vortices in complex fluid flows. Figure 8 shows that the visual flow vectors 

estimated by our method are very similar to the ground-truth flow vectors. 

 

Figure 7. The streamlines of different motion estimators (Physics-Flow [38], TV-Wavelet Flow [39], 

PIV-LiteFlowNet [10], PIV-RAFT [11], and DCN-Flow) on an image pair from DNS-turbulent flow. 

 

Figure 8. The flow vectors of DNS-turbulence estimated by our method (DCN-Flow). 

In this paper, to facilitate observation and analysis, the color-coded vorticity field is 

produced by performing a Gaussian filtering for vorticity field normalized by its maxi-

mum values. The red and blue colors represent positive and negative curls, respectively. 

Figure 9 shows that the vorticity predicted by our method is also consistent with the cor-

responding ground truth, and simultaneously the designed CNN-based motion estimator 

can successfully locate the centers of these vortices, which are marked in a red or blue 

color. 

Figure 8. The flow vectors of DNS-turbulence estimated by our method (DCN-Flow).



Electronics 2022, 11, 4159 13 of 20Electronics 2022, 11, x FOR PEER REVIEW 13 of 20 
 

 

 

Figure 9. The color-coded vorticity field of DNS-turbulence estimated by our method (DCN-Flow). 

4.3.2. SQG Flow 

Figure 10 provides the curves of AEE (average endpoint error) for different motion 

estimators, where we perform experiments on the 50 successive images from SQG flow. 

The evaluation results in Figure 10 show that our method significantly outperforms other 

motion estimators. The main reason is that our method uses correlation coefficients as the 

matching costs, which can improve the accuracy of motion estimation by enhancing the 

discrimination of the feature matching and overcoming the feature distortions caused by 

the changes of fluid shapes and illuminations. 

 

Figure 10. The curves of AEE (average endpoint error) for different motion estimators (Horn–

Schunck [8], Physics-based Flow [38], LAP-Flow [40], Split-Bregman Flow [41], SegFlow [42], TV-

Wavelet Flow [39], PWC-Net [23], RAFT [11], PIV-RAFT [11], PIV-LiteFlowNet [10], DCN-Flow) on 

the 50 successive images from SQG flow. 

Figure 11 shows an image pair from SQG flow, which contains many small-scale vor-

tices. The streamlines in Figure 12 show that our method performs better than other mo-

tion estimators in capturing small-scale vortices, and the estimated flow vectors of our 

method in Figure 13 are very similar to the ground-truth flow vectors. At the same time, 

Figure 14 shows that our method successfully locates the centers of these vortices, which 

Figure 9. The color-coded vorticity field of DNS-turbulence estimated by our method (DCN-Flow).

4.3.2. SQG Flow

Figure 10 provides the curves of AEE (average endpoint error) for different motion
estimators, where we perform experiments on the 50 successive images from SQG flow.
The evaluation results in Figure 10 show that our method significantly outperforms other
motion estimators. The main reason is that our method uses correlation coefficients as the
matching costs, which can improve the accuracy of motion estimation by enhancing the
discrimination of the feature matching and overcoming the feature distortions caused by
the changes of fluid shapes and illuminations.
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Figure 10. The curves of AEE (average endpoint error) for different motion estimators (Horn–Schunck [8],
Physics-based Flow [38], LAP-Flow [40], Split-Bregman Flow [41], SegFlow [42], TV-Wavelet Flow [39],
PWC-Net [23], RAFT [11], PIV-RAFT [11], PIV-LiteFlowNet [10], DCN-Flow) on the 50 successive images
from SQG flow.

Figure 11 shows an image pair from SQG flow, which contains many small-scale
vortices. The streamlines in Figure 12 show that our method performs better than other
motion estimators in capturing small-scale vortices, and the estimated flow vectors of
our method in Figure 13 are very similar to the ground-truth flow vectors. At the same
time, Figure 14 shows that our method successfully locates the centers of these vortices,
which are color-coded in red or blue. The main reason for this is that our method uses the
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multi-scale cost volume that contains both global and local motion information, so it can
recover the moving structures with both large and small displacements, especially capture
the motion of small fast-moving objects, such as important small-scale vortices in complex
fluid flows.
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Figure 13. The flow vectors of SQG estimated by our method (DCN-Flow).
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4.3.3. Evaluation on the Fluid Datasets

The evaluation results of different motion estimators on the public fluid datasets
are shown in Table 1, where PWC-Net [23] and RAFT [11] use the original pre-trained
models. Based on the original pretrained model of RAFT [11], PIV-RAFT was trained
with the particle image pairs from a 2D turbulent flow [33], SQG [34], and JHTDB [37].
PIV-LiteFlowNet [10] was trained with the particle image pairs from PIV dataset. The
evaluation results show that our method (DCN-Flow) significantly outperforms the current
motion estimators in predicting complex fluid flows.

Table 1. Evaluation results of different motion estimators on the public fluid datasets.

Different Motion Estimators DNS-Turbulence (AEE) SQG (AEE)

Horn–Schunck [8] 0.107 0.329
Physics-Flow [38] 0.296 0.483

LAP-Flow [40] 0.234 0.357
Split-Bregman Flow [41] 0.195 0.320

SegFlow [42] 0.154 0.232
Translation-Flow [43] 0.110 0.259

Curl-Flow [43] 0.122 0.311
Divergence-Flow [43] 0.133 0.325
TV-Wavelet Flow [39] 0.230 0.371
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Table 1. Cont.

Different Motion Estimators DNS-Turbulence (AEE) SQG (AEE)

PWC-Net [23] 0.831 1.126
RAFT [11] 0.920 1.334

PIV-RAFT [11] 0.156 0.294
PIV-LiteFlowNet [10] 0.135 0.206

DCN-Flow 0.080 0.148

4.3.4. Jupiter’s White Ovals

Figure 15 shows two successive images of Jupiter’s White Ovals, which were taken by
NASA’s Galileo Solid State Imaging system. The illumination from the sun was consider-
ably changed in a local and non-uniform fashion. To improve the accuracy of the predicted
optical flow field by our method on the real-world image sequences, we train our network
on FlyingChairs [21], FlyingThings [44], and MPI-Sintel training datasets [45].

The predicted flow field by our method for Jupiter’s White Ovals is shown in Figure 16.
There exist three large vortices in Jupiter’s atmosphere, which correspond to Jupiter’s three
white spots. The vortex in the middle of the image is balloon-shaped, and its corresponding
cyclone rotates clockwise. The two vortices on both sides of the image are elliptical, and
their corresponding cyclones rotate counterclockwise. The streamlines of the predicted
flow field in Figure 17 show that our method successfully captured the storms in Jupiter’s
White Ovals, including some important small-scale vortices.
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4.3.5. Evaluation on Other Image Sequences

We also evaluate our method on other image sequences, such as video images from
MPI-Sintel dataset [45], which provides naturalistic video sequences that are challenging
for current methods. It is designed to encourage research on long-range motion, motion
blur, multi-frame analysis, and non-rigid motion.

The evaluation results in Table 2 show that our method (DCN-Flow) achieves a high
ranking on the MPI-Sintel test dataset. It performs better than some current CNN-based
motion estimators [22–25,46–48]. Figure 18 shows visual comparison of optical flow fields
estimated by different motion estimators. It shows that our method achieves better perfor-
mance than the current CNN-based motion estimators [22,23,25,47,48] in preserving sharp
flow edges and recovering important motion details.

Table 2. Evaluation results of different motion estimators on the MPI-Sintel test dataset.

Different Motion Estimators Final (EPE all) 1 Clean (EPE all) 1

GMA [26] 2.470 1.388
RAFT [11] 2.855 1.609
DCN-Flow 3.186 2.326
Flow1D [46] 3.806 2.238

MaskFlownet [47] 4.172 2.521
LiteFlowNet3 [48] 4.448 2.994

PWC-Net [23] 5.042 4.386
LiteFlowNet [24] 5.381 4.539

ARFlow [25] 5.889 4.782
Flownet2 [22] 6.016 3.959

Horn–Schunck [8] 9.610 8.739
1 EPE all: endpoint error over the complete frames.
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(g) LiteFlowNet3 [48]; (h) DCN-Flow.

5. Conclusions

In this paper, we introduce a novel CNN-based motion estimator, and it uses cor-
relation coefficients as the matching costs, which can improve the accuracy of motion
estimation by enhancing the discrimination of the feature matching and overcoming the
feature distortions caused by the changes of fluid shapes and illuminations. Since the
searched multi-scale cost volume contains global and local motion information, it can re-
cover both large and small displacements very well, especially capture small-scale motion
structures. In the future, we will improve the accuracy of fluid motion estimation by de-
signing more advanced CNN-based motion estimators, which consider the physical laws of
fluid flow evolution, such as the Helmholtz decomposition of vector fields, Navier–Stokes
equations, etc.

Author Contributions: J.C. wrote the manuscript, designed the architecture, performed the compar-
ative experiments, and contributed to the study design, data analysis, and data interpretation. H.D.
and Y.S. revised the manuscript, and gave comments and suggestions to the manuscript. M.T. and
Z.C. supervised the study, revised the manuscript, and provided some data analysis. All authors
have read and agreed to the published version of the manuscript.
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